Expansion and Recalibration of a Benthic Invertebrate Index of Biological Integrity for the Upper Bulkley Watershed

> A Tool for Assessing & Monitoring Stream Condition

> > Field Season 2001

595.7/B471A 2002 1 Bio Logic Consulting Terrace, BC

Expansion & Recalibration of a Benthic Invertebrate Index of Biological Integrity for the Upper Bulkley Watershed

A Tool for Assessing & Monitoring Stream Condition

Field Season 2001

Prepared by:

. . .

.....

Shauna Bennett, R.P. Bio and Kelli Ohland

Bio Logic Consulting Terrace, BC

March 2002

Prepared for:

Community Futures Development Corporation of Nadina Houston, BC

FUNDED BY FISHERIES RENEWAL BRITISH COLUMBIA

Property of the Bulkley-Morice Watershed Library ~

Executive Summary

Background

In 2001, the Community Futures Development Corporation of Nadina (CFDC Nadina) on behalf of the Bulkley-Morice Salmonid Preservation Group (BMSPG), drafted a strategic plan for the Bulkley River watershed "to promote fish sustainability through education, stewardship, protection, restoration and enhancement of the aquatic ecosystem" (Tamblyn and Donas 2001).

To ensure long-term conservation of fish and fish habitat, the strategic plan formulated a list of key watershed issues, objectives, and strategies to meet these objectives. One of the key watershed issues was water quality. To maintain or improve water quality and promote fish sustainability within the watershed, a recommendation was made to develop indicators that could track effectiveness of preservation and restoration efforts (Tamblyn and Donas 2001). The development and calibration of a Benthic Index of Biological Integrity (B-IBI) for the Bulkley River region was initiated in 1999, and continued in 2001 to help address this recommendation.

Fish populations and habitat depend not only on clean water, but also on functioning riparian and upland ecosystems in order to remain healthy. The benthic invertebrate index of biological integrity (B-IBI) is a multimetric approach that relies on biological data to assess the condition of a stream. Biological integrity is defined as 'the ability to support and maintain a balanced, integrated, adaptive community of organisms having a species composition, diversity and functional organization comparable to that of natural habitat of the region' (Karr et al. 1987). Each attribute of a sampled benthic invertebrate community, such as the number of mayfly taxa in a sample, is termed a "metric" (Karr 1981). Metrics that are able to clearly distinguish streams uninfluenced by land use from streams that are heavily influenced by land use, and respond predictably over a gradient of land use are assigned a scale of numerical scores over the range of stream conditions. Benthic invertebrates are present in all streams, and are year-round residents, making them a good choice for bio-monitoring.

The B-IBI has been shown to be an effective tool for assessing and measuring stream condition in a number of states in the USA and Japan (Fore *et al.* 1996; Karr and Chu 1999).

Invertebrate Abundance and Sample Area

Calibration of an index of biological integrity for streams within the Upper Bulkley River watershed began in 1999. At that time, nine metrics were identified which successfully distinguished uninfluenced from heavily influenced sites and were included in the locally calibrated B-IBI. However, in other on-going B-IBI projects in the Bulkley and Kispiox forest districts, naturally low invertebrate abundance at some uninfluenced sites was found to be skewing metric results (Bennett and Hewgill 2001, Bennett 2001a; 2001b). As a solution to this problem, the sample area for each replicate was tripled from 0.09m² to 0.27m² in the 2001 field season. Increasing the sample area for each replicate successfully increased the average sample size at all Upper Bulkley sites assessed in 2001, and more than 500 individuals per replicate were collected from each site.

Metric Calculation

Several changes were made in 2001 with respect to how raw data was treated and how metrics were calculated. As a result, all the 1999 data was reworked, and the metrics were re-tested. For sites sampled in 2001, metrics were calculated and tested at two different levels of invertebrate identification, the family level and genus level. This was done to evaluate the effectiveness at the two levels in accurately identifying the biological condition of each sampled stream. Although genus-level identification may strengthen the ability to discriminate among sites of intermediate quality (Salmonweb 2001), family-level identification might make the sampling more affordable and less time consuming as volunteers rather than professionals could complete it.

