<u>Lakelse Sockeye Recovery Program</u> Williams Creek Upper Spawning Channel Completion and Lower Channel Feasibility

View looking downstream at the project area - August 2011 (Photo - S.Devcic)

Prepared for:

The Pacific Salmon Commission 600 – 1155 Robson Street Vancouver, British Columbia V6E 1B5

Prepared by:

Fisheries and Oceans Canada

James Powell – Restoration Eng. Tech. Sandra Devcic – Restoration Engineer Lana Miller – Restoration Biologist North Coast Area February 2013

NF-2011-H-1

Acknowledgements

The Department of Fisheries and Oceans was the primary proponent for the project. DFO provided personnel, technical expertise, financial administration and construction supervision.

The project has been undertaken in stages over a few years. Some of the players involved in the present stage were:

- Billabong Road and Bridge Maintenance, who undertook the construction and also contributed to the brainstorming when challenging ground conditions, were discovered. Their co-operation was appreciated.
- Nordic Tree Service was the contractor who quickly and efficiently brought down the larger trees in advance of construction.

Additional assistance was provided by:

- BC Ministry of Forests Kalum Forest District, provided the appropriate permits to undertake the work.
- BC Ministry of Environment Ecosystem and Water Management Branches, provided permits and cooperated with our efforts to obtain the water license and land tenure.
- BC Ministry of Transportation and Infrastructure Skeena District, provided permits and donated the riprap (100m³) for the work which will occur in the final stage when the river intake is installed (Phase 3).
- The Regional District of Kitimat-Stikine assisted with the coordination with the Thornhill Volunteer Fire Department and communication with the Jackpine Flats Community Association. Their support and cooperation with the project has encouraged us to continue on.
- And Mitch Drewes, who started and pursued many of the necessary permits that allowed us to move the project along over time.

Thank you to everyone. Appreciation for your co-operation is heartily given.

Table of Contents

1	INTRODUCTION	3
	1.1 PROJECT AREA 1.1.1 Upper Williams Creek Spawning Channel	
2	METHODS/PROJECT PLAN	4
	2.1 PRE-ASSESSMENT/PLANNING 2.1.1 Design 2.1.2 Permits, Applications and Statements	6
	2.1.2 Fermits, Applications and Statements 2.1.3 Construction Before the Channel Excavation Tender 2.1.4 Construction Tender	8
3	CONSTRUCTION PROGRESS	9
	 3.1 CHANNEL CONSTRUCTION 3.2 SILL CONSTRUCTION	9
	3.3.1 Project Materials and Supplies	
4	CONCLUDING REMARKS	11
5	REFERENCES	

Table of Figures and Photos

Figure 1: Williams Creek Side Channel Area (1:250,000 scale)	5
Figure 2: Index Map of the Project Area	
Photo 1 – 2012Feb17 – Planning the location of the future water intake	
Photo 2 – June 25, 2012 – Typical channel construction	7
Photo 3 – June 22, 2012 – Channel construction near the log jam.	
Photo 4 – June 27, 2012 - Approaching the end of the open channel	10
Photo 5 – August 2, 2012 – Installing the metal edge on the sill.	

List of Appendices

Appendix 1	Proponent	Information
------------	-----------	-------------

- Appendix 2 Design drawings prepared for the construction tender
- Appendix 3 Design drawings of the water supply system prepared for the water license application
- Appendix 4 Design drawings for the lockblock fence sill
- Appendix 5 Williams Creek Tree Removal Memo, J. Powell
- Appendix 6 Daily Construction Reports, J. Powell
- Appendix 7 Financial Report

1 INTRODUCTION

The Lakelse Lake Watershed has historically been an important sockeye producing area. Salmon have been an integral part of the cultural history of the area as an abundant food source and are woven into the traditions and histories of First Nations people. However, the past century has been marked by an accumulation of pressures that have caused widespread degradation of ecosystem integrity and subsequent declines in sockeye abundance.

In 2003, when the Lakelse Lake Sockeye Recovery Program was formed, sockeye recruitment in the Lakelse Lake basin was hovering at a very low level. Concerns about the long term viability of the sockeye population led to the initiation of several habitat conservation and restoration projects aimed at aiding the recovery of Lakelse Lake sockeye stocks, including the Lakelse Lake Fry Outplant Project and the habitat improvement project, both funded by the Pacific Salmon Commission.

Williams Creek is the largest of 13 Lakelse Lake tributaries, historically supporting up to 80% of the Lakelse Lake sockeye. Returns have been recorded showing population sizes up to 50,000 in 1945, and averaging over 10,000 from 1933 to 1968. A decrease in returns to numbers averaging in the hundreds and low thousands have been recorded since this time. The decline appears to be largely the result of extensive logging throughout the watershed including logging of riparian areas and active channel crossings. Large flood events have occurred during and post logging which resulted in increased sediment accumulations of $73,000 \pm 6,000 \text{ m}^3/\text{yr}$ (Weiland, 2007). While these excessive sediment loads have now largely been transported by natural river flows into Lakelse Lake and riparian recovery is ongoing, a lack of suitable spawning habitat continues to be the main factor limiting sockeye production.

The Lakelse Sockeye Spawning Habitat Rehabilitation Study (2007-08) identified Reach 3 (Upper Williams Creek) of Williams Creek as extending from 1.9 km upstream of the confluence of Williams creek and Sockeye creek for 2.9 km, ending just above the Old Lakelse Lake road bridge. Investigations of several groundwater sites in the area of this reach were identified as having potential for spawning channel rehabilitation projects pending further study. The Upper Williams Creek Spawning Channel project (NF-2010-H-1, Miller) included a feasibility study to expand the work to the construction of a spawning channel with an intake supplying river water from Williams Creek.

The project is being carried out in three phases:

- Phase 1 the excavation of a ground water fed test ditch and several groundwater test pits to evaluate ground water potential and overall project feasibility. Successfully carried out in Feb. /Mar. 2009.
- Phase 2 the excavation of the first 470m of the spawning channel (June 2011).
- Phase 2b necessary due to the distribution of the funding (present project), built the last 200m of channel and undertook preparations for Phase 3.
- Phase 3 will be the construction of the intake structure and pipe line to supply water from Williams Creek to the spawning channel, expected in the fall of 2012.

This report describes the work done in the design, construction and completion of the Upper Williams Creek Spawning Channel, Phase 2b.

1.1 Project Area

The Williams Creek drainage is located along the eastern margin of the Coast Mountains. Williams Creek has a mainstem length of 34.1 km. is the largest tributary in the Lakelse Lake basin, providing 62% of the total inflows to the lake. The creek flows into the northeast corner of Lakelse Lake and is a 4th order stream draining approximately 207 km² of steep, high elevation mountainsides. Williams Creek and its tributaries, Sockeye, Myron and Llewellyn creeks, comprise 25% of the total stream length in the Lakelse Lake basin. As stated, in most years up to 80% of the Lakelse sockeye return to Williams Creek.

1.1.1 Upper Williams Creek Spawning Channel

The Upper Williams Creek Spawning Channel was located in the forested area southwest of the Williams Creek Bridge on Old Lakelse Lake road. Historically this section of Williams Creek was made up of a complex of side channels which provided a large amount of spawning opportunities for salmon. However, over time the river has experienced anthropologic impacts which changed its stability, causing the abandonment of the historic side channels and greatly reducing the amount of stable spawning habitat available.

The project site was selected to take advantage of an historic side channel location and capitalize on the groundwater potential. The large trees will help provide cover for juvenile fish for rearing and the groundwater will provide warmer water for overwintering and good incubation conditions. Figure 1 provides and overview of the project area obtained from Mapster (DFO) at 1:250,000 and Figure 2 has a closer look at the project area in relation to the local legal boundaries. Figure 2 was obtained from the Regional District of Kitimat-Stikine.

2 <u>METHODS/PROJECT PLAN</u>

The following section provides a summary of the methods employed in project planning and preparation for construction of the remaining 220m of channel.

2.1 Pre-assessment/Planning

The work undertaken in the current stage of the project was to complete the channel excavation, approximately 220m, with the available funding. Due to the success undertaking the first portion of the channel excavation using the same contractor, we had a feeling of confidence that we would be able to finish channel construction in Phase 2b within budget.

There were a number of steps taken to prepare for construction of Phase 2b and Phase 3. They included design, permitting, and construction tender preparation.

