# WATERSHED REVIEW LAMPREY CREEK WATERSHED

#### **BIOPHYSICAL CHARACTERISTICS OF WATERSHED**

|                    | 10010 1. 50     | anninar y m | ioimation     | viucibili                  |                                                   | cilibricis (b                             | Je i iguit                                                                  | , 1)                  |                       |               |
|--------------------|-----------------|-------------|---------------|----------------------------|---------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|-----------------------|-----------------------|---------------|
| Size               | Dominant<br>BEC | t Dominant  | nt Elevation  | Dominant<br>Surficial      | Stream<br>Density<br>Biggest %<br>of<br>watershed |                                           | Distribution of slope gradients within the<br>watershed<br>(% of watershed) |                       |                       |               |
| (km <sup>2</sup> ) | Zones           | NDT         | Range<br>(m)  | Geology                    | (km/km <sup>2</sup> )                             | in same<br>elevation<br>band <sup>1</sup> | <10%<br>slope                                                               | 10 to<br>30%<br>slope | 30 to<br>60%<br>slope | >60%<br>slope |
| 239.2              | SBS             | NDT3        | 973 -<br>1557 | Medium<br>textured<br>till | 1.66                                              | 50                                        | 55.5                                                                        | 41.9                  | 2.6                   | 0             |

#### Table 1. Summary Information – Watershed Characteristics – (see Figure 1)

<sup>1</sup> The entire watershed is divided into 300 m elevation bands of harvestable forest land-base. The less elevation bands there are and the more area is represented by any given single elevation band, then the greater will likely be the effect of forest harvesting on increased peak flows due to the theoretical concept of "synchronization" (i.e. the melt from the cutblocks is synchronized as much of it comes from the same elevation), and the greater sensitivity it will have.

#### Table 2. Dominant soil textures in the watershed

| Surficial Geology                       | Total area of surficial<br>material in watershed<br>(km <sup>2</sup> ) | Percent in<br>watershed | Sensitivity to<br>disturbance<br>(mostly roads,<br>trails and<br>crossings) |  |
|-----------------------------------------|------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------|--|
| Very Fine Textured<br>Lacustrine        | 0                                                                      | 0.0                     | Very High Sensitivity                                                       |  |
| Fine textured fluvial                   | 1.2                                                                    | 0.5                     | Very High Sensitivity                                                       |  |
| Fine textured till                      | 5                                                                      | 2.1                     | High Sensitivity                                                            |  |
| Medium textured till                    | 198                                                                    | 82.8                    | Moderate Sensitivity                                                        |  |
| Coarse textured till on rolling terrain | 35                                                                     | 14.6                    | Low Sensitivity                                                             |  |
| Coarse textured fluvial                 | 0                                                                      | 0.0                     | Moderate Sensitivity                                                        |  |
| Colluvial                               | 0                                                                      | 0.0                     | Low Sensitivity                                                             |  |
| Organic                                 | 0                                                                      | 0.0                     | Very High Sensitivity                                                       |  |
| Bedrock                                 | 0                                                                      | 0.0                     | Very Low Sensitivity                                                        |  |
| Eolian                                  | 0                                                                      | 0.0                     | Very High Sensitivity                                                       |  |
| Marine (including glaciomarine)         | 0                                                                      | 0.0                     | Very High Sensitivity                                                       |  |

Score

4

C4- Lightly

unstable/disturbed

topography

0.75

connectivity

1.1

NDT type

1

3.45

Mod

tion potential

1

| Rosgen Stream<br>Channel Score | Rosgen<br>Stream<br>Channel<br>Sensitivity | Sensitivity<br>score<br>relative to | Sensitivity<br>score relative<br>to lateral | Sensitivity<br>score relative<br>to vertical | Sensitivity<br>score<br>relative to | Sensitivity<br>score relative<br>to flow<br>synchroniza- | Sensitivity<br>score<br>relative to | Sensit-<br>ivity<br>Score | Sensitivity<br>Rating |
|--------------------------------|--------------------------------------------|-------------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------|----------------------------------------------------------|-------------------------------------|---------------------------|-----------------------|

