
BRIAN H- RODA SUN.

Assessing Metal Levels in the Tissues of Food-Fish Species in Babine Lake

Summary Report on Analyte Levels Found in Fish Tissues Collected in 2006

Prepared for: Fisheries and Oceans Canada Prince Rupert, B.C.

July 2008

Lake Babine First Nation 225 SUS Avenue Box 879 Burns Lake, B.C. VOJ 1E0

Acknowledgements

Funding to conduct this work was provided via the Lake Babine Nation's Aboriginal Fisheries Strategy Agreement with Fisheries and Oceans Canada Samples were collected by Lake Babine Nation members and their storage and labelling were managed by Donna Macintyre and Bill Spenst. Lab analyses were completed in the UNBC Community Health Sciences Program lab under the supervision of Dr Laurie H.M Chan Donna Macintyre, Lake Babine Nation analyzed the Lab results and wrote the report. Thanks to Brian Toth for his comments and editing

Table of Contents

Acknowledgements	i
List of Tables	11
List of Figures – Appendix 1	11
Executive Summary	1
Introduction	2
Background	4
Purpose	6
Methods	7
Sample Collection Summary	7
Results	8
Coho	8
Fulton Coho	8
Donald's Coho	8
Sockeye Creek Coho	9
Sockeye	, 9
Babine Fence Sockeye	9
Tachet Creek Sockeye	9
Char (Lake trout)	, 10
Rainbow Trout	11
Summary; Analyte Concentrations	11
Comparative Analyte Levels, Geographical	11
Comparative Analyte Levels, Within Species	11
Comparative Analyte Levels, Tissue Types Within Species	12
Comparative Analyte Levels, Between Species	12

Assessing Metal Levels in the Tissues of Food-Fish Specie		ummary Report on Ana	alyte Levels
Found in Fish Tissues	Collected in 2006		÷
Char vs Rainbow Trout		•	12
Sockeye vs Coho		¥	12
Sockeye vs Rainbow Trout			13
Comparative Analyte Levels, Between Analyt	tes	,	13
Lead			13
Cadmium	,		13
Mercury	•		13
Copper		•	13
Zinc	•		13
Recommendations	•		
References Cited	•••••		15
	•		
List of Tables	•	-	
Table 1. Fish species in Babine Lake (Schell, 2003) Table 2 Summary of fish species sampled, and the local Table 3 Summary of metal analyte concentrations obstrom three locations around Babine Lake	ations where they served in coho mus	were captured	
Table 4. Summary of metal analyte concentrations obs sampled from two locations around Babine Lake	served in sockeye r	nuscle and gonad tiss	sues
Table 5. Summary of metal analyte concentrations obs	served in char (lake	e trout) kıdney, muscl	
Table 6 Summary of metal analyte concentrations obssampled from three locations around Babine Lake	erved in rainbow t	rout muscle and gon	
List of Figures – Appendix 1	4 2		
Figure 1. Babine Lake			3
Figure 2. Bell Mine			
Figure 3. Granisle Mine			5
Figure 4 Fulton coho; muscle tissue and Copper (Cu DL			
Figure 5 Fulton coho; muscle tissue and Mercury (Hg D	DL 0 05ppm) conce	ntrations observed	

Figure 7 Donald's Landing coho, muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed18
Figure 8 Donald's Landing coho, muscle tissue and Zinc (Zn DL 0.1 ppm) concentrations observed19
Figure 9. Babine Fence sockeye, gonad tissue and Copper (Cu DL 0.1ppm) and Zinc (Zn DL 0.1ppm) concentrations observed
Figure 10. Babine sockeye (Babine Fence and Tachet C.); muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed
Figure 11. Babine sockeye (Babine Fence and Tachet C.); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed
Figure 12. Babine sockeye (all); muscle tissue and Copper (Cu DL 0 1ppm) concentrations observed21
Figure 13. Babine Fence sockeye, muscle tissue and Mercury (Hg DL 0 05ppm) concentrations observed.
Figure 14. Babine sockeye (Babine Fence and Tachet C); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed
Figure 15. Babine Lake char (lake trout); kidney tissue and Cadmium (Cd DL 0.05ppm) concentrations observed
Figure 16. Babine Lake char (lake trout), kidney tissue and Copper (Cu DL 0.1ppm) concentrations observed 23
Figure 17. Babine Lake char (lake trout), kidney tissue and Mercury (Hg DL 0.05ppm) concentrations observed
Figure 18. Babine Lake char (lake trout), kidney tissue and Zinc (Zn DL 0.1ppm) concentrations observed
Figure 19. Babine Lake char (lake trout), male gonad tissue and Copper (Cu DL 0.1ppm) concentrations observed
Figure 20. Babine Lake char (lake trout), male gonad tissue and Mercury (Hg DL 0 05ppm) concentrations observed
Figure 21. Babine Lake char (lake trout), male gonad tissue and Zinc (Zn DL 0.1ppm) concentrations observed 26
Figure 22 Babine Lake char (lake trout); muscle tissue and Copper (Cu DL 0 1ppm) concentrations observed
Figure 23. Babine Lake char (lake trout); muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed
Figure 24. Babine Laké char (lake trout), muscle tissue and Zinc (Zn DL 0 1ppm) concentrations observed
Figure 25. Babine Lake rainbow trout (all locations), muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed

Figure 26. Babine Lake rainbow trout (all locations), muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed 28
Figure 27. Babine Lake rainbow trout (all locations), muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed
Figure 28. Babine Lake rainbow trout (all locations compared), muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.
Figure 29 Babine Lake rainbow trout (all locations compared); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed
Figure 30. Babine Lake rainbow trout (all locations) and char (lake trout); muscle tissue and Copper (Cu DL 0 1ppm) concentrations observed
Figure 31. Babine Lake rainbow trout (all locations, where DL exceeded) and char (lake trout); muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed
Figure 32. Babine Lake rainbow trout (all locations) and char (lake trout); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed
Figure 33. Babine Lake sockeye (all locations) and coho (all locations); muscle tissue and Copper (Cu DL 0 1ppm) concentrations observed 33
Figure 34. Babine Lake sockeye (all locations, where DL exceeded) and coho (all locations, where DL exceeded), muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed
Figure 35. Babine Lake sockeye (all locations) and coho (all locations); muscle tissue and Zinc (Zn DL* 0.1ppm) concentrations observed
Figure 36. Babine Lake sockeye (all locations) and rainbow trout (all locations); muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed
Figure 37 Babine Lake sockeye (all locations) and rainbow trout (all locations), muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed
Figure 38 Babine Lake sockeye (all locations, where DL exceeded) and rainbow trout (all locations; where DL exceeded); muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed

Executive Summary

During the period August-October 2006 a total of 69 fish were collected from various locations in Babine. Lake and its tributaries, including 16 char (lake trout), 17 rainbow trout, 18 sockeye and 18 coho. A total of 118 tissue samples were collected from these fish, including muscle, kidney and male and female gonad tissues. Samples were frozen and later analyzed to assess the concentration of metal analytes (Mercury, Copper, Zinc, Lead, Cadmium) contained within the tissues. Lab analyses were completed at the UNBC Community Health Sciences Lab in Prince George.

The Lake Babine Nation (LBN ~ 2500 member pop) rely heavily upon the fisheries resources sustained or supported by Babine Lake and its inflowing and out-flowing waters. Locally caught fish have been found to comprise in excess of 50% of the average LBN member's diet. However, the mineral-rich area surrounding Babine Lake has supported two large open-pit Copper extraction mines, both of which have been left in an un-reclaimed state for a number of decades. Further, additional mine operations are proposed for the nearby area. The un-reclaimed state of the existing mines and threat of additional mines has created a substantial amount of uncertainty and concern about the effects of mining activities on both fish health and consumer (human) health. The sampling and lab analyses conducted begin the process of redressing LBN's fish-health concerns, and uncertainties and concerns regarding possible human-health risks related to consuming fish from the area.

Metal analyte concentrations are assessed according to species, size and tissue-type, and where possible, geographical trends. Lead was below detection limits in all of the fish tissue samples tested. Cadmium levels were below detectable levels in all samples collected with the exception of char kidney, in which it was measured at an average concentration of 0.32 mg/kg for 16 samples. Mercury was either below detection limits or measured at levels very close to detection limits in rainbow trout, sockeye and coho tissues tested. Mercury concentrations within char tissues were considerably higher in all tissues sampled, with the exception of female gonad tissues, which were found to contain mercury concentrations at similarly low levels as in the other species tested. Char kidney, muscle and male gonad tissues contained mean concentrations of 0.85, 0.27 and 0.26 mg/kg mercury, respectively

Copper concentrations were measured above detectable limits in all tissues sampled. Mean copper concentrations found in muscle tissues from coho, sockeye, char and rainbow trout were 0.50, 0.42, 1.23 and 0.26 mg/kg respectively. Mean copper concentrations within female coho, sockeye, char and rainbow trout gonad tissues were 1.84, 9.81, 1.66 and 2.40 mg/kg respectively. Copper concentrations in male char gonad tissues average 0.90mg/kg. Copper concentrations in char kidney tissues averaged 1.48mg/kg. Zinc concentrations were also found to be above detectable limits in all fish tissues sampled. Mean zinc concentrations found in muscle tissues from coho, sockeye, char and rainbow trout were 3.93, 2.71, 3.32, and 3.76 mg/kg respectively. Mean zinc concentrations within female coho, sockeye, char and rainbow trout gonad tissues were 9.71, 6.13, 5.60, and 12.15 mg/kg respectively. Zinc concentrations in male char gonad tissues average 8.47 mg/kg. Zinc concentrations in char kidney tissues averaged 20.63 mg/kg.