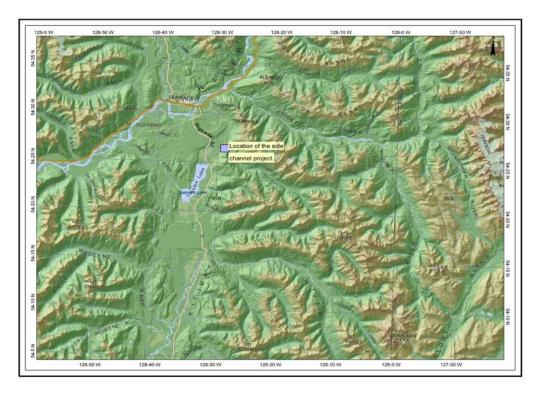
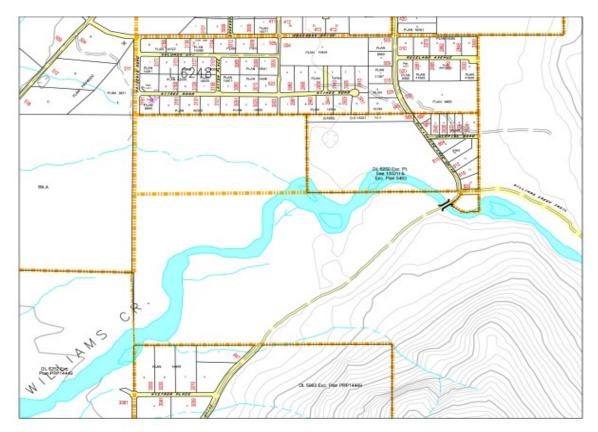



Figure 1: Williams Creek Side Channel Area (1:250,000 scale)

Figure 2: Index Map of the Project Area

2.1.1 Design

The design package for the remaining 200m of sidechannel was essentially the same as was used for the construction of the first 470m built in 2011. However, the elevation of the downstream end of the channel was now known, and an approximate elevation was selected for the water intake at Williams Creek. A new drawing was prepared for the tender and it can be found in Appendix 2.

During this phase of the project, the design of the water intake system was finalized and used to submit the application for the water licence. After much consideration, it was decided that we would construct both a precast concrete streamside intake with a 12" diameter pipeline, as well as a linear infiltration system using Infiltrator brand components, similar to the systems that are being installed in the BC Interior when there is a chance that freezing may be an issue and have the potential to affect the survival of eggs in the gravel. The design of the water supply system can be found in Appendix 3.

The system is designed to provide up to 7.2 cfs of water to the channel system for short periods of time when a flush is needed for maintenance or to augment flows. The pipeline portion of the system is controlled by a valve on the pipe so that during times of year where the ground water is low and additional flows are required to maintain connectivity for the full length of the channel. The infiltration portion of the system is not. The infiltration system is intended merely to take advantage of the location of the pipeline and add to the groundwater already entering the channel in random locations. We expect that the infiltration will add to the groundwater already being collected and provide the majority of the baseline flows year round.

Photo 1 – 2012Feb17 – Planning the location of the future water intake

While constructing the channel in Phase 2, it was decided to incorporate a lock block sill at the downstream end of the channel so that there will be an option to easily conduct assessment once the work is complete. The sill was designed using lockblocks and a barrier screen will be incorporated into Phase 3 of the project. The final drawings of the sill can be seen in Appendix 4.

2.1.2 Permits, Applications and Statements

A number of permits were obtained in order to proceed with Phase 2b of the project. They are listed below:

- Project Review Application DFO
- Notification of Works Water Act Ministry of Environment
- Statement of Work for construction tender
- Free Use Permit MFLNRO Forests, Kalum
- Highway Use Permit MOTI
- Communication with the Regional District of Kitimat-Stikine, Lakelse Watershed Society and the Jackpine Flats Community Association regarding the overall project and

And,

Water Licence – Ministry of Environment – 2012Aug31

Photo 2 – June 25, 2012 – Typical channel construction

2.1.3 Construction Before the Channel Excavation Tender

Having learned from the construction of the first section of the channel, before tendering the last few hundred meters, reconnaissance was conducted and a route selected for the channel. Any trees that looked as though they would be obstructing the excavator's progress were identified and marked for removal. Trees were also marked for removal if they were included in the danger tree assessment undertaken during Phase 2 or if a tree falling professional identified them as being a safety risk.

Three quotes were obtained by invitation from local tree falling experts and Nordic Tree Service was selected for the project. Work was done in one day, June 7th, 2012. There were approximately 30 trees were fallen and bucked into 5m sections. A more complete description of the work can be found in the memo prepared by James Powell, dated June 15, 2012 (Appendix 5).

2.1.4 Construction Tender

Due to the method of competitive tendering during Phase 2 of the channel construction in 2011, it was possible to negotiate the price for Phase 2b directly with the same contractor, Billabong Road and Bridge Maintenance Inc. The statement of work prepared included the construction of the remaining portion of the channel for as far as is deemed reasonable, and the installation of the lock block sill at the downstream end of the newly constructed channel, where it connects to the original natural groundwater channel. The construction tender was overseen by DFO Contracting and no issues were encountered during this phase.

Photo 3 – June 22, 2012 – Channel construction near the log jam.

3 CONSTRUCTION PROGRESS

The following section provides a summary of the main achievements for the project.

3.1 Channel Construction

Channel construction began on June 21, 2012 and was completed on June 27, 2012. Detailed summaries of the daily reports, including photos and progress can be found in Appendix 6. Having gained the experience during the first phase of the channel excavation, the remaining channel was completed in relatively short order. The newly constructed section of the channel winds through a narrower strip of land than the first section, confined by a natural side channel fed by a log jam and an oversteepened bank. The alignment was kept as far away from the natural side channel as possible and the excavated material was used to establish a berm to act as flood protection in the event that it is needed. The natural side channel was monitored during construction to check that it did not dewater, but no negative effects were noted and the juveniles rearing there were not disturbed.

During the construction of the first phase of the excavation, most of the complexing was done using available stumps, boulders and smaller diameter trees. For the second phase of the channel, having the trees cut down and bucked up in advance of the excavation provided plenty of larger diameter wood to add to the channel. Boulders were also used to anchor the toe of the slope as the banks are high and relatively steep. Over time we expect that they will stabilize with vegetation and slumping so that the channel can become more accessible.

Approximately 200m was added to the length of the overall channel. The top end of the channel is now about 50m from the proposed location of the streamside intake and easily accessible from the parking area so that the valve can be safely managed.

3.2 Sill Construction

The lock block sill was constructed as shown in the drawings, Appendix 4. Construction took place over 2 days. The first day was June 28, 2012. On this day the area was isolated and the lock blocks were set into place to construct the sill. A short summary of the progress on site can be found in the Daily Construction Reports, Appendix 6. The metal frame was installed August 2, 2012. It is made of aluminum and anchored to the blocks using Hilti products. There were no unusual circumstances encountered during construction, but due to the elevation of the groundwater during construction the block placement required quite a bit more effort than expected.

The sill is now ready for a slide in gate panel. We will include that in the next phase of the project and anticipate designing a system similar to one that is used in hatchery rearing channels.

Photo 4 – June 27, 2012 - Approaching the end of the open channel.

Photo 5 – August 2, 2012 – Installing the metal edge on the sill.

3.3 Other tasks

3.3.1 Project Materials and Supplies

Once the metalwork was completed for the sill, it was decided to purchase any necessary materials and supplies needed to complete Phase 3 of the overall project. The timing of the intake installation is important to successfully completing the tasks by the March 31, 2013 deadline for the next phase (NF-2012-H-1). The intake must be installed while water levels are low, which happens at the middle of September, before the fall rainy season begins. Because of the uncertainty inherent in the project, we decided to minimize the risk to the Contractor by purchasing the materials such as the manhole and precast intake, so that if changes are needed it will not affect the lump sum price for the installation.

4 Concluding remarks

The detailed Phase 2b objectives included completing the channel construction for the Williams Spawning Channel and undertaking feasibility for the lower Williams Creek area. At the conclusion of the project, the channel construction had been completed and the water license obtained, a large percentage of the construction materials had been purchased for Phase 3 and the communication links for the local watershed groups are established. Achieving all of these objectives indicates a major step forward to eventually constructing a channel in the lower section of Williams Creek. By the time Phase 3 is completed, which is expected to be in the fall of 2012, we will have a fully operational channel that BC Parks can view in order to talk more directly about the options for a similar project in the lower river.

We met all of the objectives outlined and beginning immediately, in the coming season, we will finish off the channel project, by constructing the water supply system. As required by the conditions of the water license, assessment of the flows used will begin. The water license requests that flows be monitored in the river and channel for the next 5 years to get a better feel for how much water is being diverted out of Williams Creek for the project area.

There is also interest in moving fish into the channel shortly after completion of the water supply system. One way of doing this for sockeye would be to plant eyed eggs in the channel, but that will require approvals from the regulating bodies.

We appreciate the continued funding and support to carry on our projects in the Lakelse Lake Watershed.