conductivity

0.95

climate

1.1

## Table 3. Rating of "Sensitivity" of Watershed to Increased Peak Flow at the lower reaches

#### Table 4. Rating of "Sensitivity" of Watershed to Increased Production of Fine Sediment at lower reaches

| Most sensitive fish<br>species in<br>watershed <sup>1</sup> | Species Sensitivity<br>Score | Sensitivity<br>score relative<br>to<br>topography | Sensitivity<br>score relative<br>to lateral<br>connectivity | Sensitivity<br>score<br>relative to<br>climate | Sensitivity<br>Score | Sensitivity Rating |
|-------------------------------------------------------------|------------------------------|---------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|----------------------|--------------------|
| Dolly Varden                                                | 5                            | 0.75                                              | 1.2                                                         | 1.1                                            | 4.95                 | Very High          |

<sup>1</sup>Note: See Figure 2 for generalized distribution of fish species in this watershed.

Table 5. Rating of "Sensitivity" of Watershed to a Loss In riparian Function.

| Most<br>sensitive<br>fish species<br>in watershed | Species<br>Sensitivity<br>Score | Sensitivity<br>score<br>relative to<br>loss of<br>LWD | Sensitivity<br>score<br>relative to<br>Aspect | Sensitivity<br>score<br>relative to<br>climate | Overall<br>watershed<br>sensitivity to<br>loss of riparian | Loss of<br>Riparian<br>Sensitivity<br>Rating |
|---------------------------------------------------|---------------------------------|-------------------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------------------|----------------------------------------------|
| Dolly<br>Varden                                   | 5                               | 1.25                                                  | 0.85                                          | 1.1                                            | 5.84                                                       | Extreme                                      |

#### Table 6. Peak Flow Hazard Rating, as indexed by HEDA

| Watershed area (km <sup>2</sup> ) | Total area<br>Pine Leading<br>(km <sup>2</sup> ) | Total area<br>Pine Mixed<br>(km <sup>2</sup> ) | Total area<br>harvest (km <sup>2</sup> ) | Total HEDA<br>from Pine<br>Beetle alone<br>(%) | Total HEDA<br>from logging<br>alone (%) | Total HEDA<br>from logging<br>and Pine<br>Beetle<br>mortality (%) |
|-----------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|
| 239.2                             | 36.5                                             | 23.5                                           | 70.03                                    | 10.58                                          | 36.14                                   | 46.72                                                             |

#### Table 6 (continued)

| Total area in<br>Agriculture<br>(km <sup>2</sup> ) | Total area in<br>Agriculture<br>(% of<br>watershed) | Total area in<br>Other<br>Openings <sup>1</sup><br>(km <sup>2</sup> ) | Total HEDA<br>with Logging,<br>O and G &<br>Agriculture<br>(%) | HEDA Hazard rating<br>Score (includes<br>Logging, O and G and<br>Agriculture) | HEDA Hazard Rating |
|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------|
| 0.00                                               | 0.00                                                | 0.00                                                                  | 46.72                                                          | 4.50                                                                          | Very High          |

<sup>1</sup>Note: This includes Oil and Gas and mining openings

| Watershed<br>area (km <sup>2</sup> ) | # of x-<br>ings | #of fish<br>bearing X-<br>ings <sup>1</sup> | #of non-<br>fish<br>bearing X-<br>ings | density of<br>x-ings<br>(#/km <sup>2</sup> ) | Density of<br>fish<br>bearing X-<br>ings<br>(#/km <sup>2</sup> ) | Density of<br>non-fish<br>bearing X-<br>ings<br>(#/km <sup>2</sup> ) | Hazard<br>Rating<br>Score | Hazard<br>Rating |
|--------------------------------------|-----------------|---------------------------------------------|----------------------------------------|----------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|------------------|
| 239.2                                | 179             | 179                                         | 0                                      | 0.7                                          | 0.7                                                              | 0.0                                                                  | 3.7125                    | High             |

| Table 7. Fine Sediment | Hazard Rating, as | indexed by the | Stream Crossing Density |
|------------------------|-------------------|----------------|-------------------------|
|                        |                   |                |                         |

<sup>1</sup>Note: The information on stream crossings was provided by MoE and was generated with a GIS model, not fieldwork.