It is recommended that the information developed be assessed from a toxicological perspective to consider both consumption guidelines and fish health, as required and, to monitor any changes in metals concentration in the area's in fish species.

Introduction

Babine Lake is a large Oligotrophic lake (surface area of 491 km²) located in the interior plateau of British Columbia within the Skeena watershed (Figure1). Babine lake is the largest sockeye nursery lake in Canada and annual returns of adult sockeye to the lake comprise > 90% of the Skeena River's total sockeye returns on an annual basis (Gottesfeld et al. 2002). Other species of fish that inhabit Babine Lake are listed in table 1. Babine Lake is the traditional territory of the Lake Babine Nation (LBN) which consists of approximately 2,500 members.

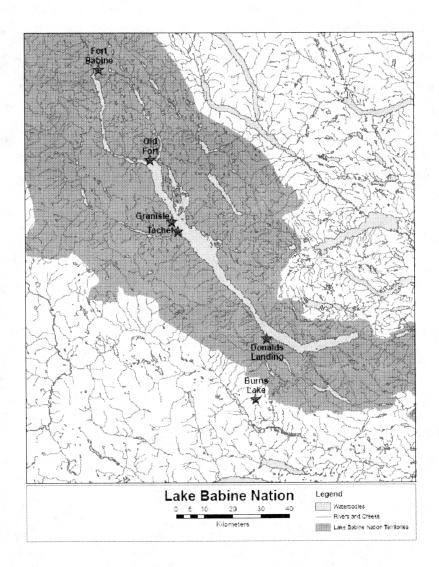


Figure 1. Babine Lake

Table 1. Fish species in Babine Lake (Schell, 2003).

Chinook ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Bull Trout
Coho	Char
Sockeye	Kokanee
Pink	Lake Whitefish
Steelhead	Mountain Whitefish
Rainbow Trout	Burbot
Cutthroat trout	Sculpins
Dolly Varden	Suckers
Shiners	Chub

The Lake Babine Nation (LBN) consists of 5 communities (Fort Babine, Old Fort, Tachet, Donald's Landing and Woyenne) and approximately 11 seasonal communities. LBN member's diet's consist of locally harvested game, plant products, and the Nation relies heavily on various species of fish. Fish as a dietary item was found to comprise 40%-84% of member's diets (Lake Babine Nation, 1997). While all fish species play a fundamental role in LBN member's diets and LBN culture and tradition, sockeye was found to be the most important dietary item (Lake Babine Nation, 1997). Sockeye are also important economically, for trade and commercial sale.

The LBN houses a Fisheries Program within its organizational structure. One of the functions of the program is to monitor the amount of salmon (sockeye) being captured for Food, Social and Ceremonial (FSC) use each summer Annual figures have shown that the number of members obtaining sockeye from Babine Lake is steadily increasing (Lake Babine Nation, 2007).

Background

The area surrounding Babine Lake has been an important copper producing area for BC, and has included two Open Pit mines and several other large prospects. The Bell and Granisle open pit mines are no longer in operation (Figures 2 and 3). A third proposed mine is in the process of applying for an Environmental certificate through the BC Environmental Process. The proposed mine is located approximately 25 km from the two existing mine sites.

The Granisle mine was in operation from 1979-1982 and involved the removal 55 million tones of orerock that produced 3 million tonnes of concentrate and 52 million tonnes of tailings (Bell Closure Plan, 1992). The Granisle mine closed prior to the increased environmental standards for reclamation and a bond of only \$150,000 was set aside for reclamation. The Bell mine was in operation from 1972-1982 and was reopened from 1985-1992.

The footprints of these mines in their non-reclaimed state act as constant symbols of potential contamination for LBN members who live in and use the area. Many LBN members have issues/concerns associated with these post-mining operations, and many have fears that their traditional diets may be unsafe to consume because of potential contamination (Lake Babine Nation, 2007).

Figure 2. Bell Mine¹

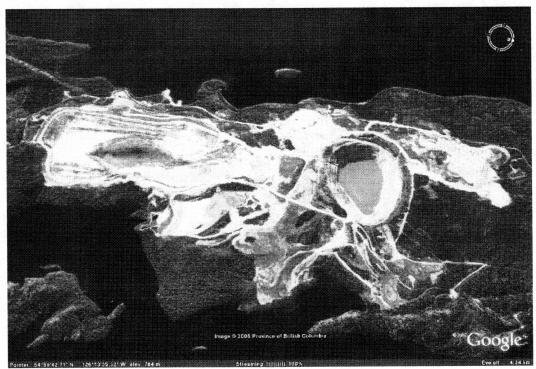
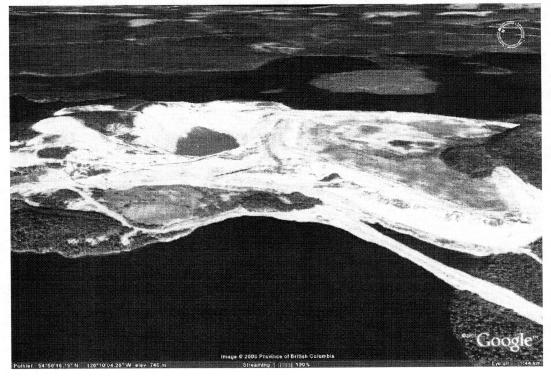



Figure 3. Granisle Mine²

¹ Aerial Photo taken from Google Earth, 2008 ² Aerial photo taken from Google Earth, 2008.

Fisheries resources have been documented to be negatively affected by mining and mining-related activities through both the impairment of aquatic production and the degradation of fish habitats (Nelson et al. 1991). Many of the effects of mining are obviously harmful to aquatic resources, while other potential indirect effects, such as low level contamination, are less obvious. The effects of mining on aquatic resources do not end at the cessation of a mining operation – the effects can persist for 100's of years after (Nelson et al. 1991)

While some metals are required in trace quantities to maintain the physiological functions of aquatic organisms, high levels can be toxic. Mining can be one of the largest contributors of higher than normal amounts of metals in aquatic ecosystems (Nelson, 1991). Metals such as Lead, Cadmium, Nickel and Arsenic are non-essential elements and can be released into aquatic environments from mining industry activities. The mixture of these elements can act synergistically and can form toxic (lethal and sub-lethal) compounds. Cadmium concentrations in aquatic environments are continually increasing in Canada, United States and, Europe and it has recently become a priority pollutant (Beak, 2002).

LBN Members rely heavily on the areas fisheries resources and are concerned about the health and sustainability of the fish populations that utilize Babine Lake. Further, there are great concerns regarding the potential cumulative affects of mine contamination, Mountain Pine Beetle epidemic and other climate change-related effects on the area's fish stocks Studies of Mountain Pine Beetle salvage operations and climate change have shown that there is a potential for higher stream temperatures (Pike et al. 2008), which is a great concern as the toxicity of metal ions varies with factors such as aquatic species and their stage of development and age, pH and temperatures in the receiving environment (Nelson, 1991). Vegetation removal can indirectly affect fish and invertebrate species by shifting species composition and increasing water temperatures (Schell, 2003). Temperature is a very important biological factor because it interacts with physiological and chemical factors that affect many processes (Moyle and Cech, 2000). Presently, Babine Lake is know to experience high water temperatures in late summer (Schell, 2003) and is therefore very vulnerable to the effects increased temperatures facilitate.

The importance of the Fisheries health and sustainability remains the main focus for the LBN Fisheries program.

Purpose

LBN Members have raised many questions such as Is the water polluted? Are the fish safe to eat? Do metals affect the fish in their growth and reproduction? Do our fish contain heavy metals? If so, what levels?

In order to gain information relating to these questions and any potential fish-health concerns, and possible human-health concerns relating to the consumption of fish species from the area, the Lake Babine Nation Fisheries program staff collected and sampled fish from Babine Lake during August-October, 2006. The objective was to determine the levels of various metal analytes in fish species frequently consumed by LBN members. The information collected is intended to document species, size and tissue-type specific metal analyte concentrations, and document any geographical trends in analyte.

concentrations. This information will eventually be assessed from a toxicological perspective to consider consumption guidelines as required and, to monitor any changes in metals concentration in the area's in fish species.

Methods

During the August-October period in 2006 fish were taken from areas close to 3 of LBN's communities, including Fort Babine, Tachet and Donald's Landing. Elders were consulted as to what species and tissue types should be collected, and the food fish harvest areas where sampling should be conducted. In general, tissue sampling followed the protocol below

- 1. Fish were visually inspected for any lesions and abnormalities.
- 2 Scales samples taken
- 3. Fork Lengths measured
- 4. Using latex gloves and sanitized knifes samples were dissected and ~10g of some or all of the following tissue types were removed; <u>muscle tissue</u> (from the left side between the dorsal fin and lateral line), <u>gonad</u> and <u>kidney</u>
- 5. Samples were then placed in zip-lock storage bags and placed on ice in a cooler.
- 6. Zip- lock bags and data sheets were labelled with sex, fork length, location, date, scale numbers and tissue type.
- 7 Samples were then transported to a deep freeze and stored for approximately 2 months

Samples were delivered to the UNBC Community Health Sciences Lab in Prince George where they were analyzed for the following metal analytes

(Cd) Cadmium.	Detection Level (DL) 0 05
(Cu) Copper [.]	DL 0.1
(Pb) Lead:	DL 0.05
. (Zn) Zınc:	DL 0.1
(Hg) Mercury	DL 0.05

All analysis units and DL are in mg/Kg or parts per million (ppm).

Sample Collection Summary

Fish were collected from a number of locations based upon food fish harvesting patterns. Table 2 provides a summary of the species collected and the locations from which they were captured.