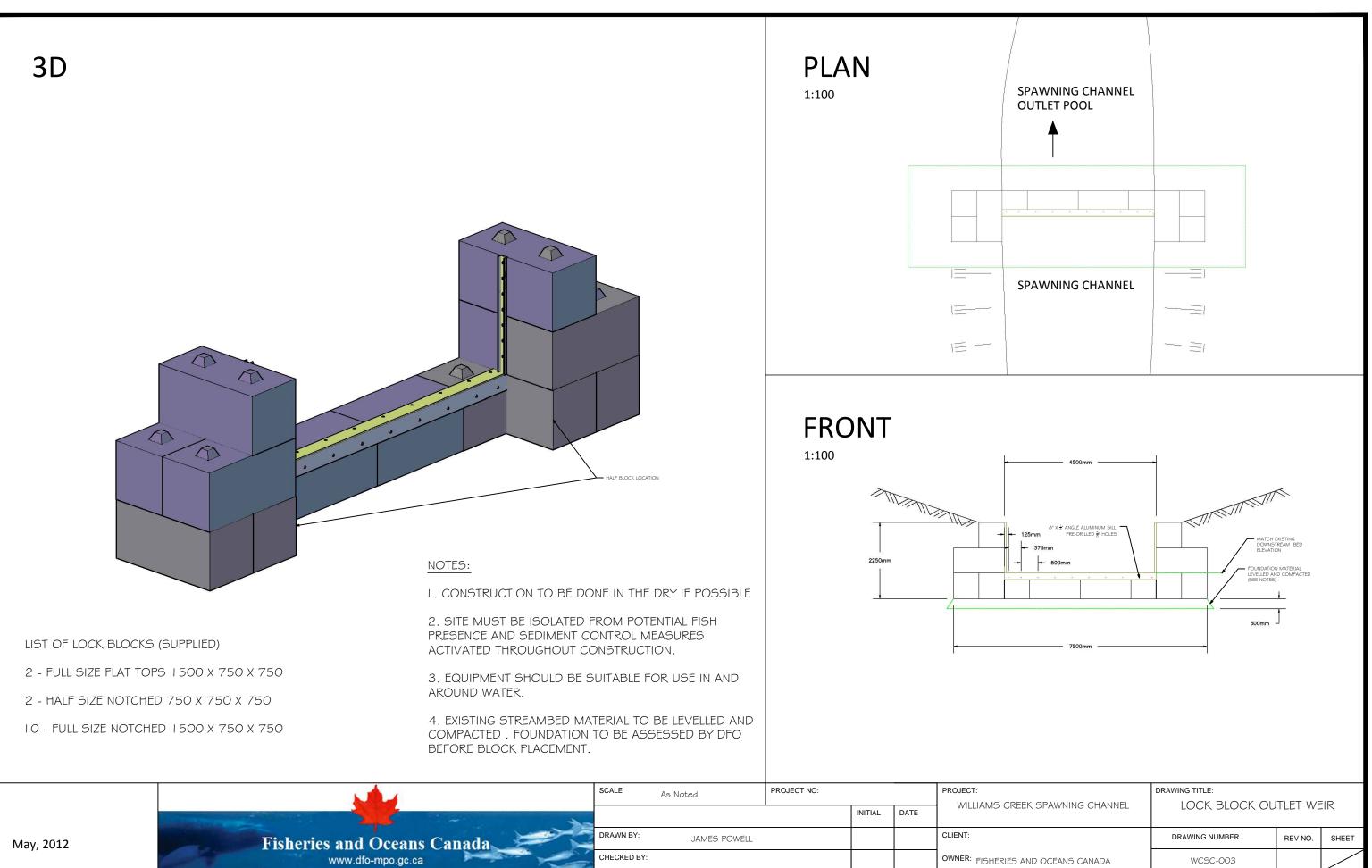
5 <u>References</u>

- 1. (2004). *Lakelse Lake Sockeye Recovery Plan.* Prince Rupert, BC: Fisheries and Oceans Canada.
- 2. Leggat, M. (2009). *Lakelse Lake Suspended Sediment Study.* Smithers, BC: Ministry of Environment.
- Miller, L., Devcic, S., & Kujat, M. (2011). Upper Williams Creek Spawning Channel, Lakelse Sockeye Recovery Plan, NF-2009-H-8. Prince Rupert, BC: Fisheries and Oceans Canada.
- Miller, L., Devcic, S., & Powell, J. (2013). Upper Williams Creek Spawning Channel, Lakelse Sockeye Recovery Plan, NF-2010-H-1. Prince Rupert, BC: Fisheries and Oceans Canada.
- 5. Rabnett, K. (2008). *Lakelse Sockeye Spawning Habitat Rehabitation Study.* Hazelton, BC: Suskwa Research.
- 6. Weiland, I. S. (2007). Sediment Source Mapping, Detailed Channel Assessment, and Reconnaissance Sediment Budget for Williams Creek for the Period 1949-2001. Smithers, BC: Weiland Terrain Sciences & Fluvial Systems Research Inc.