Family-level Metrics

At the family-level, seven metrics were tested for variation across a gradient of human influence. The following five metrics were found to discriminate uninfluenced sites from heavily influenced sites and were included in the locally calibrated family-level B-IBI:

- Plecoptera (Stonefly) taxa richness
- Trichoptera (Caddisfly) taxa richness
- % Ephemeroptera (Mayfly) individuals
- % Dominance (1 taxon)
- Family Biotic Index (FBI)

Selected metrics were scored and combined to create an Upper Bulkley family-level B-IBI.

Genus-level Metrics

At the genus level, 21 metrics were tested for variation across a gradient of human influence. The following ten metrics were found to discriminate uninfluenced sites from heavily influenced sites and were included in the locally calibrated genus-level B-IBI:

- Plecoptera (Stonefly) taxa richness
- Trichoptera (Caddisfly) taxa richness
- % Diptera (True Flies) and non-insects
- % Ephemeroptera (Mayfly) individuals
- Number of intolerant taxa
- % Predators
- % Dominance (3 taxa)
- % Sediment tolerant individuals
- % Clingers
- Hilsenhoff Biotic Index (HBI)

Selected metrics were scored and combined to create an Upper Bulkley genus-level B-IBI.

Results

Metric value cut-off points were selected for scoring sites. A site scored 5 points if the metric value was similar to those at uninfluenced streams, 1 point if values were similar to heavily influenced streams, and 3 points if values were in-between the two extremes. Based on the metric value cut-off points, the possible maximum and minimum values for the 5-metric family-level B-IBI and the 10-metric genus-level B-IBI were 25 and 5, and 50 and 10 respectively. The family-level and genus-level B-IBI scores calculated for each of the sample sites were compared with each other. Based on pre-set metric value cut-offs, B-IBI scores were used to assign a relative stream condition (*e.g.* excellent, good, fair, poor, or very poor) to each assessment site. Family-level and genus-level B-IBI stream condition assignments were the same for 12 out of 18 sampling sites. The remaining six sites were classified higher using family-level metrics than they were using genus-level metrics.

Initial results suggest that both the family- and genus-level indices may be suitable monitoring tools. However, the family-level index may not be as sensitive to smaller changes in biological integrity, especially at the higher end of the scoring range (excellent sites). If the goal is to protect uninfluenced streams in the area, it might be more effective to use the genus-level index. However, these results should be re-evaluated with data from at least one more year of sampling. Calibration of the Upper Bulkley B-IBI remains an iterative process, and will benefit from further readjustment as more data becomes available.

Definitions

Benthic invertebrate: A bottom-dwelling organism without a backbone. This includes mayfly, stonefly and caddisfly larvae, worms, beetles, snails, dragonfly larvae and others (Salmonweb 2001).

Metric: A measure of a single aspect of the sampled benthic invertebrate community.

Taxon: A single taxonomic group (i.e. genus, species, family). Taxa is the plural of taxon.

Taxa richness: A measure of the number of taxa in a sample (e.g. mayfly taxa richness is the number of unique mayfly taxa in a sample)

Bio Logic Consulting

Acknowledgements

Many thanks to Greg Tambiyn, Nadina Watershed Stewardship Coordinator, for assisting with the project proposal, for assisting with stream selection for 2001 sampling, and for reviewing the draft report. Thanks also to Ian Sharpe, Environmental Quality Section Head in the Environmental Protection Division at BC Environment, for assisting with the project proposal, for sharing benthic invertebrate data with this project, for providing a portion of the invertebrate taxonomy funds, and for summarizing the value of the B-IBI to the BMSPG during proposal ranking. Thank you to Kim Hewgill, for supporting data analyses and for her invaluable assistance with the field work. Thanks to Jeremy Burbee and Johanna Pfalz (Ministry of Sustainable Resource Management) for creating and providing a composite Landsat satellite image of the study area. Also, thanks to the various landowners that granted us permission to access stream sites via their private properties.