| Table 8. Loss of Ri | parian Function Hazard  | Rating (See Figures 3 to 7) |
|---------------------|-------------------------|-----------------------------|
|                     | purian r unenon riazara |                             |

| Reach<br>Number | Rosgen Stream Type      | Reach Length (m) | % riparian logged<br>(as interpreted from air<br>photos) | Apparent stability and other<br>comments<br>(as viewed from air photos) |
|-----------------|-------------------------|------------------|----------------------------------------------------------|-------------------------------------------------------------------------|
| 1               | B5-Stable               | 241              | 0.0                                                      | Stable                                                                  |
| 2               | C5 - Unstable/disturbed | 1143             | 83.4                                                     | Moderately De-stabilized                                                |
| 3               | B5-Stable               | 1150             | 0.0                                                      | Very Stable                                                             |
| 4               | B5-Stable               | 1740             | 0.0                                                      | Stable                                                                  |
| 5               | C6- Stable              | 1980             | 0.0                                                      | Stable                                                                  |
|                 |                         |                  | Hazard Rating Score                                      | Hazard Rating                                                           |
|                 | Hazard Scores:          |                  | 1.5                                                      | Low                                                                     |

#### Table 9. Risk Rankings for the Different Hazards in the watershed

| Watershed Hazard<br>Types                     | Sensitivity<br>Score | Sensitivity<br>Rating | Hazard Score | Hazard Rating | Risk Score | Risk Rating |
|-----------------------------------------------|----------------------|-----------------------|--------------|---------------|------------|-------------|
| Increased Peak Flow                           | 3.45                 | Mod                   | 4.50         | High          | 15.5       | High        |
| Increase in<br>Production of Fine<br>Sediment | 4.95                 | Very High             | 3.71         | High          | 18.4       | High        |
| Reduction in Riparian<br>Function             | 5.84                 | Extreme               | 1.5          | Low           | 8.8        | Mod         |

### **RECOMMENDATIONS FOR LAND-BASED INVESTMENT ACTIVITIES IN PRIORITY WATERSHEDS**

- 1. Prior to the allocation of permits for treatment activities, the Lamprey Creek watershed management plan should be reviewed and carefully considered in order to determine how any LBI planned activities may affect peak flow risk in the Lamprey Creek watershed.
- 2. The allocation of permits for treatment activities in the Lamprey Creek watershed should be planned in collaboration with all major licences that operate in the watershed so that the total disturbance does not exceed the peak flow risk threshold set by government for this priority watershed.
- 3. Maintain long term recruitment of large woody debris (LWD), shade and bank stability by retaining at least 90% of the riparian area. This riparian area refers to the management area measured from the closest streambank to a distance 15m upslope from the streambank on:
  - i. S4 streams that are 0.5m or greater in stream channel width, or
  - ii. S6 streams that are 0.5m or greater in stream channel width that flow directly into a fish stream.
- 4. Develop and implement effective erosion and sediment control plans for all stream crossings that are your responsibility, whether you are building them, using them or just maintaining them. The effectiveness of the erosion and sediment control at the stream crossing should be measured using the Water Quality Effectiveness Evaluation methodology developed by the Government of BC<sup>1</sup>
- 5. Prior to the initiation of any treatment activities, identify the presence of any 'flat-over steep' topography and manage appropriately where needed (Figure 4 and 8). These topographic features can be prone to slope instability when forest cover is removed and localized drainage is not well planned.
- 6. Consider under-planting as a reforestation treatment as this minimizes the detrimental effects on peak flow risk, compared to completely knocking down the stand.
- 7. In order to optimize hydrological recovery, planting of all treated sites should be done with the best growing stock appropriate. The selection of appropriate species and planting densities should be done by a qualified professional based in a site specific assessment.
- 8. Not all of the dead pine stands in the watershed should be targeted for knock down treatments. Some should be left for natural regeneration and biodiversity thus creating a more diverse forest in the future with more age classes, i.e. the presence of dead pine stands in the watershed is not an ecological disaster.