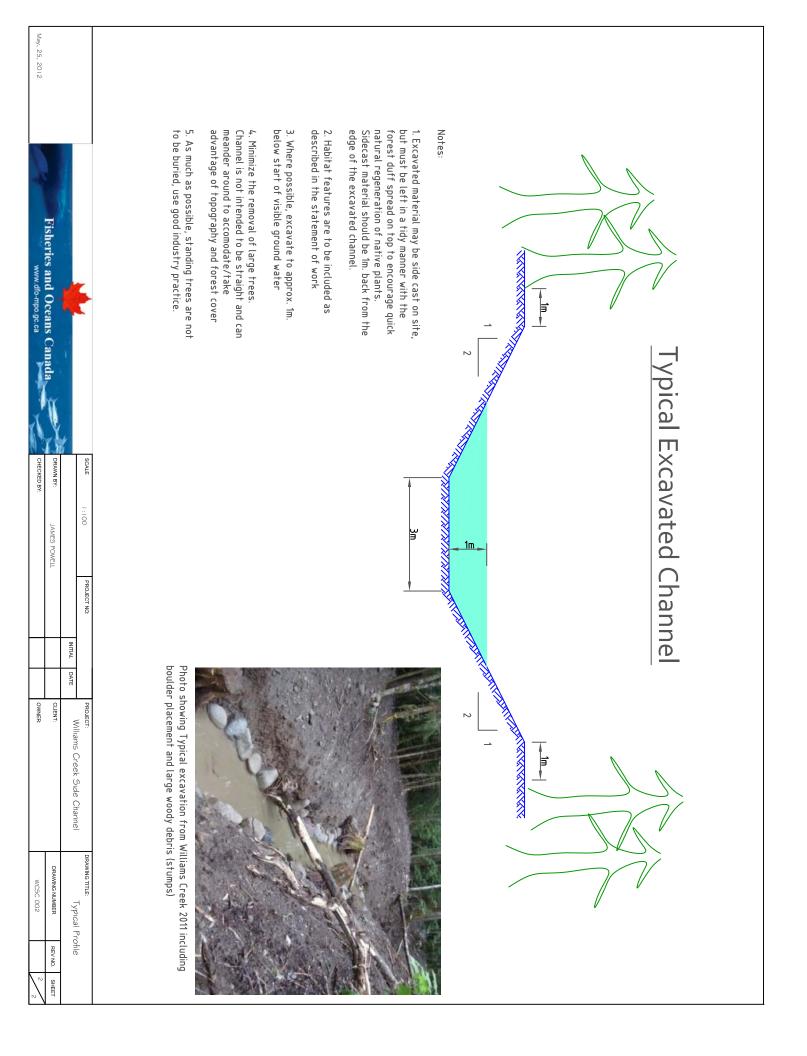
Proponent Information

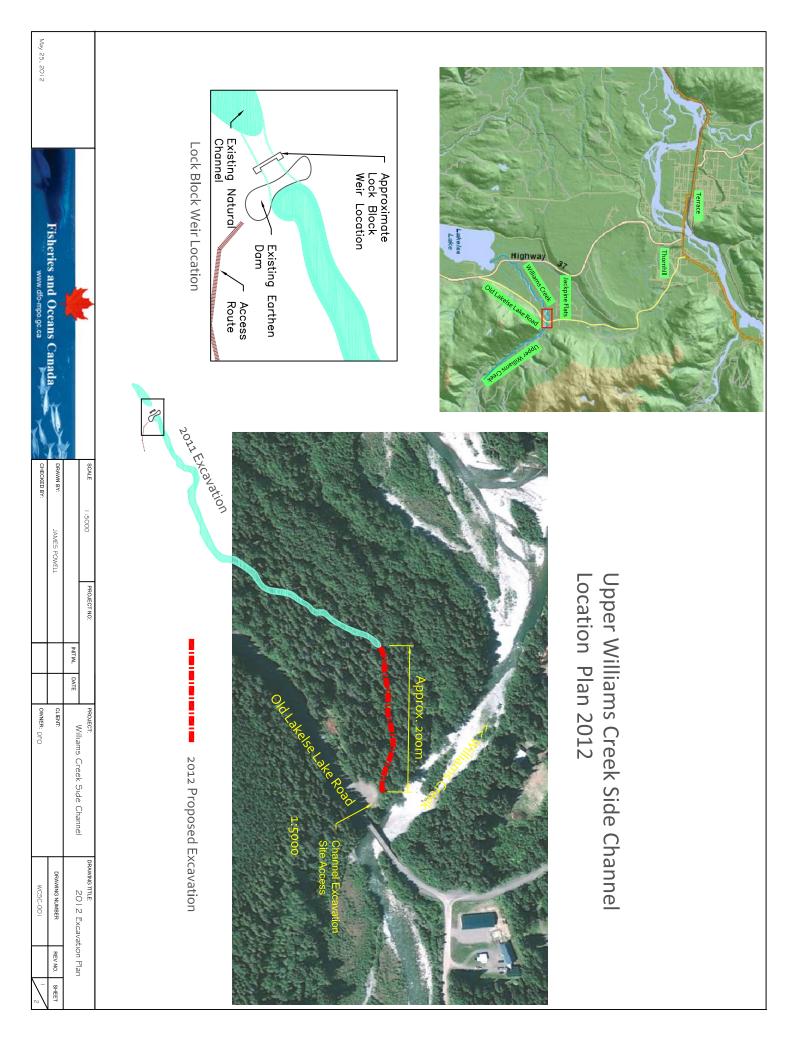
Proponent Information

Department of Fisheries and Oceans Canada

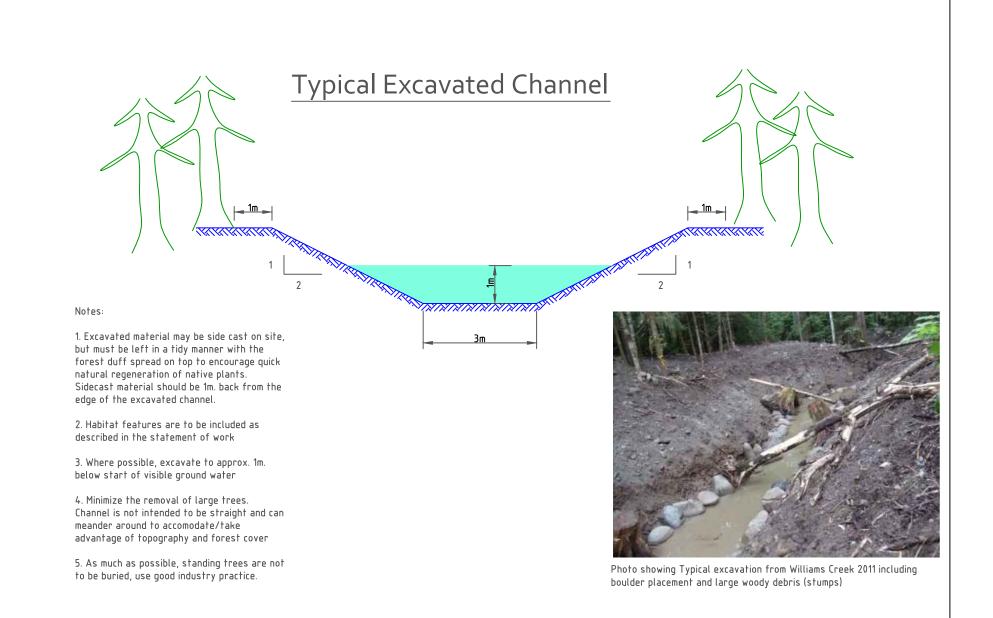

North Coast Area Ecosystems Management Branch Salmonid Enhancement Program Resource Restoration Unit 417 2nd Avenue Prince Rupert, British Columbia V8J 1G8 250-627-3448

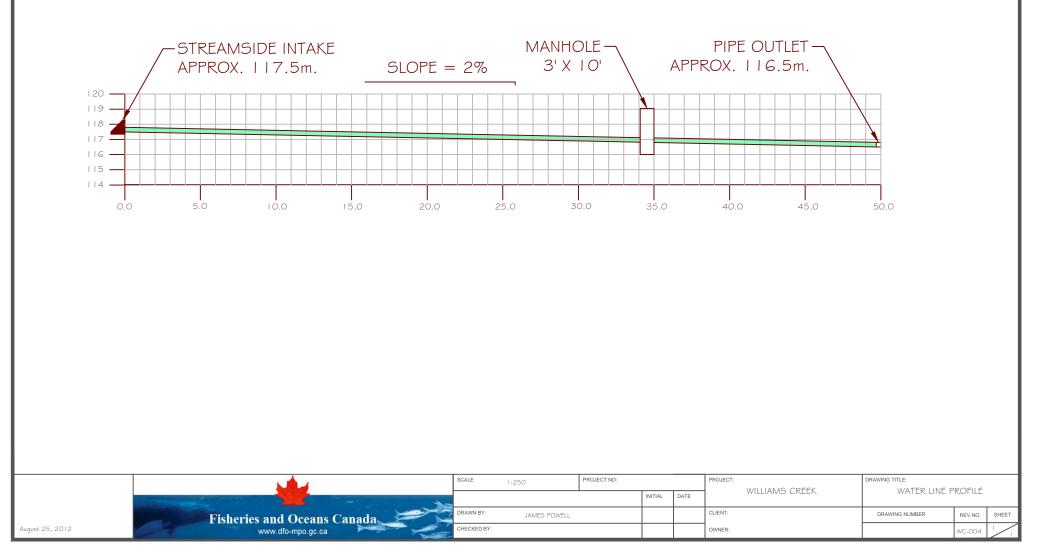
Lana Miller – Restoration Biologist Lana.Miller@dfo-mpo.gc.ca

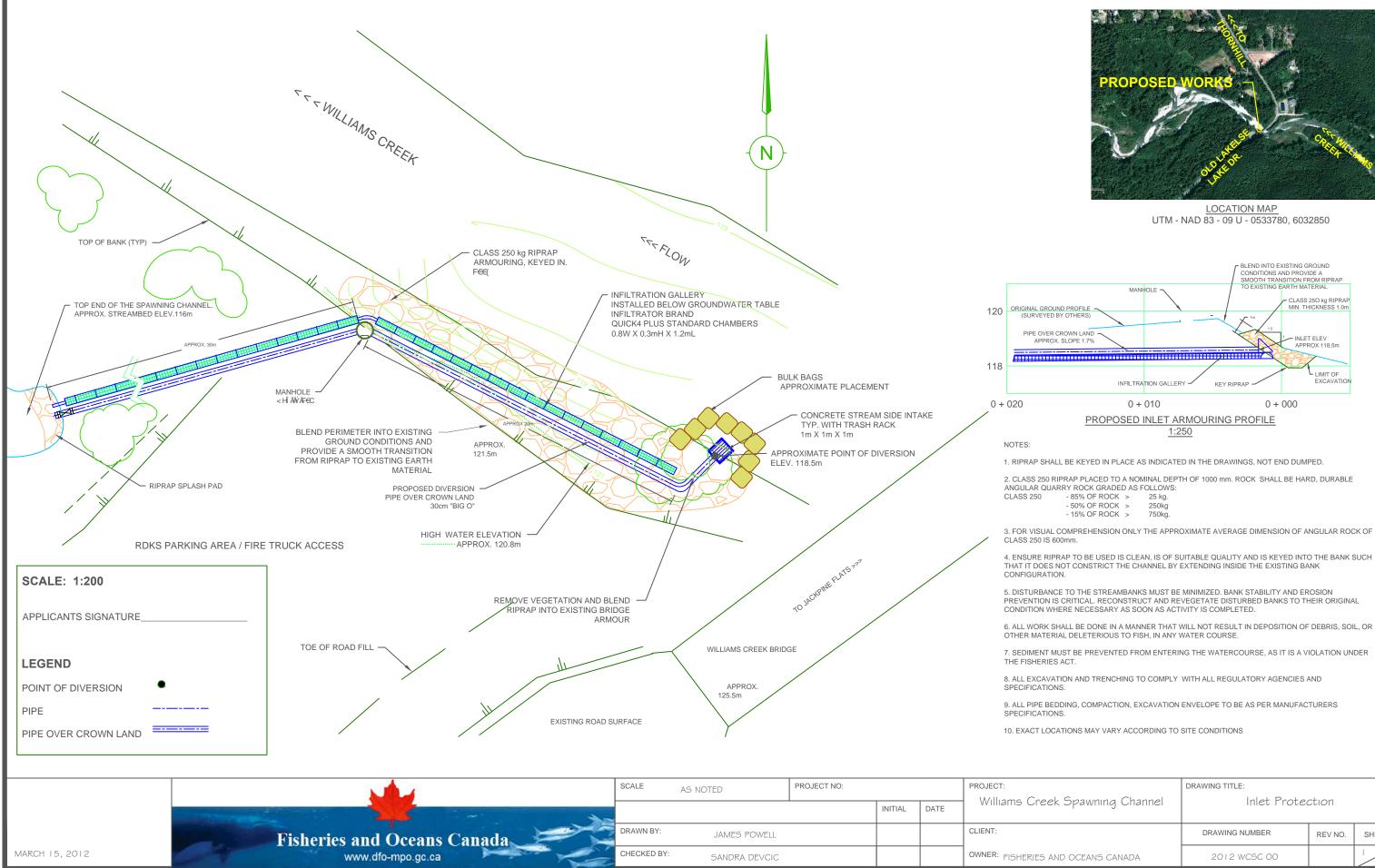

Sandra Devcic, P.Eng. – Resource Restoration Engineer <u>Sandra.Devcic@dfo-mpo.gc.ca</u>