Most of all, thank you to Fisheries Renewal BC, and the members of the Bulkley-Morice Salmonid Preservation Group, for the opportunity to be involved with this project.

iii

TABLE OF CONTENTS

1.	INT	RODUCTION	. 1
	1.1	BACKGROUND	.1
	1.2	PROJECT OBJECTIVES	. 2
2	ME	FHODS	. 2
	2.1	SITE SELECTION	. 2
	2.2	FIELD METHODS	
	2.3	LABORATORY PROCEDURES	
	2.4	METRIC CALCULATIONS & DEFINITIONS	.4
	2.4.1		
	2.4.2	Genus-Level Metric Definitions	. б
	2.5	LAND USE CLASSIFICATION	. 9
3	RES	ULTS & DISCUSSION	10
	3.1	INVERTEBRATE ABUNDANCE AND SAMPLE AREA	10
	3.2	FAMILY-LEVEL METRICS	11
	3.2.1	Trends with Human Influence	11
	3.2.2	Family-level site scores based on 1999 & 2001 data	13
	3.3	GENUS LEVEL METRICS	16
	3.3.1		
	3.3.2	Genus-level site scores based on 1999 & 2001 data	20
	3.4	TAXONOMIC RESOLUTION AND METRIC RESULTS	22
	3.4.1		
	3.4.2		24
	3.5	B-IBI AND BIOTIC INDEX VERIFICATION	25
	3.5.1		
	3.5.2	Lemieux Creek	26
	3.5.3	Richfield Creek	26
4	REC	COMMENDATIONS	27
5	LIT	ERATURE CITED	29

LIST OF TABLES

TABLE 2: EXPECTED FAMILY-LEVEL METRIC RESPONSE TO INCREASING HUMAN INFLUENCE WITHIN A WATERPRINE (ACOMMUNE TROUCK & AND CAME 1990)
WATERSHED (MODIFIED FROM KARR AND CHU 1999)
TABLE 3: EXPECTED GENUS-LEVEL METRIC RESPONSE TO INCREASING HUMAN INFLUENCE WITHIN A
WATERSHED (MODIFIED FROM KARR AND CHU 1999).
TABLE 4: HUMAN INFLUENCE, LOCATION AND LOCAL SITE RIPARIAN CONDITION FOR STREAM SITES
SAMPLED IN 2001 AND USED FOR TESTING METRICS (DATA FOR SITES IN ITALICS FROM BENNETT AND
Hewgill, 2002)
TABLE 5: AVERAGE NUMBER OF INDIVIDUALS COLLECTED PER REPLICATE AT STREAM SITES ASSESSED IN
1999 AND 2001
TABLE 6: FIVE METRICS AND SCORING CUT-OFFS CHOSEN FOR INCLUSION IN A BULKLEY RIVER WATERSHED
FAMILY-LEVEL MULTIMETRIC INDEX
TABLE 7: FIVE METRIC FAMILY-LEVEL B-IBI SCORES AND ASSOCIATED STREAM CONDITION (FROM WWW.
SALMONWEB.ORG)
TABLE 8: AVERAGE NUMBER OF INVERTEBRATES PER SAMPLE AND 5-METRIC FAMILY LEVEL B-IBI RESULTS
FOR UPPER BULKLEY STREAM SITES SAMPLED IN THE 1999 AND 2001 FIELD SEASONS
TABLE 9: TEN METRICS SELECTED FOR INCLUSION IN THE GENUS-LEVEL B-IBI FOR THE BULKLEY RIVER
WATERSHED, AND ASSOCIATED SCORING CUT-OFF POINTS
TABLE 10: TEN METRIC GENUS-LEVEL B-IBI SCORES AND RELATIVE STREAM CONDITION (FROM
Salmonweb 2001)