<sup>&</sup>lt;sup>1</sup> http://www.for.gov.bc.ca/ftp/hfp/external/!publish/frep/indicators/Indicators-WaterQuality-Protocol-2009.pdf

| Table 10 | Table of | comments | and | observations |
|----------|----------|----------|-----|--------------|
|----------|----------|----------|-----|--------------|

| Comment #1 | Terrain is quite flat. Forest harvesting is distributed throughout watershed.                                                                                                                                                                                                                                                       |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Comment #2 | There are sensitive fish species throughout the watershed and Dolly Varden well into the upper reaches of the watershed.                                                                                                                                                                                                            |  |
| Comment #3 | No significant issues with management of landslide prone terrain, other than localized potential problems with flat-over-steep terrain (Figure 4 and 8) and most recent development moving into steeper terrain (Fig 9).                                                                                                            |  |
| Comment #4 | Upper fluvial systems are dominated by E4/wetland complexes that are generally less sensitive to forest harvesting type impacts.                                                                                                                                                                                                    |  |
| Comment #5 | A WQEE survey has already been completed in this watershed and identified that about 7% of stream crossings had erosion and sediment control problems.                                                                                                                                                                              |  |
| Comment #6 | There appears to be some accelerated bank erosion and channel aggradation along<br>the C4/C5 type lower reaches. This can only be explained by higher peak flows as<br>there are no landslides or significant riparian logging or riparian disturbances. Thus<br>the main control in this watershed should probably be one of HEDA. |  |
| Comment #7 | Maintain the peak flow risk level at below a moderate rating with the objective of maintain stream channel integrity if this watershed is designated as a fisheries sensitive watershed.                                                                                                                                            |  |

#### INTERPRETATIONS AND RECOMMENDATIONS FOR MANAGEMENT STRATEGIES FOR PROTECTION OF FISH RESOURCES WITHIN THIS CANDIDATE FISHERIES SENSITIVE WATERSHED

This watershed has a moderate sensitivity to increased peak flows, very high sensitivities to increases in fine sediment and extreme sensitivities to loss of riparian functions. The watershed has a high risk rating for both the peak flow and the fine sediment hazard. Thus, FSW recommendations will focus primarily on these two issues.

The risk associated with increased peak flows is currently at a high level (Table 9). Given that one of the main objectives of a fisheries sensitive watershed is to protect fish and fish habitat, I recommend the peak flow risk be maintained below a moderate level. Since this watershed already has a high peak flow risk, further stand treatment and forest harvesting activities will have to minimized and possibly curtailed until significant hydrological recovery has occurred on the newer cut-blocks if a low peak flow risk is desired.

The current fine sediment risk rating is at a high, thus it is recommended that a WQEE survey<sup>2</sup> be completed in the Lamprey Creek watershed in order to identify individual stream crossings that may have erosion and sediment control problems and to develop site-specific prescriptions to address any such problems.

The Sustainable Forest Management (SFM) plan for this watershed recognizes the importance of good stream crossing management and the Major Licensees that operate within this watershed use the stream crossing surveys to identify problems and correct the problems when identified<sup>3</sup>.

 <sup>&</sup>lt;sup>2</sup> http://www.for.gov.bc.ca/ftp/hfp/external/!publish/frep/indicators/Indicators-WaterQuality-Protocol-2009.pdf
 <sup>3</sup> P. Beaudry and Associates Ltd. 2005. Results of the Stream Crossing Quality Index (SCQI) survey for the Lamprey Creek Watershed, Nadina Forest District. Unpublished report prepared for Canfor – Houston.