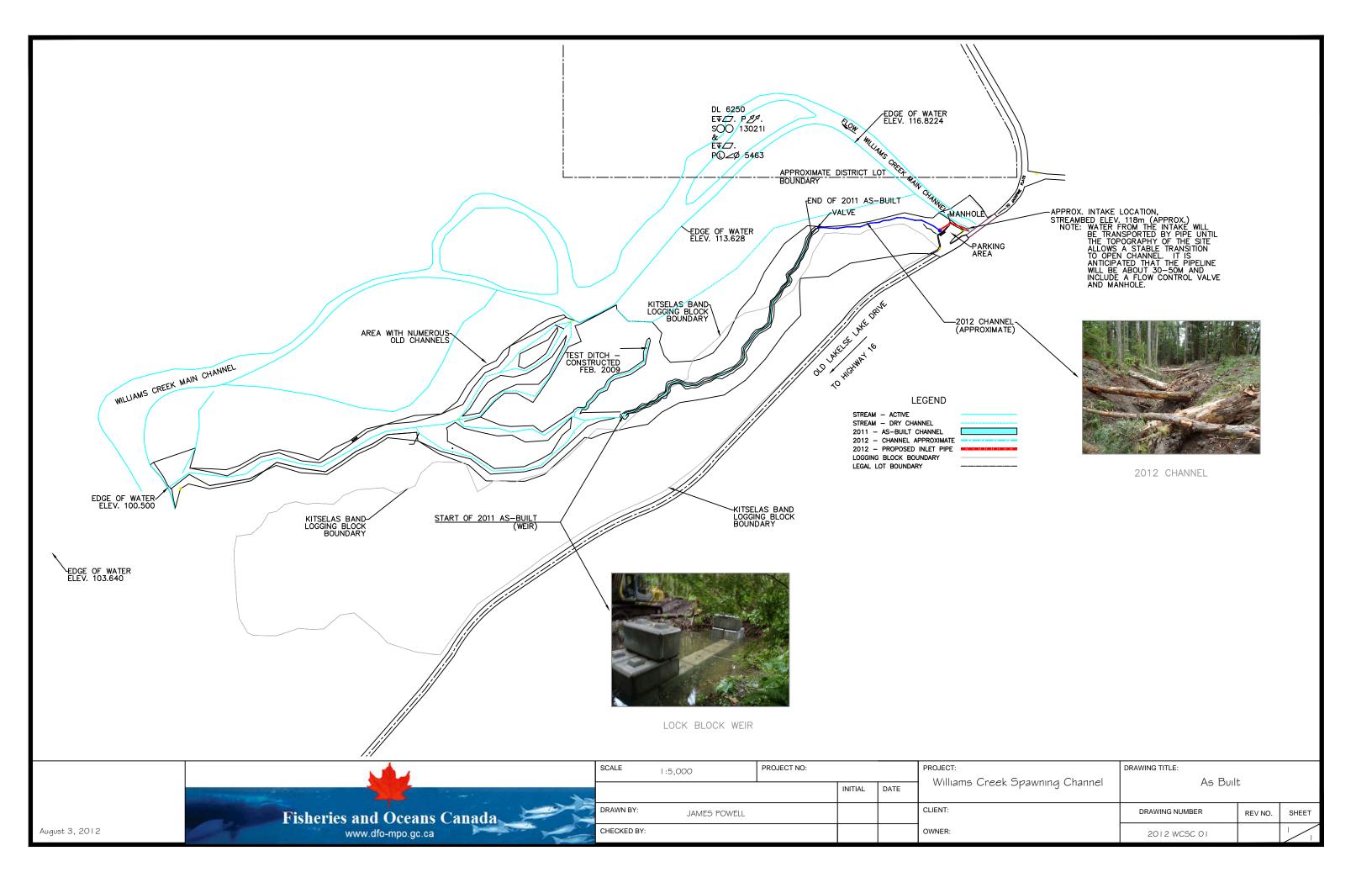

James Powell – Resource Restoration Engineering Technician James.Powell@dfo-mpo.gc.ca