,

-

-

-

~

TABLE 11: AVERAGE NUMBER OF INVERTEBRATES PER SAMPLE AND 10-METRIC GENUS LEVEL B-IBI RESULTS FOR UPPER BULKLEY STREAM SITES SAMPLED IN THE 1999 AND 2001 FIELD SEASONS
TABLE 12: WATER QUALITY BASED ON HILSENHOFF GENUS- AND FAMILY- LEVEL BIOTIC INDEX VALUES
(MODIFIED FROM RESH ET AL. 1996)
TABLE 13: SUMMARY OF METRIC RESPONSE TO FAMILY- AND GENUS-LEVEL METRICS BETWEEN UPSTREAM
AND DOWNSTREAM MONITORING SITES ON DEEP, LEMIEUX AND RICHFIELD CREEKS
LIST OF FIGURES
FIGURE 1: LOCATION OF STREAM ASSESSMENT SITES WITHIN THE STUDY AREA (NOT TO SCALE)
FIGURE 2: INVERTEBRATE ABUNDANCE PLOTTED AGAINST TAXA RICHNESS (FAMILY- AND GENUS- LEVEL)
FOR SITES SAMPLED IN 1999 (BLACK DIAMONDS) AND 2001 (OPEN BOXES)
FIGURE 3: FAMILY-LEVEL METRICS THAT DID NOT VARY PREDICTABLY WITH INCREASING LAND USE
INFLUENCE FOR SITES SAMPLED IN 2001
FIGURE 4: FAMILY-LEVEL METRICS THAT VARIED PREDICTABLY WITH INCREASING LAND USE INFLUENCE
FOR SITES SAMPLED IN 2001
FIGURE 5: GENUS-LEVEL METRICS THAT DID NOT VARY PREDICTABLY WITH INCREASING LAND USE
INFLUENCE FOR SITES SAMPLED IN 2001
FIGURE 6: GENUS-LEVEL METRICS THAT VARIED PREDICTABLY WITH INCREASING LAND USE INFLUENCE FOR
SITES SAMPLED IN 2001, BUT WERE REDUNDANT WITH OTHER METRICS SELECTED FOR THE INDEX 18
FIGURE 7: GENUS-LEVEL METRICS THAT VARIED PREDICTABLY WITH INCREASING LAND USE INFLUENCE FOR
SITES SAMPLED IN 2001
FIGURE 8: MODIFIED HILSENHOFF FAMILY BIOTIC INDEX VALUES FOR STREAMS SAMPLED IN 2001, PLOTTED
AGAINST GENUS-LEVEL HILSENHOFF BIOTIC INDEX VALUES (N=18, R ² 0.88)
FIGURE 9: FREQUENCY DISTRIBUTION OF WATER QUALITY RATING AS MEASURED BY THE FAMILY BIOTIC
INDEX AND HILSENHOFF BIOTIC INDEX (GENUS-LEVEL) FOR STREAMS SAMPLED IN 2001
FIGURE 10: 5-METRIC FAMILY-LEVEL B-IBI SCORES PLOTTED AGAINST 10-METRIC GENUS-LEVEL B-IBI
SCORES FOR SITES SAMPLED IN 2001. ($N = 18$, $R^2 0.91$)
FIGURE 11: FREQUENCY DISTRIBUTION OF STREAM CONDITION FOR GENUS- AND FAMILY-LEVEL B-IBI FOR
STREAMS ASSESSED IN THE 2001 FIELD SEASON

LIST OF APPENDICES

APPENDIX A:	BLANK HABITAT ASSESSMENT FORMS	A-1
APPENDIX B:	FIELD NOTES AND COMPLETED HABITAT ASSESSMENT FORMS	.B-1
APPENDIX C:	SITE PHOTOS	.C-1
APPENDIX D:	RAW BENTHIC INVERTEBRATE DATA	D-1
APPENDIX E:	TAXA CLASSIFICATIONS	.E-1
APPENDIX F:	SUMMARY OF FAMILY-LEVEL METRICS	.F-1
APPENDIX G:	SUMMARY OF GENUS-LEVEL METRICS	G-1

•

-,

-

-

-

V

•

1. Introduction

In 2001, the Bulkley-Morice Salmonid Preservation Group (BMSPG) along with the Community Futures Development Corporation of Nadina (CFDC Nadina) created a draft strategic plan for the Bulkley River watershed, entitled <u>Healthy Watersheds</u>, <u>Healthy Communities</u>. The BMSPG came into being in 1998 to address declining salmonid stocks in the Bulkley River watershed, and is made up of representatives from First Nations and non-profit community organizations concerned about fish stocks and the health of the watershed (Tamblyn and Donas 2001). The Bulkley River watershed is known to support populations of approximately 23 species of economically and culturally important fish, including four species of salmon (FISS 2001). The primary goal of the strategic plan was "to promote fish sustainability through education, stewardship, protection, restoration and enhancement of the aquatic ecosystem" (Tamblyn and Donas 2001). Tamblyn and Donas identified the following steps in the plan to fulfill the goal:

- 1. Determine key watershed issues within the Bulkley-Morice watershed.
- 2. Determine goals, objectives and strategies to address each key issue.
- 3. Develop indicators to track effectiveness in reaching a desired end-state.