Table 2. Summary of fish species sampled, and the locations where they were captured.

Location	Species	No	Method
Wright's Bay	Char (Lake Trout)	16	Gillnet
Babine Fence	Sockeye	14	Dipnet
Fulton C.	Coho	-7	Angling
Sockeye C	Coho	1	Angling
Sockeye C.	Rainbow Trout	- 5	Angling
Donald's Landing	Coho	10	Angling
Donald's Landing	Rainbow Trout	9	Angling
Tachet C	Sockeye	. 4	Beach Seine
Tachet C.,	Rainbow Trout	. 3	Angling

In total, 16 char (lake trout), 17 rainbow trout, 18 sockeye and 18 coho (69 fish in total) were collected from Babine Lake. A total of 118 tissue samples were collected from these fish (see Appendix 2 for a summary of fish lengths, dates sampled, and tissue types collected)

Results

The results of lab testing for various analytes within the tissue samples collected are presented graphically according to the species, tissue type and the area of the lake from where they were collected. Figures are presented in Appendix 1. All units are in mg/Kg or parts per million (ppm).

Coho

A total of 18 Coho were collected and analyzed from Fulton (7), Donalds (10) and Sockeye Creek (1). Both cadmium and lead were below detectable limits within all of the coho muscle and gonad tissue samples collected (no kidney tissue samples were collected from coho). Mercury levels were below detectable limits in 11 of the Coho muscle tissue samples.

Fulton Coho

Copper levels in muscle tissues from coho collected in Fulton Creek ranged from 0.40-0.47 mg/kg (Figure 4). Mercury levels within muscle tissues were either below detection limits or very close (0.5-0.07 mg/kg) to the limit (Figure 5). The concentrations of zinc within muscle tissues ranged from 3 57-6.71 mg/kg (Figure 6). The single female coho gonad sample from Fulton Creek was found to have concentrations of 1.51 and 7 57 mg/kg of copper and zinc respectively.

Donald's Coho

Concentrations of copper within muscle tissues from the 7 coho collected and analyzed from the Donald's Landing area ranged from 0.28-0.91 mg/kg (Figure 7). Zinc concentrations ranged from 2.05-3.0 mg/kg (Figure 8). Mercury was not detected in 8 of the 10 muscle samples, and was minimally above the detectable limit in the other 2. The levels of both copper and zinc in Donald's coho muscle tissues did not show a correlation with fork length (Figures 7 and 8). Copper and zinc concentrations within female gonad tissues were much higher than those measured in muscle tissues (see Table 3).

Sockeye Creek Coho

The single coho collected muscle tissue contained concentrations of 1 3 mg/kg copper, 0 05 mg/kg mercury and 9.53 mg/kg zinc. The concentrations of copper and zinc within female gonad tissue indicated slightly higher concentrations of 1.7 mg/kg and 11.53 mg/kg respectively.

Table 3. Summary of metal analyte concentrations observed in coho muscle and gonad tissues sampled from three locations around Babine Lake.

Area/Tissue	Cadmium	Copper	Lead	Mercury	Zinc					
Fulton/Muscle	< DL	.40- 47 (0.44)	< DL	ND-0 07 (0.06)	3,57-6 71 (4.90)					
Fulton/Gonad	< DL	1.51	< DL	ND ,	7.57					
Donald's/ Muscle	< DL	.2891 (0.47)	< DL	ND-0.06	2.05-3.0 (2.69)					
Donald's/Gonad	< DL	1.87-2.27	< DL	ND	8.72-11.02					
Sockeye C /Muscle	< DL	1.3	< DL	0.05	9.53					
Sockeye C./Gonad	< DL	1.7	< DL	ND	11 53					

Sockeye

A total of 18 sockeye were collected and sampled including 14 from the Babine Fence (n= 4 male and n= 10 female) and 4 from Tachet Creek (n= 3 female and n= 1 male). Tissues analyzed from the sockeye collected from the Babine Fence included muscle and female gonads. Samples from the sockeye collected from Tachet Creek included only muscle tissue. Neither cadmium nor lead were detected in any of the tissue samples collected from sockeye.

Babine Fence Sockeye

Zinc concentrations in female gonad tissues ranged from 4.73-8 16 mg/kg. Copper concentrations within gonad tissues were higher in comparison to zinc, ranging from 7.09-11.82 mg/kg (Figure 9) Mercury, cadmium and lead were not detected in any of the female gonad samples.

The concentration of copper within muscle tissues ranged from 0.16-0 81 mg/kg and was somewhat negatively correlated with increasing fish length (Figures 10 and 12). Zinc concentrations in muscle tissues were lower in comparison to gonad tissues and ranged from 1.21-3.87 mg/kg (Figure 11). Mercury concentrations in muscle tissues were either below detection limits or just above detection limits (Figure 13).

Tachet Creek Sockeye

Copper and zinc concentrations within muscle tissues collected from sockeye in the vicinity of Tachet Creek fell within the range of those collected from the Babine Fence (Figures 10 and 11).

Table 4. Summary of metal analyte concentrations observed in sockeye muscle and gonad tissues sampled from two locations around Babine Lake.

Area/Tissue	Cadmium	Copper	Lead	Mercury	Zinc -
Babine Fence/Muscle	< ĎL	0.16-0.81 (.39)	< DL 💉	ND-0.07 (0.06)	1.21-3.81 (2.53)
Babine Fence/Gonad	, d DL	7.09-11 82 (9.81)	< DL	<dl< td=""><td>4.73-8.16 (6.13)</td></dl<>	4.73-8.16 (6.13)
Tachet/ Muscle	< DL	0.29-0.92 (.54)	< DL	0.05-0 06 (.06)	3.05-3.87 (3.37)
Tachet/Gonad	na	na	na	na	na

Char (Lake trout)

A Total of 16 char were collected from Wright's Bay (n=14 male and n= 2 females). Muscle, kidney, and male gonad tissues were collected. Lead levels in all char tissue samples were below detection limits.

Cadmium concentrations in char kidney tissue samples ranged from 0.1-1.14 mg/kg (Figure 15) Concentrations of copper ranged from 0.31-3.08 mg/kg (Figure 16). Mercury concentrations in char kidney samples ranged from 0.50-1.59 mg/kg and zinc concentrations ranged from 7.5-23.85 mg/kg (Figures 17 and 18).

Concentrations of copper in male char gonad tissues ranged from 0.35-1.74 mg/kg (Figure 19). Mercury concentrations in male gonad tissues ranged from 0.06-0.57 mg/kg (Figure 20). Zinc concentrations ranged from 5 65-11.15 mg/kg (Figure 21). While only two female char were captured and sampled, metal analyte concentrations measured in female gonad tissues fell within the range of values observed for male gonad tissues, with the exception of mercury levels, which appeared higher in male tissues (Table 5).

Copper concentrations in char muscle tissue ranged from 0.88-1.74 mg/kg and were not correlated to fish length (Figure 22) Mercury concentrations measured in muscle tissues ranged from below detectable limits to 0.46 mg/kg and averaged 0.27 mg/kg for the 16 samples (Figure 23). Mercury levels appeared to be somewhat correlated with increased fish length. Concentrations of zinc ranged from 2.83-3.92 mg/kg (Figure 24). Cadmium or lead were not detected in any of the muscle tissue samples.

Table 5. Summary of metal analyte concentrations observed in char (lake trout) kidney, muscle and gonad tissues sampled from Wright's Bay Babine Lake.

Area/Tissue	Cadmium	Copper	Lead	Mercury	Zinc
Wright's Bay/Kidney	0.1-1 14 (34)	0.31-3.08 (1.48)	< DL	0.50-1.59 (0 85)	7 5-23.85 (20.63)
Wright's Bay/Muscle	· < DL	0.88-1.74 (1.23)	< DL	ND-0.46 (0.27)	2 83-3.92 (3 32)
Wright's Bay/Male Gonad	< DL	0.35-1.74 (0.90)	< DL	0.0657 (0.26)	5.65-11 15 (8.47)
Wright's Bay/Female Gonad (n=2)	< DL	1 57-1.74	< DL	ND-0.05	5.15-6.04

Rainbow Trout

A total of 17 rainbow trout (female n= 5, male n= 1 and unknown n= 11) were collected from Donald's Landing area (n=9), Tachet Creek (n=3) and Sockeye Creek (n=5). Muscle tissues were collected and analyzed from all of the rainbow trout sampled and 3 female rainbow trout were sampled for gonad tissues. Cadmium and lead levels were below detectable levels in all rainbow trout tissues sampled

Concentrations of copper in rainbow trout muscle tissues ranged from 0.10-1.15 mg/kg and did not show any relationship with fork length (Figure 25). Mercury concentrations in muscle tissues were relatively low ranging from below detectable limits to 0.11 mg/kg (Figure 26). Zinc concentrations in muscle tissues ranged from 1.49-7.03 mg/kg and were slightly negatively correlated with increasing fork length (Figure 27).

Copper and zinc analyte concentrations within rainbow trout muscle tissues collected from various area of Babine Lake did not deviate substantially in concentration (Figures 28 and 29).

Copper and zinc concentrations measured in female rainbow trout gonad tissue were substantially higher that those observed for muscle tissues, as was noted with other species (Table 6).

Table 6. Summary of metal analyte concentrations observed in rainbow trout muscle and gonad tissues sampled from three locations around Babine Lake.