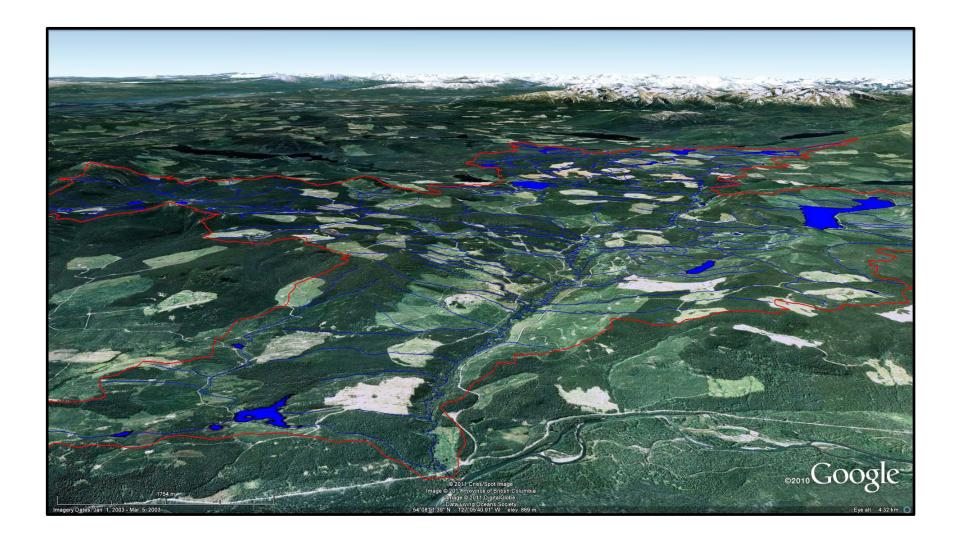



Figure 1. Overview image of Lamprey Creek watershed, looking upstream into the watershed.

*P. Beaudry and Associates Ltd* Integrated Watershed Management Lamprey Creek Page 7

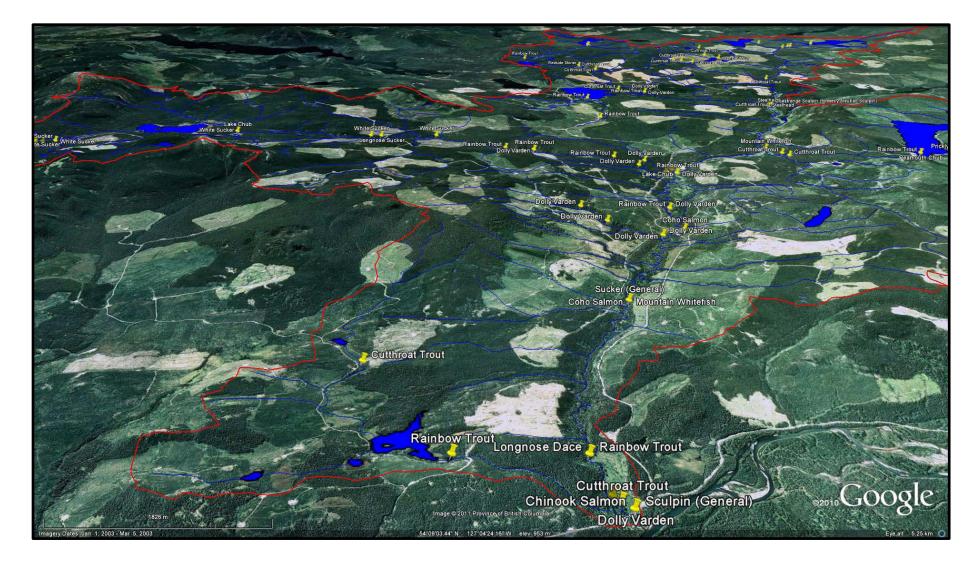



Figure 2. General fish species distribution in the Lamprey Creek watershed.