Ensuring water quality is optimal for fish production was identified as a key watershed issue in Goal 5-1 (Tamblyn and Donas 2001). An objective to "maintain... or improve water quality in the Bulkley River and its tributaries" was established, and two of the strategies suggested to help meet this objective were:

- to increase public involvement in Streamkeepers programs or other water quality monitoring programs such as an Index of Biological Integrity, and
- to improve public knowledge of local water quality through education (Tamblyn and Donas 2001).

The benthic invertebrate index of biological integrity (B-IBI) is a multimetric approach that relies on biological data to assess the condition of a stream. Biological Integrity is defined as 'the ability to support and maintain a balanced, integrated, adaptive community of organisms having a species composition, diversity and functional organization comparable to that of natural habitat of the region' (Karr et al. 1987). Benthic invertebrates are ubiquitous, and relatively sedentary, making them a good choice for biomonitoring.

The development and calibration of a Benthic Index of Biological Integrity (B-IBI) for the Bulkley River region, was initiated to begin the third task of developing indicators to track effectiveness of preservation and restoration efforts. Fish populations and habitat depend not only on clean water, but also on functioning riparian and upland ecosystems in order to remain healthy.

1.1 Background

The B-IBI has been shown to be an effective tool for assessing and measuring stream condition in many of the states in the USA (Fore *et al.* 1996, Kerans and Karr 1994, Karr and Chu 1999, Major *et al.* 2001, Maxted *et al.* 2000, Deshon 1995) including Ohio, where a benthic invertebrate multimetric community index has been adopted into biological water quality criteria in their water quality standards (USEPA 2000).

In 1999, with funding and support from Fisheries Renewal B.C., CFDC Nadina, the Wet'suwet'en and B.C. Environment, calibration of an index of biological integrity for 23 streams within the Upper Bulkley River watershed began. The B-IBI was calibrated by sampling a number of streams across a gradient of human influence; from uninfluenced, pristine watersheds, to watersheds with heavy human influence. Nine metrics were identified which successfully distinguished uninfluenced from heavily influenced sites and were included in the locally calibrated B-IBI (Rysavy 2000a). In the same year, development and calibration of a B-IBI specific to forest harvesting impacts was initiated in the Kispiox Forest District (Rysavy 2000b).

In 2000 and 2001, the B-IBI project in the Kispiox District continued (Bennett 2001a) and new projects began in the Bulkley Timber Supply Area (BTSA) and the Kalum Forest District (Bennett 2001b, Chaplin 2001, Bennett and Hewgill 2001). All projects were focussed on developing a B-IBI specific to monitoring

the effects of forest harvesting on water quality and stream condition. In addition, site selection for a project focussed in the Morice and Lakes Forest Districts began in the fall of 2001, and sampling is scheduled to begin in the fall of 2002 (C. Croft, pers. comm. Sept 2001). The goal of the project is to develop and calibrate an indicator of stream quality specific to forest harvesting impacts for the Tweedsmuir Innovative Forest Practices Agreement.

1.2 Project Objectives

Development and calibration of a multi-metric index is an iterative process. Many changes have been made to the methods for field collection of invertebrates, laboratory processing of samples, and metric calculations since the Upper Bulkley B-IBI project began in 1999.

The purpose of this project is to further explore the use of a B-IBI as an effectiveness monitoring and stream condition assessment tool for long-term trend monitoring of water quality, specific to resources and land use influences within the Upper Bulkley watershed and nearby Nechako Plateau area. This included:

- 1. reworking of the 1999 data to incorporate changes to metric calculations,
- 2. sampling 11 new sites in 2001, and
- 3. calculating both Family and Genus level metrics, checking for trends with human influence, and comparing the effectiveness of B-IBI's developed for the two levels of taxonomic resolution.

2 Methods

2.1 Site Selection

Eleven sites were chosen for assessment in 2001 in collaboration with Greg Tamblyn (Watershed Stewardship Coordinator for Nadina). Sites were selected that balanced the need to maintain consistency with previous B-IBI sampling in 1999, and the need to monitor streams that are priorities for current or upcoming restoration activities. A group of clear, non-glacial stream sites with similar stream orders, elevations and gradients were selected.