Area/Tissue	Cadmium	Copper	Zinc		
Donald's Landing/Muscle	< DL	0.131 (.19)	< DL	ND-0.11 (0.07)	1.49-5.55 (3.44)
Tachet C./Muscle	< DL	0.18-0.21 (19)	< DL	0.05-0.06	2.62-4.16 (3.31)
Sockeye C./Muscle	< DL	0.17-1.15 (.42)	< DL	DL-0.06	3.35-7.03 (4.60)
Rainbow Trout Gonad	< DL	2.01-2.88 (2 40)	< DL	,< DL	10.74-13.7 (12.15)

Summary; Analyte Concentrations

Comparative Analyte Levels; Geographical

Analyte levels did not appear to vary substantially within species sampled at a number of locations Significance of geographical variation in analyte levels was not tested due to the small samples sizes in most cases, but analyte concentrations from tissues of the same type from the same species collected at differing locations were noted to generally fall within the same range.

Comparative Analyte Levels; Within Species

Analyte levels did demonstrate some variability that appeared dependent on fish length.

Copper concentrations in sockeye muscle tissues appeared weakly negatively correlated to increasing fish length.

For char, zinc concentrations appear to be positively correlated to increasing fish length. Copper concentrations did not appear to be correlated with fish length. Concentrations of mercury in char muscle were positively correlated to increasing fish length. Mercury concentrations in char gonad and kidney tissue did not appear to be correlated to fish length. Cadmium concentrations, which were only detectable in char kidney tissues, were not correlated to fish length.

For rainbow trout, zinc concentrations appeared negatively correlated with increasing fish length.

Comparative Analyte Levels, Tissue Types Within Species

Analyte concentrations measured in both male and female char, rainbow trout, coho and sockeye gonad tissues were considerably higher than concentrations of the same analytes measured in muscle tissues from the same individuals, with the exception of mercury levels, which were consistently lower in gonad tissues. Analyte levels in char kidney tissues were consistently higher that concentrations measured in char muscle and gonad tissues, particularly for mercury and zinc. Char kidney tissue was the only tissue type in which cadmium was measured above detectable limits.

Comparative Analyte Levels; Between Species

Metal analyte concentrations in fish tissues can vary within and between species dependent on their age and longevity, and life history and diet.

Char vs Rainbow Trout

- 1. Copper concentrations were higher in Char muscle tissues ranging from 0 88-1.74 mg/kg in comparison to Rainbow trout muscle tissue concentrations which ranged from 0 16-1.15 (Figure 30).
- 2. Concentrations of mercury in muscle tissues were also higher in char with a range from 0.13-0.46 mg/kg relative to rainbow trout, where observed mercury muscle tissue concentrations ranged from 0.05-0.11 mg/kg (Figure 31).
- 3 Zinc concentrations in char and rainbow trout were similar, but varied to a greater degree within rainbow trout (Figure 32).

Sockeye vs Coho

- 1 Copper concentrations in muscle tissues from sockeye and coho were similar but slightly higher on average within coho tissues (Figure 33) The range of copper concentrations in sockeye in and Coho were 0.16-0.81 and 0.28-1 3 mg/kg respectively.
- 2 Mercury concentrations in sockeye and coho muscle tissue samples were similar and ranged from 0.05-0.07 mg/kg, but were commonly detected in coho tissues (Figure 34).
- 3. Concentrations of zinc within muscle tissues were higher in coho with a range from 2 05-6.24mg/kg relative to the zinc concentrations in sockeye that had a range of 1.21-3.87 mg/kg (Figure 35).

Sockeye vs Rainbow Trout

- 1. Copper concentrations within muscle tissues were higher on average in rainbow trout relative to sockeye (Figure 36).
- 2. Zinc concentrations were also higher in rainbow trout muscle tissue samples relative to sockeye samples (Figure 37)
- 3. Mercury concentrations within muscle tissue samples from rainbow trout and sockeye were similar (Figure 38).

Comparative Analyte Levels; Between Analytes

Analyte levels varied between species and tissue types sampled.

Lead

Lead was below detection limits in all of the fish tissue samples tested.

Cadmium

Cadmium levels were below detectable levels in all samples collected with the exception of char kidney, in which it was measured at an average concentration of 0.32 mg/kg for 16 samples.

Mercury

Mercury was either below detection limits or measured at levels very close to detection limits in rainbow trout, sockeye and coho tissues tested. Mercury concentrations within char tissues were considerably higher in all tissues sampled, with the exception of female gonad tissues, which were found to contain mercury concentrations at similarly low levels as in the other species tested. Char kidney, muscle and male gonad tissues contained mean concentrations of 0.85, 0.27 and 0.26 mg/kg mercury, respectively.

Copper

Copper concentrations were measured above detectable limits in all tissues sampled. Mean copper concentrations found in muscle tissues from coho, sockeye, char and rainbow trout were 0.50, 0.42, 1.23 and 0.26 mg/kg respectively. Mean copper concentrations within female coho, sockeye, char and rainbow trout gonad tissues were 1.84, 9.81, 1.66 and 2.40 mg/kg respectively. Copper concentrations in male char gonad tissues average 0.90mg/kg. Copper concentrations in char kidney tissues averaged 1.48mg/kg

Zinc

Zinc concentrations were also found to be above detectable limits in all fish tissues sampled. Mean zinc concentrations found in muscle tissues from coho, sockeye, char and rainbow trout were 3 93, 2.71, 3.32, and 3.76 mg/kg respectively. Mean zinc concentrations within female coho, sockeye, char and rainbow trout gonad tissues were 9.71, 6.13, 5.60, and 12.15 mg/kg respectively. Zinc concentrations in male char gonad tissues average 8.47 mg/kg Zinc concentrations in char kidney tissues averaged 20.63 mg/kg.

Recommendations

This information developed and presented in this report should be compared with previous assessments of metal analyte concentrations complete on Babine Lake's fish species and/or any nearby waterbodies.

Further, this data and the information provided in this report should now be assessed in relation to toxicological considerations that may be evident to either human and/or fish health

References Cited

Beak . 2002. A literature Review of Environmental Toxicity of Mercury, Cadmium, Selenium and Antimony in Metal Mining Effluent

Gottesfeld, A.S, K.A. Rabnett, and P.E. Hall 2002. Conserving Skeena Fish Populations and Their Habitat; Skeena Stage 1 Watershed-based Fish Sustainability Plan. Skeena Fisheries Commission, Hazelton, B.C.

Lake Babine Nation 1997. Lake Babine NationHair Analysis Study. Levels of Metals in Hair- Correlations with Food use.

Lake Babine Nation 2007. Food, Social and Ceremonial Harvest.

Lake Babine Nation. 2007. Presentation to Health Canada, First Nation Environmental Contaminant's Program.

Moyle. P.B. and J.J Cech Jr 2000 Fishes and Introduction to Ichtyology. Fourth Edition.

Nelson, R.L., M.L., McHenery, and W.S. Platts. 1991 Influences of Forest Rangeland Management on Salmonid Fishes and their Habitats. American Fisheries Society Special Publication 19 425-457.

Noranda Minerals Inc 1992. Bell Closure Plan Summary.

Pike, R.E, D.L, Spittlehouse, K.E., Bennett, V.N., Egginton, P.G., Tschaplinsku, T.Q., Murdock and A.T., Werner. 2008. Climate Cahnage and Watershed Hydrology. Part 2- Hyydrological Implications for British Columbia. Streramline Wateshed Bulletin vol. 2/No. 2. Spring 2008.

Schell. C 2003. A Breif Overview of Fish, Fisheries and Aquatic habitat Resources in the Morice TSA.

Appendix 1 - Figures 4 - 38

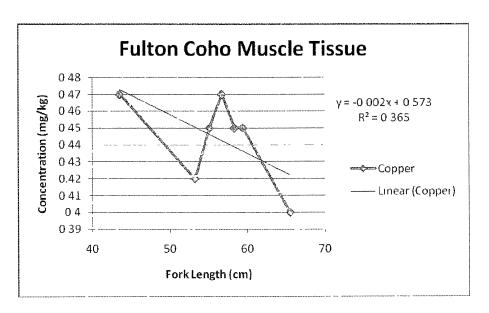


Figure 4. Fulton coho; muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.

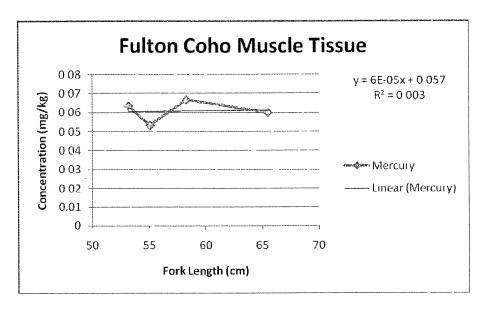


Figure 5. Fulton coho; muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed.

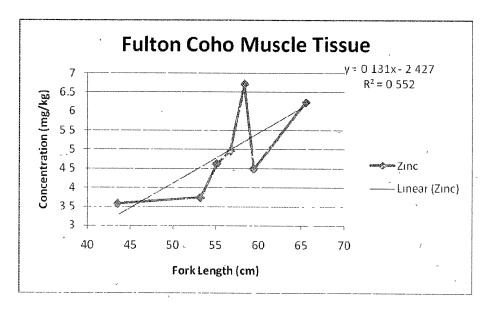


Figure 6. Fulton coho; muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

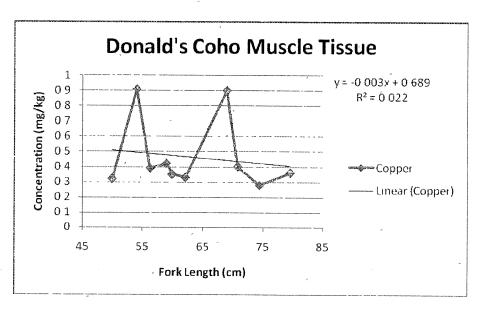


Figure 7. Donald's Landing coho; muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.