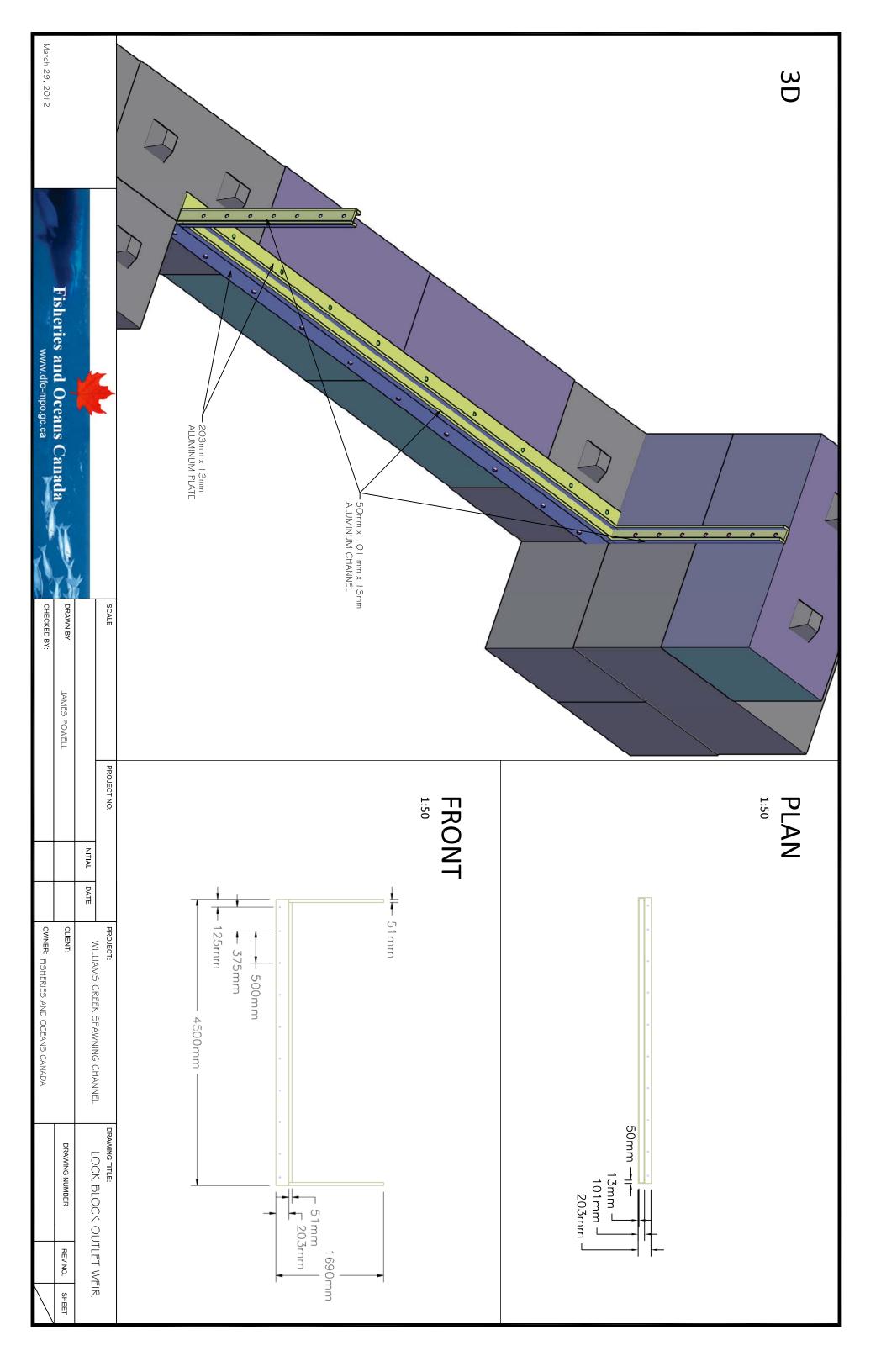
DESIGN DRAWINGS PREPARED FOR THE CONSTRUCTION TENDER

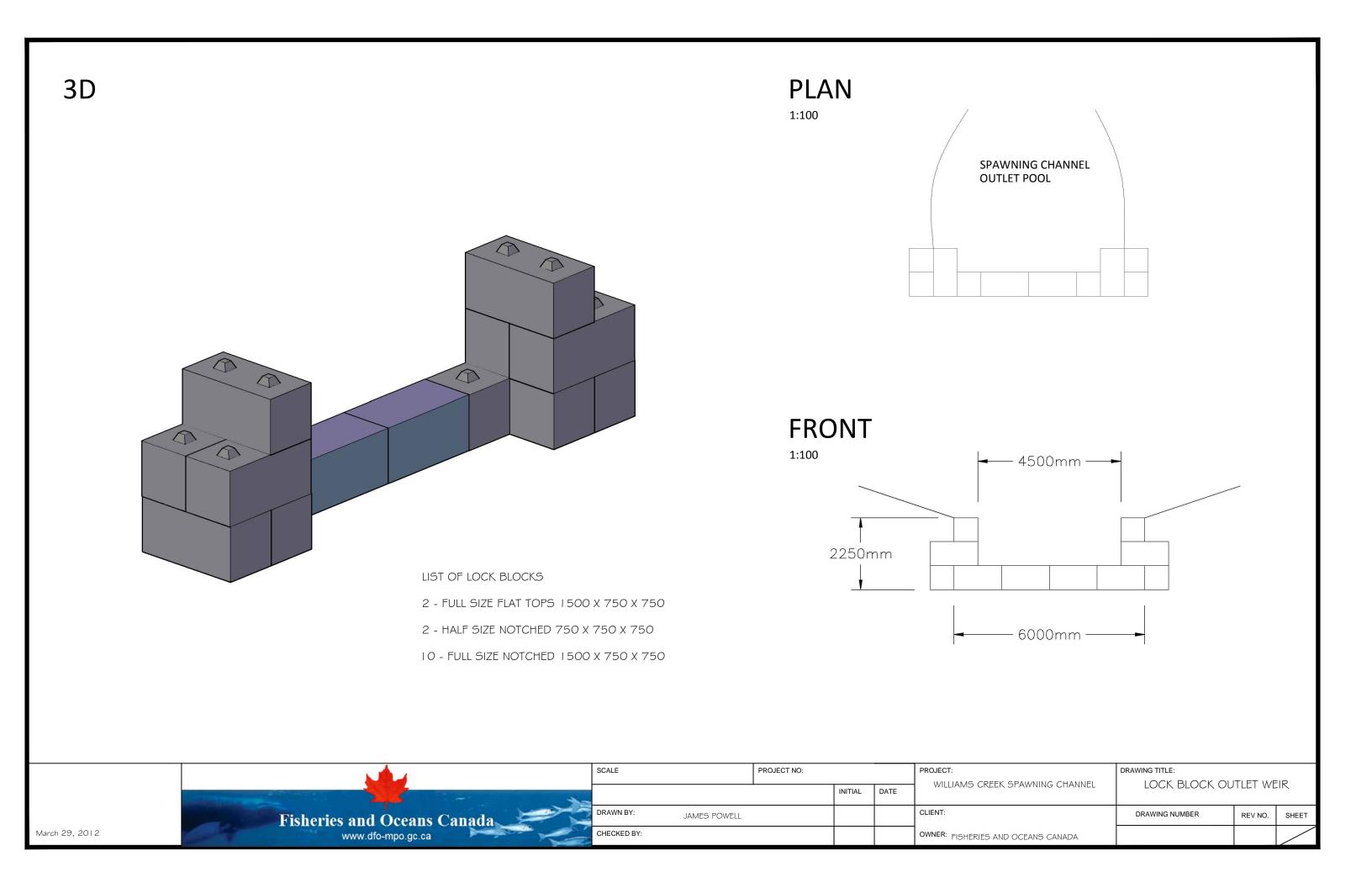

	DRAWING NUMBER	REV NO.	SHEET
OCEANS CANADA	WCSC-003		



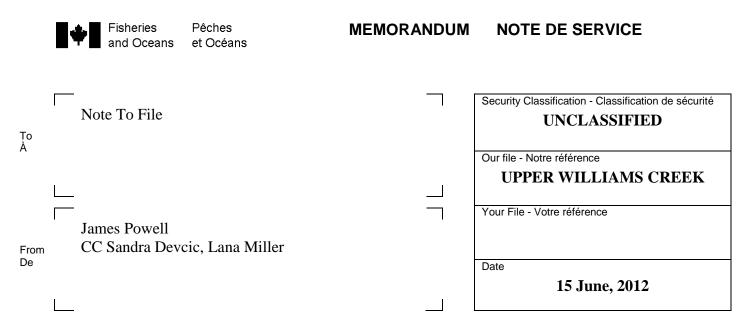

DESIGN DRAWINGS OF THE WATER SUPPLY SYSTEM PREPARED FOR THE WATER LICENSE APPLICATION


		SCALE	1:100	PROJECT NO:			PROJECT: Williams Creek Side Channel	drawing title: Typical Pr	ofile	
					INITIAL	DATE		турісант	one	
	Fisheries and Oceans Canada	DRAWN BY:	JAMES POWELL				CLIENT:	DRAWING NUMBER	REV NO.	SHEET
May, 25, 2012	www.dfo-mpo.gc.ca	CHECKED BY:					OWNER:	WCSC 002		2 2





	DRAWING TITLE:					
k Spawning Channel	Inlet Protection					
	DRAWING NUMBER	REV NO.	SHEET			
ND OCEANS CANADA	2012 WCSC 00					



DESIGN DRAWINGS FOR THE LOCKBLOCK FENCE SILL

WILLIAMS CREEK TREE REMOVAL MEMO, J. POWELL

Subject WILLIAMS CREEK TREE REMOVAL

Williams Creek flows from a 17, 000 ha watershed into the northwest end of Lakelse Lake approximately 20 km. south of Terrace B.C.. Williams Creek has historically supported the largest number of sockeye spawners in the lakelse watershed and has been identified as a priority for restoration work in the B.C. North Coast area. In 2010 a 3 phase habitat restoration project was undertaken adjacent to Upper Williams Creek by the North Coast Resource Restoration Unit with funding from the Pacific Salmon Commission to provide additional side channel rearing and spawning habitat. Phase one involved several test pits and a test channel to determine feasibility. With the success of phase one, phase two includes excavating a 700m. long side channel down to an elevation that takes advantage of existing groundwater. Phase one also includes the construction of a downstream lock block weir to facilitate future monitoring and exclusion requirements. Phase three will involve the installation of an intake system using both a stream side river intake and an infiltration gallery.

The phase two excavation began in June of 2011 with the excavation of the first 470m of channel. The continuation of the remaining 200m. of channel required the removal of several large trees along the excavation route. Three contractors were provided with a Statement of work and met on site for a site visit. The successful bidder, Nordic Tree Services completed the tree removal on June 7^{th} , 2012. The following is a summary of the work completed.

Canadä

The photos below were taken facing east, walking along the route of the tree removal from the upstream end of the 2011 excavation to the parking area at the Williams Creek Bridge on Old Lakelse Lake Road. These Photos show the general condition of the channel route after the trees were fallen and bucked.

Photos 1-9, General Conditions of Channel Route After Tree Falling and Bucking

Some of the felled trees landed across the natural channel that runs parallel to the excavation route on the north side. All but one of these trees cross well above the channel. The one cottonwood in the channel does not appear to be impeding natural flow.

Tree				Trunk	Bucked UTM (from				rom GPS)	
#	Species	Condition	Notes	Diameter		@		I N	E	
				(cm)]	
1	Hemlock	Windfall		50	St		L	 	533721	6032859
2	Hemlock	Windfall		42	St	5			533730	6032860
3	Hemlock	Felled		55	St	5	6	13	533705	6032862
4	Hemlock	Felled		50	St	14			533693	6032892
5	Cedar	Old Windfall		60		9	14		533708	6032873
6	Spruce	Felled		26	St	I	 	_	533667	6032873
7_1	Cedar	Old Windfall		40	 	6	 	_	533647	6032884
8	<u>A</u> lder	Felled		25	St	10	L		533670	6032859
9	Hemlock	Felled	Crosses Nat. Channel	70	St	5	17	 	533653	6032901
10	Hemlock	Felled		50	St	_7_	15		533644	6032886
11	Hemlock	Felled		54	<u>S</u> t	6	10		533624	6032876
12	Cottonw ood	Felled	In Nat. Channel	110	St	7	15	21	533620	6032890
13	Hemlock	Felled	No Stump Visible	20	St	6	12	[533620	6032890
14	Hemlock	Felled		45	St	7	14	_	533614	6032867
15	Spruce	Felled	Crosses Nat. Channel	70	St	7	 		533608	6032887
16	Hemlock	Felled	Crosses Nat. Channel	60	St	5	L		533614	6032879
17	Cottonw ood	Felled		100	St				533613	6032877
18	Hemlock	Felled	Small Snag	50	St				533605	6032873
19	Cedar	Felled		50	St	7	18		533608	6032875
20	Hemlock	Felled		48	St	4	10		533597	6032855
21	Hemlock	Felled		60	St	6	14		533597	6032864
_22	_Hemlock_	Felled		40	St	10	16	_	533608	6032877
23	Cedar	Windfall		90	 	10	14		533607	6032868
24	Cedar	Windfall		30	St	۱	L _		533591	6032870
25	Hemlock	Felled		35	St	8	L		533583	6032856
26	Hemlock	Felled		50	<u>S</u> t	_7_	12	18	533580	6032854
27	Hemlock	Felled	Top in 2012 Channel	30	St	6	12		533580	6032854
28	Hemlock	Felled		40	St	8	۱		533568	6032838
29	Hemlock	Felled	Top in 2012 Channel	50	St	5	l		533566	6032857
30	Hemlock	Felled	Top in 2012 Channel	50	St	4			533565	6032857
			Ave Diameter	51.6667						

Table 1, Some details regarding individual trees fallen and/or bucked

The following photos show the stumps and trunks of the individual trees fallen and/or bucked.