Channel gradient was less than 3% at all eleven sites. Elevation of sampling sites ranged from 554 meters at the Deep Creek downstream site to 814 meters at the Foxy at Maxan site (as determined with a handheld Garmin® eTrex Venture GPS unit). Assessment sites at the streams were chosen based on easiest access. A list of sites sampled in 2001 and a brief description of the location are listed in Table 1, and relative location is shown in Figure 1.

Stream Site	Location
Barren	immediately upstream of the Highway 16 crossing
Buck @ Mall	downstream of Highway 16 and CN bridge crossings
Byman	roughly 50 m upstream of Highway 16
Cesford (downstream)	roughly 100 m downstream of the Highway 16 crossing
Сгож	50 m upstream of Maxan Lake FSR bridge crossing
Deep downstream	roughly 100 m downstream of the Farewell Rd. crossing
Deep upstream (Reference)	approx. 200 m upstream of irrigation system in Kerr's pasture
Foxy @ Maxan	100 m downstream of Foxy bridge crossing at 10km on Maxan Lake FSR
McQuarrie (downstream)	50 m upstream of Highway 16 crossing
Richfield @ CN	immediately upstream of the CN bridge crossing
Richfield downstream (above hwy)	Richfield Creek upstream of Nadina staff gauge, above the Highway 16 crossing

Table 1: List of 2001 stream sites and approximate locations.

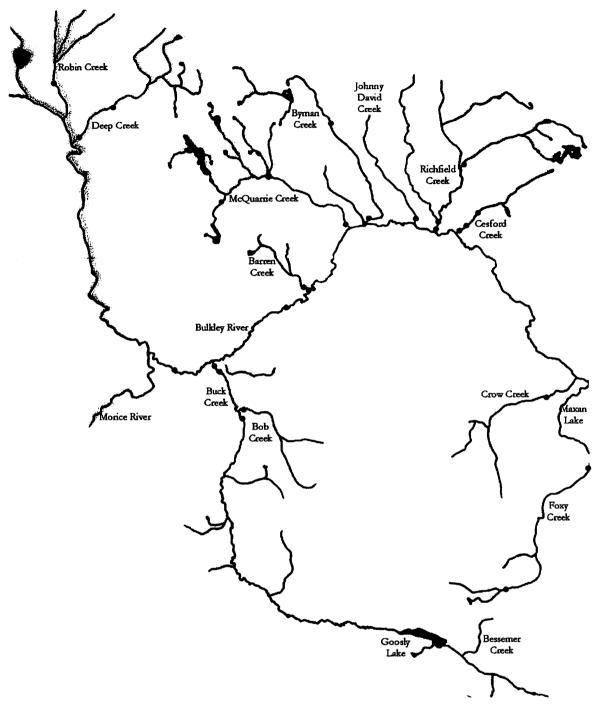


Figure 1: Location of stream assessment sites within the study area (not to scale). Streams not sampled were not included on the map. Stream sites assessed in 1999 are marked with *black circles*, while stream sites assessed in 2001 are marked with *red circles*.

2.2 Field Methods

In 1999, the late summer, early fall season was chosen for sampling as flows are usually lower at the end of the summer, and stream temperatures are high. This makes it an ideal period for temperature-related impact assessment, benthic invertebrate sampling, and in terms of safety and stream wadability. All sites were sampled during a three day period, which began on September 7th, 2001. Sites were assessed and sampled by Shauna Bennett and Kim Hewgill.

The sampling for benthic invertebrates was consistent with Provincial sampling standards as outlined in the <u>Freshwater Biological Sampling Manual</u> (Cavanagh *et al.* 1997), while maintaining B-IBI sampling standards as outlined in Karr and Chu (1999). The best natural riffles were selected at each site, and nine replicates (0.09 m² area each) were collected starting at the downstream end of the site. Every three replicates were composited together to form one sample, resulting in a total of three composite samples (0.27 m² area each) for each stream site.