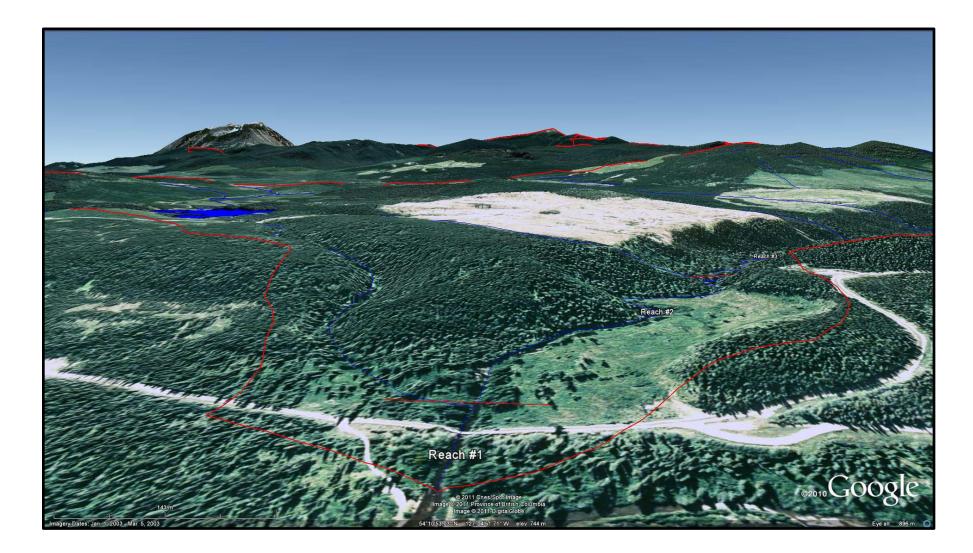



Figure 3. Google Earth image of the two lower reaches of Lamprey Creek, looking up into the watershed.

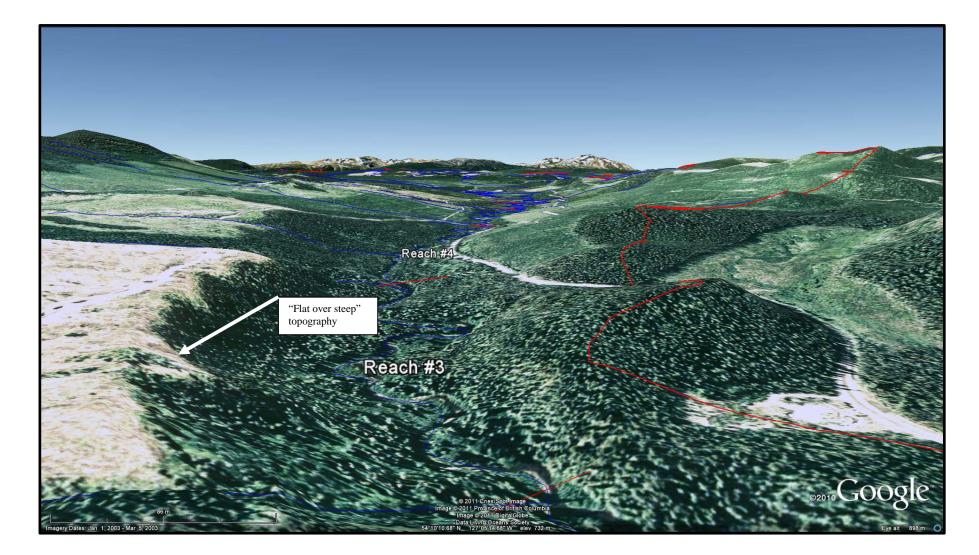



Figure 4. Google Earth image of reaches 3 and 4 of Lamprey Creek, looking up into the watershed.

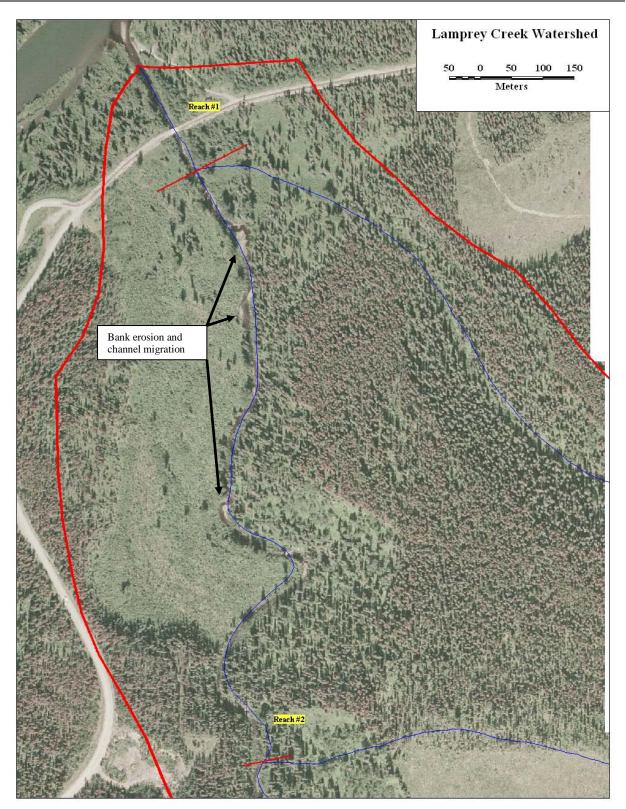



Figure 5. Vertical ortho-photo of reaches 1 and 2 of Lamprey Creek. Note bank erosion and channel migration into cutblock where the riparian forest was removed (left bank).