Photos 11, 12 - Tree # 1, Hemlock

Photos 13, 14 - Tree # 3, Hemlock

Photos 15, 16 - *Tree* # 4, *Hemlock*

Photos17, 18- Tree # 5, Hemlock

Photos 19, 20 - Tree # 6, Spruce

Photos 21, 22 - *Tree* # 7, *Cedar*

Photos 25, 26 - Tree # 9, Hemlock

Photos 27, 28 - *Tree* # 10, *Hemlock*

Photos 29, 30 - *Tree* # 11, *Hemlock*

Photos 31, 32 - Tree # 12, Cottonwood

Photo 33 - *Tree* # 13, *Hemlock*

Photos 34, 35 - Tree # 14, Hemlock

Photos 36, 37 - *Tree* # 15, *Spruce*

Photos 38, 39 - Tree # 16, Hemlock

Photos 40,41 - Tree # 17, Cottonwood

Photos 42, 43 - Tree # 18, Hemlock

Photos 44, 45 - Tree # 19, Cedar

Photos 46,47 - *Tree* # 20, *Hemlock*

Photos 48, 49 - *Tree* # 21, *Hemlock*

Photos 50, 51 - Tree # 22, Hemlock

Photos 52, 53 - *Tree* # 23, *Cedar*

Photos 54, 55 - Tree # 24, Cedar

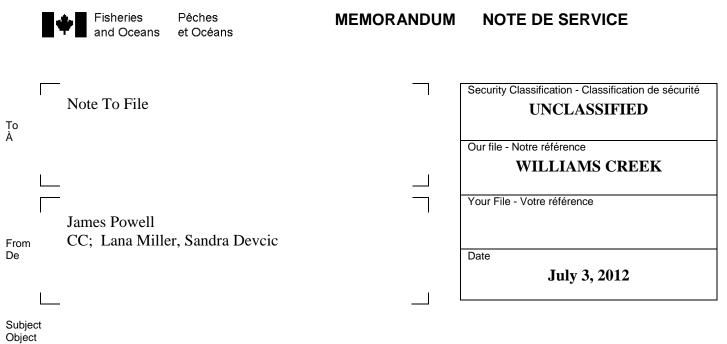
Photo 56 - Tree # 25, Hemlock

Photos 57, 58 - Tree # 26, Hemlock

Photos 59, 60 - Tree # 27, Hemlock

Photos 61 ,62 - *Tree* # 28, *Hemlock*

Photos 63,64 - *Tree* # 29, *Hemlock*



Photos 65, 66 -*T ree* # 30, *Hemlock*

APPENDIX 6

DAILY CONSTRUCTION REPORT, J.POWELL

Upper Williams Creek Side Channel Phase 2b

Daily Progress

Canadä

Overview:

Williams Creek flows from a 17, 000 ha watershed into the northwest end of Lakelse Lake approximately 20 km. south of Terrace B.C.. Williams Creek has historically supported the largest number of sockeye spawners in the lakelse watershed and has been identified as a priority for restoration work in the B.C. North Coast area. Several restoration projects are currently underway in an effort to increase the capacity for sockeye spawning in the watershed. In 2009 a side channel project was undertaken by the DFO North Coast Resource Restoration Unit (NCRRU) with funding from the Pacific Salmon Commission (PSC) to provide additional side channel rearing and spawning habitat for Williams Creek sockeye and coho. The project is located adjacent to Williams Creek near the bridge on Old Lakelse Lake Road. This project is being constructed in three phases:

- Phase 1: Feasibility studies including; a site survey to determine the suitability of the topography, excavation of test pits, and construction of a groundwater test ditch.

- Phase 2: Excavation of a 680m spawning/rearing channel along the route of historic side channels adjacent to Upper Williams creek and the installation of a downstream lock block weir to facilitate future monitoring and exclusion requirements.

- Phase 3: Installation of a streamside intake and infiltration gallery immediately downstream of the bridge crossing Williams Creek on Old Lakelse Lake road and installation of a supply pipe approximately 80m long from the intakes to the constructed channel.

The Phase 1 site survey, test pits, and test ditch were completed in 2009 and subsequent monitoring determined the feasibility of the continuation of the project. Phase 2 began in June of 2011 with the excavation of the first 470m of channel starting from the downstream end and working upstream to within 210m of the parking area adjacent to the Williams Creek Bridge. This report summarizes the completion of Phase 2, the excavation of the final 210m of channel and the construction of the downstream lock block weir.

Construction Summary:

All necessary permits were obtained prior to construction including; a free use permit for tree falling, a highways access permit, a provincial notification of works, DFO notification and a Map Reserve. A water licence has also been applied for in preparation for the construction of the channel intake.

Prior to construction, several trees need to be removed from the path of the excavation route. A statement of work was prepared and three tree falling businesses were contacted for bids. Nordic Tree services was the successful bidder. On June 7, 30 trees were felled and bucked to 5m lengths and left on site to be used as complexing for the channel.

Billabong Road and Bridge Maintenance was contracted to undertake the 2012 channel excavation and lock block weir construction. They were provided with a statement of work and from June 21st to 29th, 2012 the final 210 m of the channel was excavated to 2-3m wide rising at a slope of 1%. Complexing of the channel included the placement of 109 logs, 22 stumps and 245 boulders. Material from the excavation of the channel was side cast and blended to the natural topography to the limit of the reach of the excavator. A lock block weir with a 4.5m wide sill was constructed at the downstream end of the channel. Measurements were taken for the manufacture of a metal angle facing and upright channels to be installed on the lock block weir to facilitate screens or weirs for future monitoring and exclusion requirements.

All construction was supervised and monitored by Sandra Devcic, NCRRU Engineer and James Powell, NCRRU engineering technician. Billabong Road and Bridge Maintenance provided a John Deere 200LC excavator with environmentally safe hydraulic oil, operated by Jack Lee and supervised by Dave Bell. Additional personnel provided by Billabong included flag persons for moving equipment on and off site and a general labourer for assistance with lock block placement. Billabong also provided a 3"Honda trash pump and various hand tools.

Daily Progress Summary:

June 21, 2012

- Safety meeting held
- Path cleared along channel route
- 50m of channel excavated
- Elevations taken @ 10m intervals
- 28 logs, 7 stumps and 10 boulders placed in channel

Photo 1: Clearing the channel route

Photo 2: Newly excavated channel

June 22, 2012:

- Excavation of 35m of channel
- Placement of 22 logs, 9 stumps and 25 boulders
- Removal of logs that had fallen across adjacent natural channel when trees were felled to clear path for channel excavation
- Hand clean up of debris in natural side channel
- Monitoring of water level in natural side channel
- Channel bottom elevations @ 10m intervals

Photo 3: Adjacent natural channel

Photo 4: Removing logs from natural channel

June 25, 2012:

- Excavation of 40m of channel
- Placement of 24 logs, 2 stumps and 100+ boulders
- Continued monitoring of water levels in adjacent natural channel
- Channel bottom elevations @10m intervals

Photo 5: Continued channel excavation

June 26, 2012

- Excavation of 50m of channel
- Placement of 23 logs, 4 stumps and 60+.5m boulders
- Continued monitoring of water levels in adjacent natural channel
- Channel bottom elevations @10m intervals

Photo 6: Continued channel excavation

Photo 7: Typical excavated channel

June 27, 2012:

- Excavation of final 25m of channel
- Placement of 12logs and 50 boulders
- Continued monitoring of water levels in adjacent natural channel
- Relocation of excavator to downstream weir location
- Levelling and widening of downstream plug for supporting excavator
- Begin excavation for placement of lock block weir
- Seeding of excavated material along 50m of channel at upstream end

Photo 8: Typical excavated channel

Photo9: Excavation for placement of lock block weir

June 28, 2012:

- Completion of lock block weir excavation to 0.75m below elevation of downstream channel bottom
- Continuous pumping of lock block weir excavation to maintain isolation between the excavation and the downstream natural channel
- Placement of lock blocks to form downstream weir

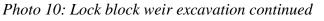


Photo 11: Completed lock block weir

June 29, 2012:

- Backfill lock block weir to blend with natural topography
- Adjust natural channel to blend with weir sill elevation
- Elevations to tie in weir sill elevation with 2011 channel as built survey pin

Photo 12: Looking downstream from 2011channel towards lock block weir

Aug 2, 2012:

- Seine and isolate lock block weir area
- Install sill and channel on lock block weir