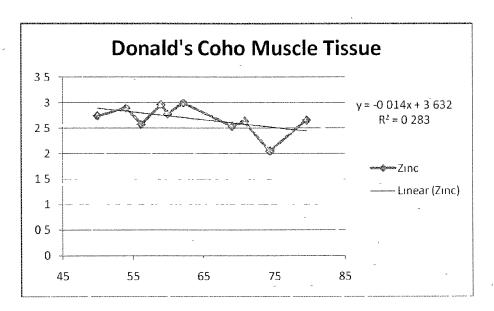


Figure 8. Donald's Landing coho; muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

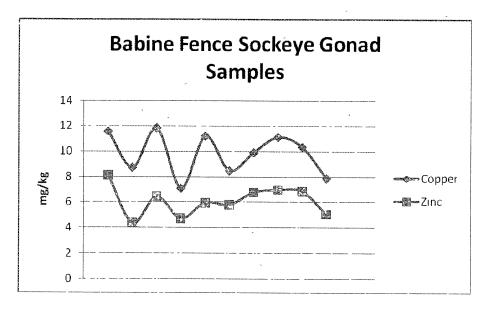


Figure 9. Babine Fence sockeye; gonad tissue - Copper (Cu DL 0.1ppm) and Zinc (Zn DL 0.1ppm) concentrations observed.

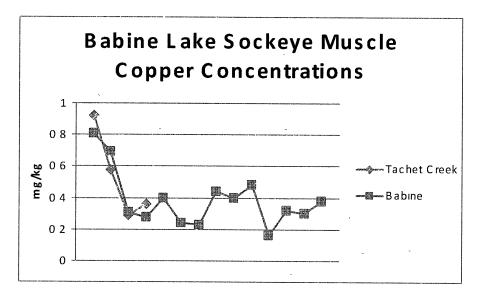


Figure 10. Babine sockeye (Babine Fence and Tachet C.); muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.

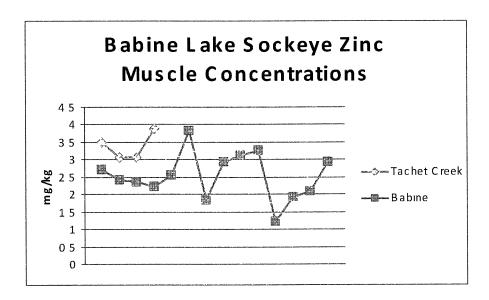


Figure 11. Babine sockeye (Babine Fence and Tachet C.); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

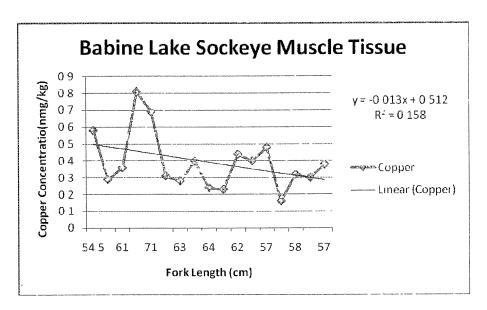


Figure 12. Babine sockeye (all); muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.

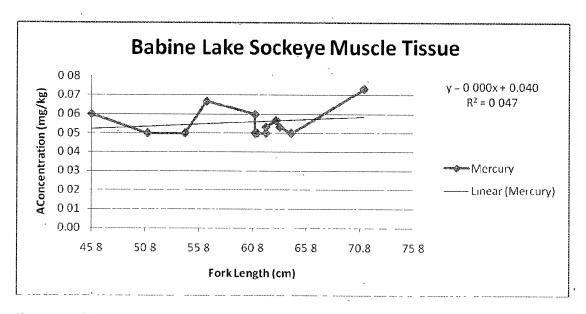


Figure 13. Babine Fence sockeye; muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed.

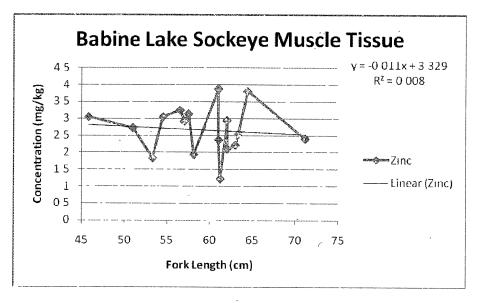


Figure 14. Babine sockeye (Babine Fence and Tachet C.); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

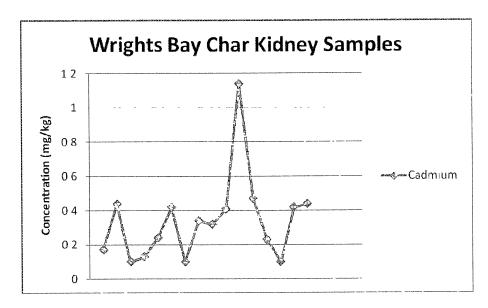


Figure 15. Babine Lake char (lake trout); kidney tissue and Cadmium (Cd DL 0.05ppm) concentrations observed.

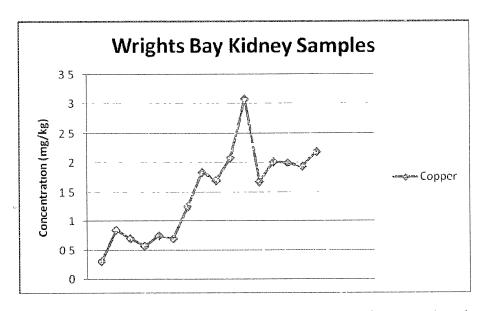


Figure 16. Babine Lake char (lake trout); kidney tissue and Copper (Cu DL 0.1ppm) concentrations observed.

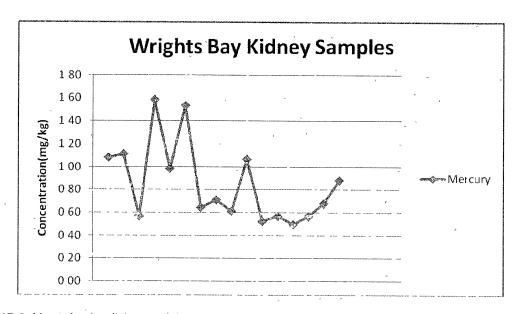


Figure 17. Babine Lake char (lake trout); kidney tissue and Mercury (Hg DL 0.05ppm) concentrations observed.

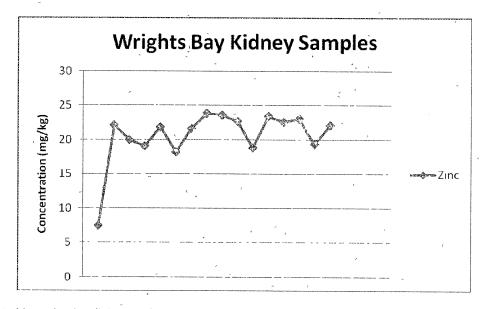


Figure 18. Babine Lake char (lake trout); kidney tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

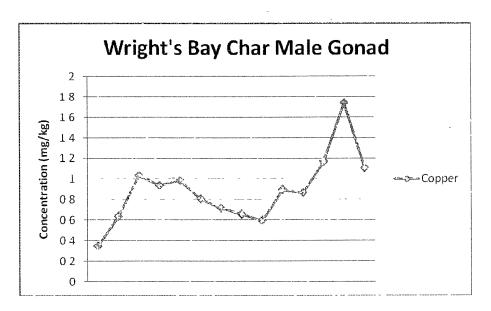


Figure 19. Babine Lake char (lake trout); male gonad tissue and Copper (Cu DL 0.1ppm) concentrations observed.



Figure 20. Babine Lake char (lake trout); male gonad tissue and Mercury (Hg DL 0.05ppm) concentrations observed.

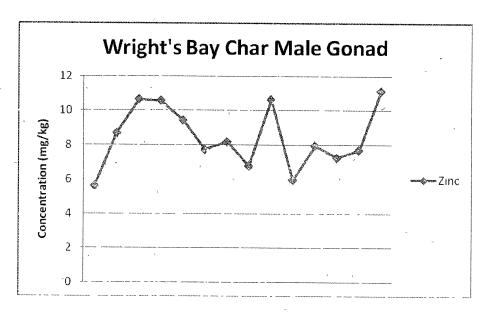


Figure 21. Babine Lake char (lake trout); male gonad tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

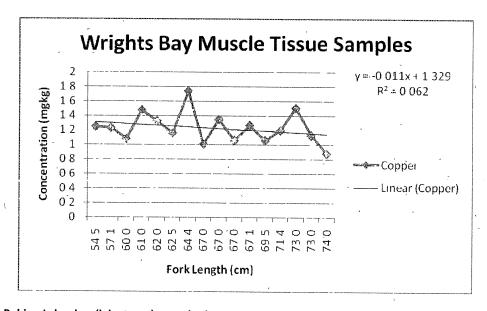


Figure 22. Babine Lake char (lake trout); muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.

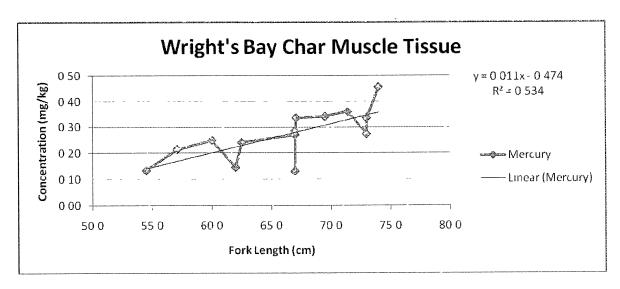


Figure 23. Babine Lake char (lake trout); muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed.