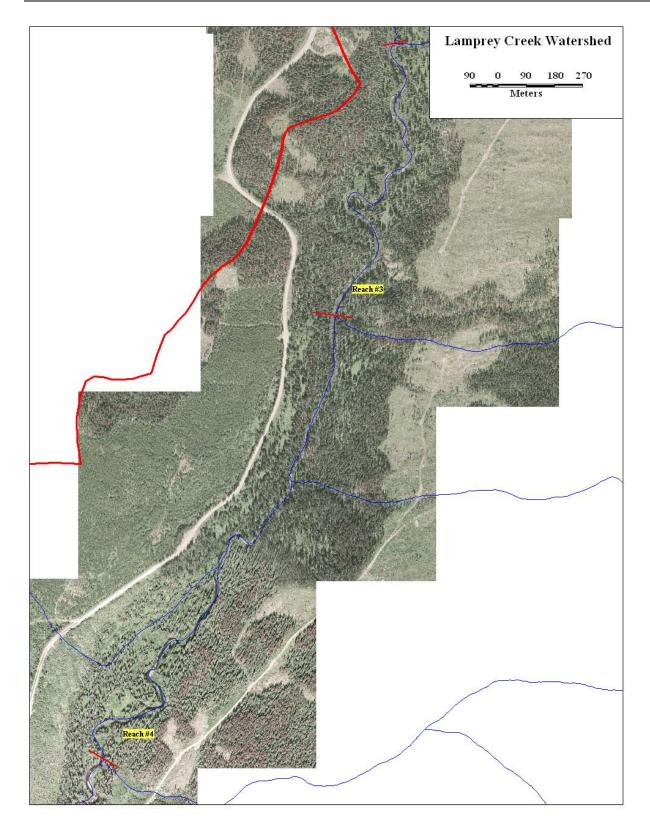



Figure 6. Vertical ortho-photo of reaches 3 and 4 of Lamprey Creek.

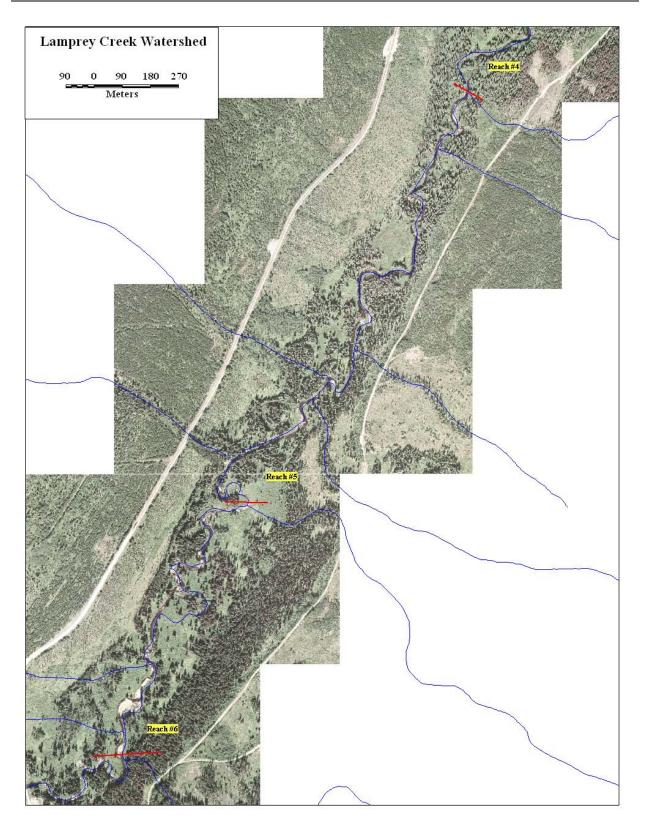



Figure 7. Vertical ortho-photo of reaches 5 and 6 of Lamprey Creek.