Photo 13: Installing lock block weir sill

WILLIAMS CREEK SIDE CHANNEL EXCAVATION PHASE 2 - 2012 - DAILY ELEVATIONS

DATE	SHOT	ROD	HI	CH. BOT. ELEV	HUB ELEV
21-Jun	ALL NORTH AS BUILT PIN	2.273	118.293	ELEV	116.020
21 0011	POOL AT END OF 2011 CHANNEL	3.905	110.200	114.388	110.020
	0+4m	3.707		114.586	
	0+8m	3.552		114.741	
	0+16m	3.615		114.678	
	0+20m	3.659		114.634	
	FS TO HUB 1	1.611		111.001	116.682
	BS TO HUB 1	1.235	117.917		1101002
	0+30m	3.215	117.017	114.702	
	0+40m	3.275		114.642	
	0+50m	3.240		114.677	
22-Jun	BS TO HUB 1	1.875	118.557	111.077	
22 0011	0+60m	3.749	110.001	114.808	
	0+65m	3.695		114.862	
	0+75m	3.585		114.972	
	0+80m	3.589		114.968	
25-Jun	BS TO HUB 1	2.645	119.327	111000	
20 0 0 0 1 1	FS TO HUB 2	0.700	1101021		118.627
	0+90m	3.840		115.487	
	0+100m	3.722		115.605	
	0+110m	3.613		115.714	
	BS TO HUB 2	0.754	119.381		
	0+120m	3.586		115.795	
	0+130m	3.453		115.928	
	0+140m	3.456		115.925	
	FS TO HUB 3	0.005			119.386
	BS TO HUB 3	0.547	119.933		
	0+150m	3.926		116.007	
	0+160m	3.868		116.065	
	0+170m	3.887		116.046	
26-Jun	BS TO HUB 3	0.495	119.881		
	0+180m	3.732		116.149	
	0+190m	3.542		116.339	
	0+200m	3.452		116.429	
	0+210m	3.464		116.417	
	FS to HUB 4	0.253			119.628
	BS to HUB 4	3.044	122.672		
	W/L Williams - North End of Parking Lot	3.138		119.534	
	Edge of Water - Clump of Trees	2.792		119.880	
	High Water Mark - Clump of Trees	1.960		120.712	
	Bottom Of Creek - Clump of Trees	3.709		118.963	
	FS TP middle of parking lot	0.335			122.337
	BS TP middle of parking lot	2.228	124.565		
	AN Hub ACL 280 at parking lot entrance	0.787		123.778	123.778

WILLIAMS CREEK SIDE CHANNEL EXCAVATION PHASE 2 - 2012 - ELEVATIONS AND SLOPES

STN	ELEV	RISE	SLOPE	SECTION	SECTION
0	114.388			RISE	SLOPE
4	114.586	0.198	4.950	0.198	4.950
8	114.741	0.353	4.412	0.155	3.875
16	114.678	0.290	1.813	-0.063	-0.787
20	114.634	0.246	1.230	-0.044	-1.100
30	114.702	0.314	1.047	0.068	0.680
40	114.642	0.254	0.635	-0.060	-0.600
50	114.677	0.289	0.578	0.035	0.350
60	114.808	0.420	0.700	0.131	0.873
65	114.862	0.474	0.729	0.054	0.540
75	114.972	0.584	0.779	0.110	2.200
80	114.968	0.580	0.725	-0.004	-0.040
90	115.487	1.099	1.221	0.519	5.190
100	115.605	1.217	1.217	0.118	1.180
110	115.714	1.326	1.205	0.109	1.090
120	115.795	1.407	1.173	0.081	0.810
130	115.928	1.540	1.185	0.133	1.330
140	115.925	1.537	1.098	-0.003	-0.030
150	116.007	1.619	1.079	0.082	0.820
160	116.065	1.677	1.048	0.058	0.580
170	116.046	1.658	0.975	-0.019	-0.190
180	116.149	1.761	0.978	0.103	1.030
190	116.339	1.951	1.027	0.190	1.900
200	116.429	2.041	1.021	0.090	0.900
210	116.417	2.029	0.966	-0.012	0.006

WILLIAMS CREEK SIDE CHANNEL EXCAVATION PHASE 2 - 2012 - WEIR ELEVATIONS

DATE	SHOT	ROD	н	ELEV
29-Jun	ACL 810 @ 0+80m	0.582	112.622	112.040
	NORTH END LOCK BLOCK WEIR	2.774		109.848
	SOUTH END LOCK BLOCK WEIR	2.778		109.844

WILLIAMS CREEK SIDE CHANNEL EXCAVATION PHASE 2 - 2012 - ELEVATIONS SUMMARY

LOCATION	ELEV	RISE	DIST	SLOPE
	m	m	m	%
LOCK BLOCK WEIR	109.846			
END OF 2011 CHANNEL 0+470m	114.388	4.542	470	0.97
END OF 2012 CHANNEL 0+680m	116.417	6.571	680	0.97

ELEVATIONS FOR INTAKE INSTALL

BOTTOM OF CREEK BELOW BRIDGE	118.96
ESTIMATED ELEVATION OF INTAKE	117.46
END OF CONSTRUCTED CHANNEL	116.42
DIFFERENCE IN ELEVATION	1.05
PIPE LENGTH	50
SLOPE OF PIPE	2.09

r Williams Creek Side Channel Complexing

Date	Length Excavated	logs	stumps	boulders
21-Jun	35	28	7	10
22-Jun	35	22	9	25
25-Jun	40	24	2	100
26-Jun	50	23	4	60
27-Jun	25	12		50
Total	185	109	22	245

APPENDIX 7

FINANCIAL REPORT

2012 Project Budget Form

Name of Project:	Lakelse S	Sockeye R	ecovery F	Program:						
	Williams (Creek Upp	er Spawnii	ng Channe	el l					
ELIGIBLE COSTS Labour Wages & Salaries				-	TOTAL PROJECT BUDGET	OTHER FUNDING	PSC N. FUND GRANT AMOUNT	ACTUAL AMOUNT SPENT	VARIANCE	EXPLANATION
Position	# of crew	# of work days	hrs per day	rate per hour	Total (In- kind & cash + PSC Amount)	In-Kind & Cash	PSC Amount			
Restoration Biologist	1	16		40	5,120	5,120				
DFO Engineering Technician	1	10		40	3,200	3,200				
DFO Engineering	1	8				3,840				
Financial administration (DFO in-kind)	3	5	8	25	3,000	3,000				
Person Days (# of crew x work days)				sub total	15,160	15,160	-	-		
Labour - Employer Costs (perc	cent of wage rate	es subtotal	-	sub total						
		# of work		rate per						
Subcontractors & Consultants	# of crew	days	hrs per day	hour						
Heavy equipment, design and fabrication	of intake, site	supervision			28,500		28,500	28,536.14	100.13%	
Environmental monitoring, coordination					5,000	2,000	3,000	3,062.98	102.10%	
Survey and drafting					7,000	2,000	5,000	6,407.70	128.15%	See Note 1
Insurance if applicable	rate	0%								
	Tuto	070	1	sub total	40,500	4,000	36,500	38,007		
		# of work								
Volunteer Labour	# of crew	days	hrs per day							
Skilled	2	6	8		2,400	2,400				
Un-skilled	2	6	8	15	1,440	1,440				
Insurance if applicable	rate	0%	J							
				sub total	3,840	3,840				
			Total Labo	our Costs	59,500	23,000	36,500	38,007		

Site / Project Costs

(use an additional page if needed)

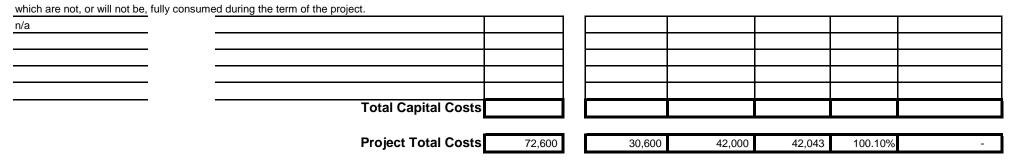
Travel (do not include to & from work)
Small Tools & Equipment
Site Supplies & Materials
Equipment Rental
Work & Safety Gear
Repairs & Maintenace
Permits
Technical Monitoring
Other site costs

Travel for field work	3,000
Temp loggers, perforated pipes	1,500
Pumps, water monitoring equipment	2,000
	1,000
Total Site / Project Costs	7,500

1,500	1,500	-	0.00%	11-1
	1,500	1,500.49	100.03%	
2,000				
1,000				
4,500	3,000	1,500.49		

ELIGIBLE COSTS				BUDGET	OTHER FUNDING	CONTRIBUTION FUNDING	ACTUAL AMOUNT SPENT	VARIANCE	EXPLANATION
Training (e.g Swiftwater	bear aware, elec	trofishing,	etc).	Total (PSC + In-kind + cash)	In-Kind & Cash	PSC Amount			
Name of course	# of crew	# of days							
Bear aware		3 1	~200 each	600	600				
Shotgun certification		2 2	2~500 each	1,000	1,000				
			Total Training Costs	1,600	1,600				

(If the PSC contribution to Indirect costs exceeds 20% of the total PSC grant


Overhead / Indirect Costs	you will be required to submit back-up documentation justi	fying the expense	se).					
Office space; including utilities, etc.	Project administration and overhead	4,000		1,500	2,500	2,535.86	101.43%	
Insurance								
Office supplies								
Telephone & long Distance								
Photocopies & printing								
Other overhead costs								
	Total Overhead Costs	4,000		1,500	2,500	2,536		

Provide details in the space below

Capital Costs / Assets

(use an additional page if needed)

Assets are things of value that have an initial cost of \$250 or more and which can be readily misappropriated for personal use or gain or

Budget Summary

(PSC + in-kind + cash)

Total Labour Costs	
Total Site / Project Costs	
Total Training Costs	
Total Overhead Costs	
Total Capital Costs	
-	Project Tot

Γ	59,500
ŀ	7,500
F	4,000
t Total	72,600

Note: The survey and drafting of the as-built product was slightly more expensive than anticipated. Predicted costs associated with project travel were provided in-kind, and the budget was readjusted to accommodate the extra expense.