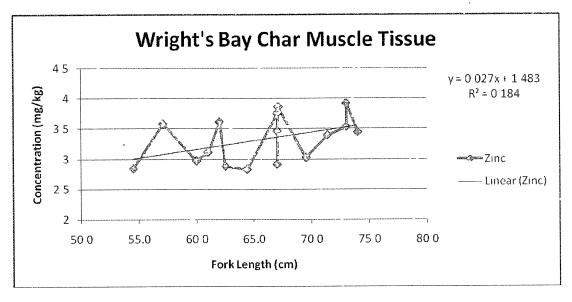


Figure 24. Babine Lake char (lake trout); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

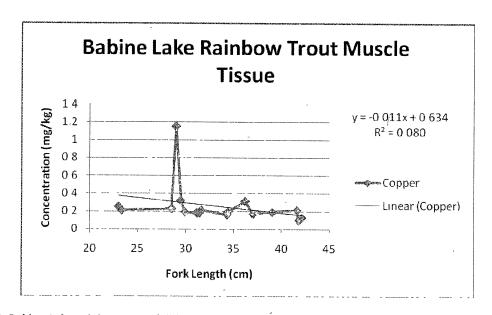


Figure 25. Babine Lake rainbow trout (all locations); muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.

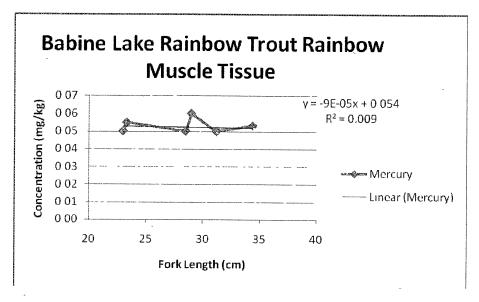


Figure 26. Babine Lake rainbow trout (all locations); muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed.

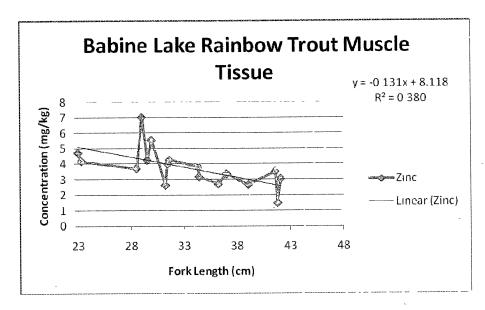


Figure 27. Babine Lake rainbow trout (all locations); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

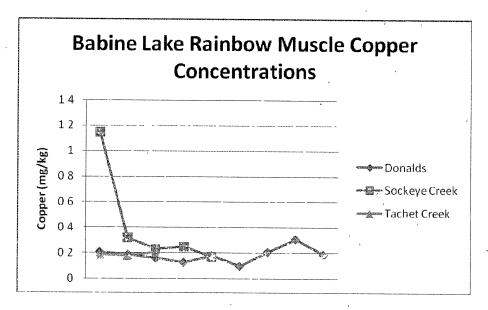


Figure 28. Babine Lake rainbow trout (all locations compared); muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.

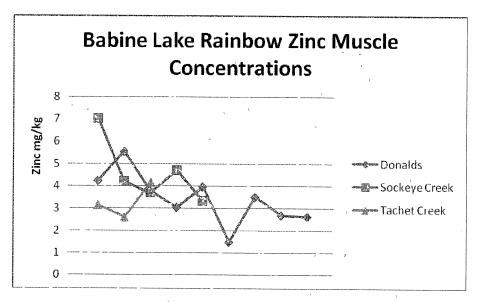


Figure 29. Babine Lake rainbow trout (all locations compared); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

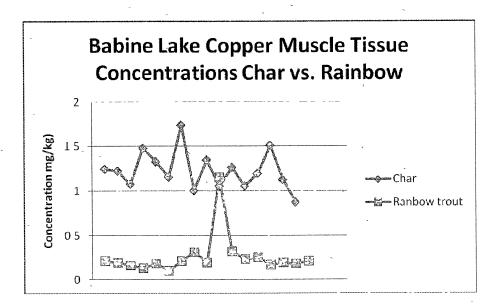


Figure 30. Babine Lake rainbow trout (all locations) and char (lake trout); muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.

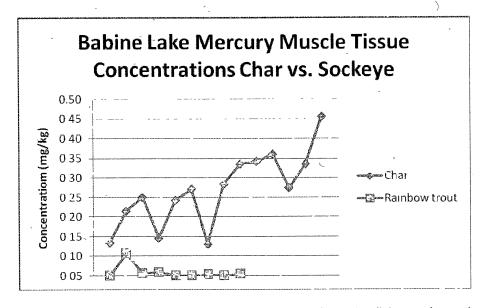


Figure 31. Babine Lake rainbow trout (all locations; where DL exceeded) and char (lake trout); muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed.

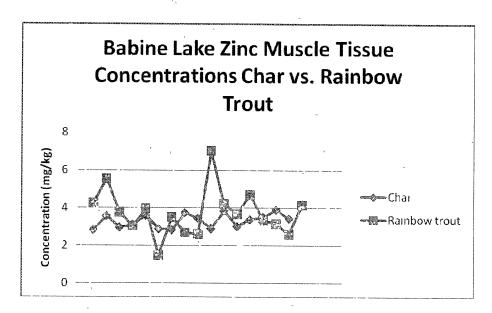


Figure 32. Babine Lake rainbow trout (all locations) and char (lake trout); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

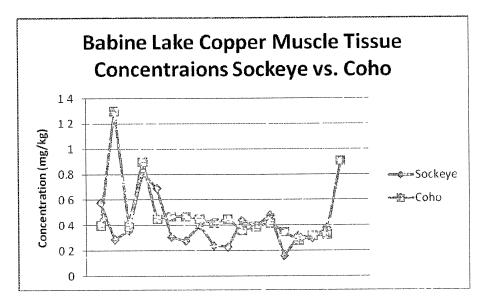


Figure 33. Babine Lake sockeye (all locations) and coho (all locations); muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.

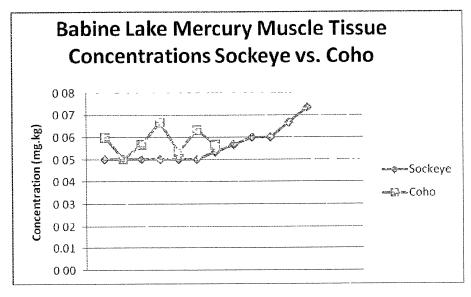


Figure 34. Babine Lake sockeye (all locations; where DL exceeded) and coho (all locations; where DL exceeded); muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed.

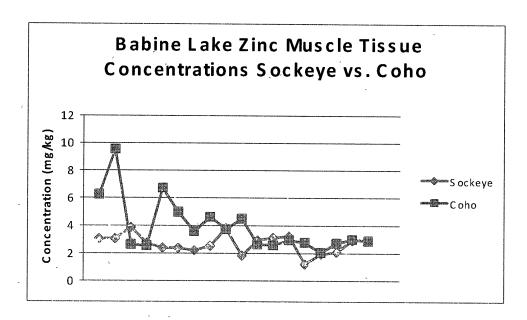


Figure 35. Babine Lake sockeye (all locations) and coho (all locations); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

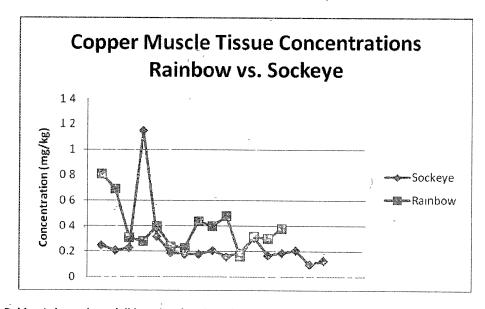


Figure 36. Babine Lake sockeye (all locations) and rainbow trout (all locations); muscle tissue and Copper (Cu DL 0.1ppm) concentrations observed.

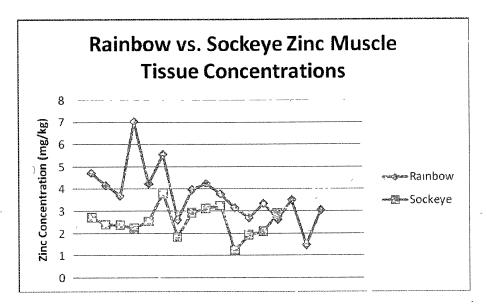


Figure 37. Babine Lake sockeye (all locations) and rainbow trout (all locations); muscle tissue and Zinc (Zn DL 0.1ppm) concentrations observed.

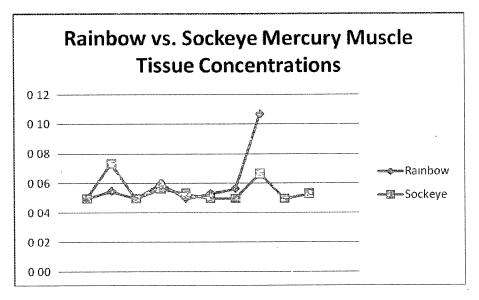


Figure 38. Babine Lake sockeye (all locations; where DL exceeded) and rainbow trout (all locations; where DL exceeded); muscle tissue and Mercury (Hg DL 0.05ppm) concentrations observed.

Appendix 2 – Tissue Analysis Data

pg 37.