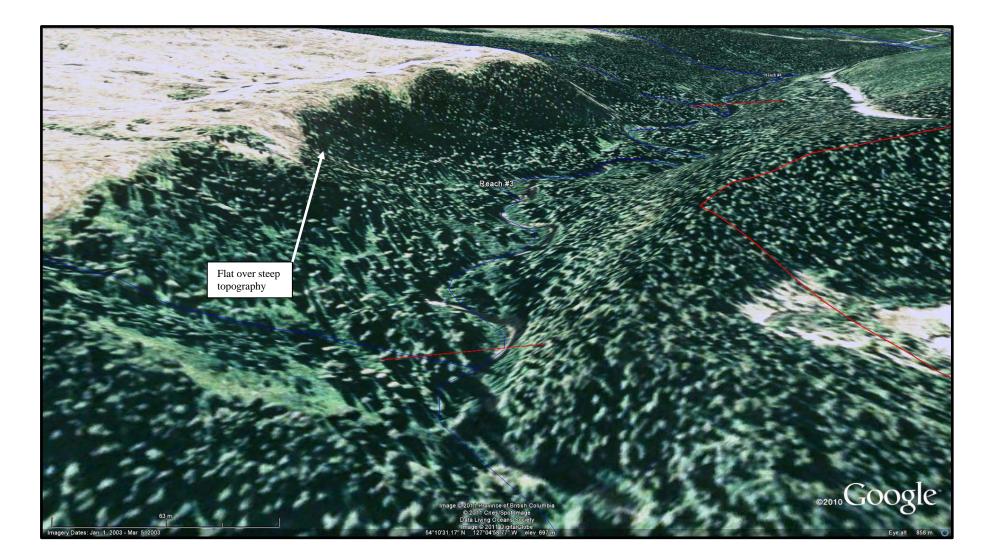



Figure 8. Example of "flat-over steep" terrain along Reach #3 of Lamprey Creek.

*P. Beaudry and Associates Ltd* Integrated Watershed Management Lamprey Creek Page 14

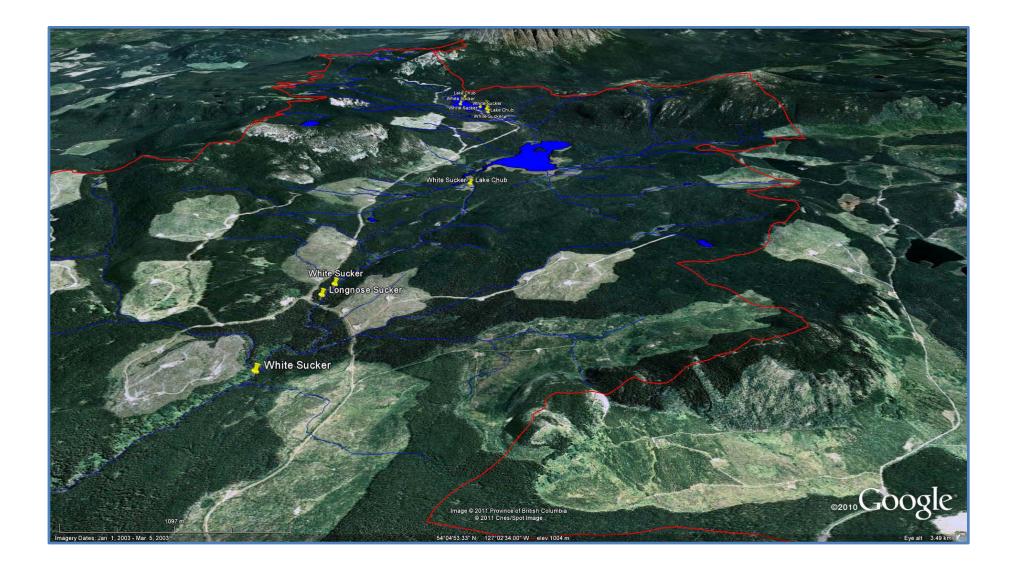



Figure 9. Forest harvesting slowly progressing into steeper areas of the watershed.

*P. Beaudry and Associates Ltd* Integrated Watershed Management