Assessing Metal Levels in the Tissues of Food-Fish Species in Babine Lake; Summary Report on Analyte Levels Found in Fish Tissues Collected in 2006

											7	•																	
-	Zinc	6 71	1 · 0	700	4 62	3 73	4 49	6 24	7 57	10 74	13.7	12 02	4 25	2 22	3 78	3 05	დ ი	49	3 22	27	2 63	9 53	11 53	35	,	9 9 9 9	3 OS	387	
,	Mercury	0 07	2 2	ב ב ב נ	ရှင် ၁	900	Q N	900	Q	Q	Ω	Q Q	Q.	Ω	Q Q	0 05	Q N	0 11	900	9 !	Q N	0 05	ΩN	90 0		90 0	90 0	90 0	
	Lead	9 2	2 2) 	ON N	2	Q N	9	Q N	Q N	<u>Q</u>	Q Q	Q	Q	2	9	9	2	S	2	O Z	Ω	9	ΩN		Ω	Q.	Ω.	
	Copper	0 45	0 0	740	0 45	0 42	0 45	0 4	151	2 01	2 88	2 31	0 21	0 19	0 16	0 13	0 18	0 1	0 21	031	0 19	. 13	17	0 92		0 28	0 29	0 36	
ç	Cadmium	O 0	ב ב	ב ב ב	Q N	Ω	Ω	ΩN	Q	Q.	Q	ON ON	Q	Ω	Q	Q	Q 2	Ω	ΩN	Ω	Q	Q	Q	QN		Q	Q	ΩN	
	Sample ID															-									_				
		¥.5	¥ ç	Y F	Ą	A2	Y6	A 7	A 8	B1	B 2	8	2	2	ខ	2	გ	90	ر د	8 8	ෆී	2	22	23		7	D2	90	
	Sample Id	A 4	ξ.	A3	A4	A5	A6	A 7	, A8	B	B2	B3	5	C5	ខ	2	ડિ	ප	° 22	8	වී	2	05	2		70	D2	90	*
	Scale	Yes	, res	Yes	Yes	Yes	Yes	Yes	Yes	yes	yes	yes	Yes	Yes	Yes	Xes	Yes	Yes	Yes	Yes	Yes	Yes	yes	2		S.	Š	Š	
	Tissue	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Gonad	Gonad	Gonad	Gonad	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Gonad	Muscle		Muscle	Muscle	Muscle	
	Fork Length	583	/90	435	221	532	594	655	655	370	344	312	316	538	343	421	314	418	416	362	390	. 625	625	573		545	458	610	, .
	Sex	male	male	male	male	male	male	female	female	Female	Female	Female	unk	r Y Y	an	ruk	a Yu	a Y Y	, Yu	r Y	an Yu	Female	Female	Female	,	Female	Female	Male	
	Date	17-Oct-06	1/-Oct-06	17-Oct-06	17-Oct-06	17-Oct-06	17-Oct-06	17-Oct-06	17-Oct-06	18-Oct-06	18-Oct-06	18-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Óct-06	18-Oct-06	18-Oct-06	18-Oct-06		18-Oct-06	18-Oct-06	18-Oct-06	
•	Location	Fulton	Fulton	Fulton	Fulton	Fuiton	Fulton	Fulton	Fulton	Sockeye C Tachet	Creek	Creek	Donalds	Donalds	Donalds	Donalds	Donalds	Donalds	Donalds	Donalds	Donalds	Sockeye C	Sockeye C	Tachet Creek	Tachet	Creek Tachet	Creek	l acnet Creek	
	Species	Coho	Coho	Coho	Coho	Coho	Coho	Coho	Coho	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Coho	· Coho	Sockeve		Sockeye	Sockeye	Sockeye	
	Sample #	-	7	ო	4	S	9	7	7	Ŋ	7	ω	~	7	ო	4	Ŋ	ග	7	∞	თ	9	ဖ	7)	7	12	13	

Prepared by the Lake Babine First Nation, July 2008

Assessing Metal Levels in the Tissues of Food-Fish Species in Babine Lake, Summary Report on Analyte Levels Found in Fish Tissues Collected in 2006

,	Zinc	7 03	2 4	3 69	4 72	3 35	3 16	2 62	4 16	11 01	8 72	,	2 66	2 58	2.97	2 78	2 05	2 74	က	2 63	2 54	5.9	4	ر ئ لا	7)7	24		2 37		2 22	2 54
	Mercury	90	S	000	0.05	2	0 02	0 02	90 0	S	Ż	1	ΩN	Q	ΩN	ΩN	90.0	ΩN	QN N	ΩN	900	ΩN	*,	ָ ע	3	0 07	*	0 05		900	0 02
	Lead	S	2 Z	2	ΩN	9	γ̈́	Ϋ́	Q	Ċ	9		Q	QŅ	ΩN	Ņ Q N	ΩN	, Q	QN	N	Q.	, QN	~	2	2	ΩN		Ω	a	ΩN	Ω
	Copper	. 1 	0.32	0 23	0.25	0 17	0 19	Ò 18	0 21	227	187		0 36	6E 0	0 42	0 35	0 28	0 32	0 33	, 4 0	60	0.91		, - - - - -	5	69 0		031		0 28	4 ,
	Cadmium	ON	Q	Q	N	2	N	Q N	QN	QN	- <u>Q</u>		Q.	QN -	Q	Q	Q	QN	QN	QN , '	ΩŅ	ΩN	7		2	ND	٠	Q	;	Q	Q Q
		7	E2	<u>E3</u>	E4	ES	E6	E7	* E8*	Ξ	ž 23		5	6 2	B	95	පුදු	96	G7	., 89	69	G1ô	~	ž	-	, H2		H3		H4	£,
Comp	d	1	E2.	E3	E4	E2	E6	E7	, 83	μ	⁷	**	<u>.</u>	8	8	9	ც	9	Ğ7	89 89	<u>6</u>	G10		Ξ	<u> </u>	4	ı	£		¥	E E
	Scale	ves	yes	√es	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	, ∀es	Yes	Yes	25	66851		66851	£	66851	1	66851	66851
,	Tissue	Muscle	Muscle	Muscle	Muscle	Muscle	·Muscle	Muscle	Muscle	gonad	gonad	-	Múscle ·	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	,	Muscle	ī	Muscle		Muscle	•	Muscle	Muscle
H 5	Length	290	, 295	285	232	370	344	312-	233	708	069	j	96/	262	290	266	744	499	621	708	069	240	4	51.0		71.2	,	610	,	630	53 5
-	Sex	Unknown	Female	Female	Male	Female	Female	Female	Unknown	Female	Female	,	Male	Male	Male	Male	Male	Male	Male	Female	Female	Male		, LL		· L		-' LL	ı	ı,	L ,
	Date	18-Oct-06	18-Oct-06	18-Oct-06	18-Oct-06	18-Oct-06	18-Oct-06	18-Oct-06	18-Oct-06	15-Oct-06	15-Oct-06		15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	15-Oct-06	18. Sap.	90	18-Sep-	90	18-Sep-	90	18-Sep-	3	18-Sep-
,	Location	Sockeye C	Sockeye C	Sockeye C	Sockeye C	Sockeye C	Creek	Tachet Creek	Tachet Creek	Donalds	Donalds	´,	Donalds	Donalds	Donalds	Donalds	Donalds	Donalds	Donalds	Donalds	Donalds	Donalds	Rahine	Fence	Babine	Fence	Babine	Fence	Babine	Fence .	babine
	Species	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Rainbow	Coho	Coho	در ا م	Copo	Coho	Coho	Coho.	Coho	Coho	Coho	Coho	Coho	Coho		Sockeye	· · · · · · ·	Sockeye		Sockeye	· - 1	Sockeye	Sockeye
Sample	#		2	က	4	Ŋ	2	ω	თ	- - - 00	თ	•	- (7	m	4,	ທຸ	9	7	∞	თ	9,		-	,	2	,	m	•	1 Մ	n N

Prepared by the Lake Babine First Nation, July 2008

Assessing Metal Levels in the Tissues of Food-Fish Species in Babine Lake; Summary Report on Analyte Levels Found in Fish Tissues Collected in 2006

Sample #	Species	Location	Date	Sex	Fork Length	Tissue	Scale	Sample Id	Sample ID	Cadmium	Copper	Lead	Mercury	Zinc
		Fence	18.Sen-											
œ	Sockeye	Fence	8	ш.	64 4	Muscle	66852	9H	9	ΩN	0 24	Q	0 02	3,81
)	0 (0000)	Babine	18-Sep-			_	-	,	!	!	(<u>(</u>	
7	Sockeye	Fence	90	ட	533	Muscle	66852	Н7	Н7	QN	0.23	S	S N	200
		Babine	18-Sep-	!	;	:		9	9	2		2	0	7000
ω	Sockeye	Fence	90	U.	620	Muscle	66853	ž	Ω	S N) 4 4	S Z	3	1 34
		Babine	18-Sep-				1	:		1	Ċ	2	2	7
თ	Sockeye	Fence	90	ш	575	Muscle	66853	6 <u>+</u>	6H	ΔΩ	0 4	ב	O Z	5 TS
		Babine	18-Sep-						!	!	(:	0	i C
10	Sockeye	Fence	90	ш	26 5	Muscle	66853	H10	H10	Q N	0 48	O N	/0.0	3.75
		Babine	18-Sep-							!	,	:	L C	7
7	Sockeye	Fence	9	Σ	612	Muscle	66853	H11	H 7	Q N	0.16	Q N	င် ၁	17.
		Babine	18-Sep-		,				;	!	,		2	; ; ;
12	Sockeye	Fence	90	Σ	58 1	Muscle	66853	H12	H12	Q	0 32	Q N	O N	1 83
		Babine	18-Sep-		į					!	,	:	i c	0
13	Sockeye	Fence	90	, S	620	Muscle	66852	H13	H13	Q N	03	ON	င္သ ၁	5 OB
		Babine	18-Sep-		~			:			0	2	2	ć
4	Sockeye	Fence	8	Σ	22 0	Muscle	66852	H14	H14	a N	88 O	Š	2	78.7
			07170	-	-		66854/16_							
4	Char	Wright Bay	, 2006 2006	Female	730	gonad	20)	Σ	Ξ	Q J	1 57	Q ,	0 02	5 15
	•		Oct 16		i.	-	0000	<u></u>	<u>c</u>	2	77	2	2	2
Ξ.	Char	Wright Bay	2006	Female	2 69 2	gonad	66856(1-5)	2	7	O N	4	2	2	t 5 5
		Babine	18-Sep-			,								* -
_	Sockeye	Fence	-8	ட	510	Gonad	66851	7	7	Ω	11 56	Q N	Q N	8 16
		Babine	18-Sep-		4	,		!	9	<u>(</u>	· [2	2	00
7	Sockeye	Fence	90	ட	712	Gonad	66851	75	72	O N	8/3	Š	O N	9 90 90
-		Babine	18-Sep-	1			000	2	2	2	0,7	2	2	77
ო	Sockeye	Fence	90	L.	61 0	Gonad	10000	ر ا	n 1	<u>Š</u> ,	70	Ş	2	† †
		Babine	18-Sep-	ı		-	0	3	3	2	7	2	2	7.3
4	Sockeye	Fence	90	L	0 29	Gonad	10899	40	4	O Z	60 • .	Š	2) t
	,	Babine	18-Sep-	1	0	-	2000	Ē	ŭ	2	7	2	2	r o
Ŋ	Sockeye	Fence	90	ш.		Gonad	66851	ဌ	o O	<u>S</u>	7	2	2	9
		Babine	18-Sep-	-	,		Ü	9	9	2	0 40	2	2	π 2
9	Sockeye	Fence	9	L	64 4	Gonad	20899	જ ા	၅ <u>၊</u>	2 2	0 4 6 6	2 2	ב ב	0 0
7	Sockeye	Babine	18-Sep-	ட	533	Gonad	66852	77	/ر	a N	6	ב צ	Z Z	0
		7									,			

Prepared by the Lake Babine First Nation, July 2008

Assessing Metal Levels in the Tissues of Food-Fish Species in Babine Lake, Summary Report on Analyte Levels Found in Fish Tissues Collected in 2006

Zinc	66 9	6 88	5 08	7 5	22 13	19 98	19 08	21 87	18 22	21 66	23 85	23 59	22 71	18 85	23 45	22 58	23 09	19 38
Mercury	Q Q	Q	Q	1 08	111	0 57	1 59	66 0	1 54	0 65	0 74	0 61	1 07-	0 52	0 57	0 20	0 57	89 0
Lead	N O	Ω	Q	N	νΩ V	Ω	Ω	Ω	Ω	Q	νΩ	ND	ND	N	N	Ω	Q	Q
Copper	11 12	10 34	7 88	0 31	0 85	0 7	0 57	0 75	0 7	1 25	1 84	17	2 09	3 08	1 68	2 02	7	1 94
Cadmium	Ω	ΩN	Q	0.17	Ŏ 44	0 1	0 13	0 24	0 42	0.1	0 34	0 32	0 41	1 14	0 47	0 23	0 1	0 42
Sample ID	86	<u>ე</u>	J10	₹	Ž	5	X	ξ	8	<u>*</u>	88	<u>\$</u>	K10	Х	K12 .	K13	X 4	K15*
Sample Id	, 8p	ള	110	조	S S	\$	5	δ	8	₹	8	2	K10	K11	K12	K13	K14	X 5
Scale	66853	66853	,	66854(1- 5)	10)	15) 66854(16	20)	25)	-1) COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	66855(6- 10) 66855/11	15) 15) 66855(16	20) 20) 868EE(24	25)	66856(1-5)	10)	15)	20)	55) 25)
Tissue	Gonad	Gonad	Gonad	Kidney	Kidney	Kidney	Kidney	Kidney	Kidney	Kidney	Kidney	Kidney	Kidney	Kidney	Kidney	Kidney	Kidney	Kidney
Fork Length	62 0	575	56 5	57 1	67 1	64 4	730	620	714	0 / 9	0 09 ,	545	0 / 9	69 2	010	730	0 29	62 5
Sex	ш	ш	ш.	Male	Male	Male	Female	male	male	male	male	male	male	Female	Male	Male	Male	Male
Date 06	18-Sep- 06	6 06 9 06	90	Oct 16 2006 Oct 16	2006 Oct 16	2006 Oct 16	2006 Oct 16	2006 2006 Oct 16	2006	2006 Oct 16	2006 Oct 16	2006 Oct 16	2006 Oct 16	2006 2006 Oct 16	2006 Oct 16	2006 2006 Oct 16	2006	2006
Location Fence	Babine Fence Babine	Fence	Fence	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay
Species	Sockeye	Sockeye	Sockeye	Char	Char	Char	Char	Char	Char	Char	Char	Char	Char	Char	Char	Char	Char	Char
Sample #	ω	o	10	-	7	ო	4	ઇ	ω .	7	ω	თ	10		12	5	4	5

Prepared by the Lake Babine First Nation, July 2008

pg 41

106 7 74 9 44 3 75 3 53 2 88 Zinc 22 11 3 58 2 83 33 2 97 3 11 3 46 5 65 8 7 10 67 68 0 12 0 25 0 24 0 28 0 57 0 37 0 47 0 47 0 88 S 0 36 0 27 2 0 27 Mercury 0 22 Assessing Metal Levels in the Tissues of Food-Fish Species in Babine Lake; Summary Report on Analyte Levels Found in Fish Tissues Collected in 2006 2 Lead 9 呈 9 9 9 皇 9 2 ᄝ 2 9 皇 문 呈 135 1 16 0 94 660 0 72 990 Copper 2 19 1 23 1 08 104 081 174 1 48 151 064 5 9 吕 읃 9 9 2 吕 9 0 44 呈 Cadmium 9 일 9 9 Sample ID X 16 ₹ \mathbb{R} ₹ 9 M7 8 8 8 6 \Box Γ က 4 2 9 Sample Id K16 8 Ĕ ₹ Ξ 9 8 9 \Box പ വ \Box 7 66854 (1-5)
66854(6-10)
66854(11-2)
66854(21-25)
66855 (1-5)
66855 (1-6)
66855 (1-7)
66855 (1-7)
66855 (1-7)
66855 (1-7)
66855 (1-7) 66855(11-15) 66856(6-66854 (1-5) 66854 (11-15) 66855 (1-5) 66855 (1-10) 10) 66856(11-15) 66856(16-20) 66856(21-25) 66857(1-5) Scale Tissue Kidney Muscle Muscle Muscle Muscle Muscle gonad gonad gonad gonad Muscle Muscle Muscle gonad Fork Length 714 000 545 730 64 4 620 740 670 009 610 670 625 64 4 57 1 67 1 male Sex 2006 Oct 16 2006 Oct 16 2006 Oct 16 2006 2006 Cot 16 2006 Oct 16 2006 Oct 16 Oct 16 2006 Oct 16 Wright Bay Location Species Char 13 4 5 16 12 Ŋ 9 ω 3 N ന 9 ω

Prepared by the Lake Babine First Nation, July 2008

0

All units are in mg/Kg or ppm

Assessing Metal Levels in the Tissues of Food-Fish Species in Babine Lake, Summary Report on Analyte Levels Found in Fish Tissues Collected in 2006

	Zinc	10 66	5 98	7 97.	7 28	7 71	11 15	, w	3 63	361	2 84	2 91	3 02	3 44	-
	Mercury	0 34	0 34	0 12	90 0	90 0	20 0	0.34	0 34	0 15	0 13	,0 28	0 34	0 46	
-	Lead	Q	QN ,	Q	Q	ΩN	, Q	C Z	2 · Q	Q	Ω	Q Z	Q.	N Q	
	Copper	90		280	117	1 74	, 17	1.27		133	, 125	106-	1 06	880,	•
1	Cadmium	Ω 2.	, Q	Q ,	Q.	Q.	ON	, N	Q N	ND	N.	Ů N Č	Ω	ΩX	stected imit
-	Sample ID	M9	M10	, M11	M12	M13	M14	Z	, 2N	, N3*	*4N	, S	9N	, ZZ	ND= not detected Detection limit
	Sample Id	W	M10	M11	M12	M13	41M	Ξ	N2	R N	X 4	SN 25	9N;	۲ 2	
,	Scale	66855(21- 25) 66676(21-	10)	15)	20)	66856(21- 25)	66857(1-5)	66854(6-	66854(16- 20)	66854(21- 25)	66855(16- 20)	66855(21- 25)	66856(1-5)	66857(1-5)	*
,	Tissue	gonad	gonad	gonad	gonad	gonad	gonad	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	Muscle	1
	Fork Length	0 29	610	730	0 29	62 5	740	67.1	730	62 0	545	0 29	69 5	740	7.4
	Sex	male	Male	Male	Male	Male	Male	Male	Female	male	male	male	Female	Male	•
	Date	2006	2006	2006	2006	2006	2006	Oct 16 2006	Oct 16 2006	Oct 16 2006	2006 2006 24 46	2006 2006 2006	2006	2006	r .
. (Location	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay	Wright Bay			Wright Bay		Wright Bay	
	Species	Char	Char	Char	Char	Char	Char	Char	Char	Char	Char	Char	Char	Char	, ,
	Sample #	0		13	4	5	16	7	4	LO	თ	10	17	16	
	w.				*	_				·			,	1	