All samples were collected in the main streamflow at depths between 10 and 25 cm. A 250-micron Surber sampler modified with a Dolphin Adaptor cod end was used for sampling. Larger cobbles were gently removed from within the sampling area and set aside in a washbasin. Invertebrates were later picked off the cobbles and added to the appropriate sample jar. Substrate within the sample area was disturbed to a 10 cm depth with a screwdriver for one minute. The sample was carefully transferred from the cod end to a labelled sample jar and 10% buffered formalin was added as a preservative. The three composite samples collected at each site were kept separate for identification and enumeration.

After benthic invertebrates were collected and preserved, in-stream and riparian conditions were assessed at each site. Four field forms were filled out at each site and are included in Appendix A. The first two forms summarized chosen key <u>Fish Habitat Assessment Procedure</u> parameters (Johnston and Slaney 1996). The second two forms were copied from the <u>Standard Operating Procedures for the Alaska Stream Condition</u> <u>Index (ASCI)</u> (Major and Barbour 1997). Completed field forms for each site are in Appendix B. Site position and information and elevation were collected using a handheld Garmin eTrex® Venture GPS unit.

Photographs were taken of the stream, riparian area, substrate size and any potential or actual land use impacts. One photo of each site has been included in Appendix C.

2.3 Laboratory Procedures

Benthic invertebrate samples were shipped to Fraser Environmental Services (FES) for sorting and identification to the lowest practical level (usually genus) by taxonomists Linda Currie, Jim Donkersley, and Sue Salter. Chironomids were identified only to the family level. As part of a large, on-going effort in the Skeena region, sampling methods were modified in the 2001 field season to ensure that a sufficient number of invertebrates were captured in each sample. Samples containing fewer than 300 individuals have been correlated with increased measurement error for some metrics (Fore *et al.* 2000). The total area sampled per replicate was increased in 2001 to 0.27 m^2 from 0.09 m^2 in the previous field seasons.

However, for streams with abundant invertebrates, the new methods translated into greater than 1000 individuals in many samples. To lessen processing costs and workload, the taxonomist subsampled large samples (with greater than 1000 individuals). If the sample contained less than 1000 individuals, the entire sample was sorted. If the sample was estimated to contain more than 1000 individuals, the taxonomist screened the entire sample using a one millimetre and 212 micron nested sieve system. The entire contents of the one millimetre sieve were sorted and counted while the contents of the 212 micron sieve were subsampled using a Caton Tray. A minimum of 600 individuals were sorted and counted in split samples. The taxonomist marked any especially large individuals in a given sample with an asterix in the data report.

2.4 Metric Calculations & Definitions

Data for all sites was consolidated into an excel spreadsheet. All adults and pupae were eliminated from the raw data, and invertebrates that were not identified to the family level were ignored during metric calculation. Raw data has been included in Appendix D.

A number of community attributes, known as metrics, were calculated for each site. Metrics calculated and presented in this report were those that have been shown in other studies to vary predictably across a gradient of human influence (Karr and Chu 1999, Major et al. 2001, Zweig and Rabeni 2001, Maxted et al. 2000).

Metrics were calculated at two different taxonomic resolutions of the data, the family-level and genuslevel, as described on the <u>Salmonweb</u> internet site (<u>www.salmonweb.org</u>). Metrics were tested at both taxonomic resolutions to evaluate the effectiveness at the two levels in accurately identifying the biological condition of each sampled stream. Generally, a genus-level index more accurately portrays stream condition as there are more metrics included in the index, and more information goes into the metrics at lower levels of identification (Salmonweb 2001). Although genus-level identification may strengthen the ability to discriminate among sites of intermediate quality, family level identification might make the sampling more affordable and less time consuming as volunteers rather than professionals could complete it (Salmonweb 2001). However, where volunteers are used, the cost savings of invertebrate identification may be outweighed by the costs associated with sample storage for data quality assurance, and reference sample verification that would be completed by a taxonomist (Lenat and Resh 2001).

2.4.1 Family-Level Metric Definitions

Seven family-level metrics were calculated for each site.

- Total taxa richness was the total number of unique taxa identified in each replicate sample. The three replicates were averaged to give a single number for total taxa richness.
- Ephemeroptera taxa richness was the total number of unique mayfly (Order Ephemeroptera) taxa identified in each replicate sample. The three replicates were averaged to give a single number for Ephemeroptera taxa richness. Plecoptera and Trichoptera taxa richness were calculated in the same way as Ephemeroptera taxa richness, except counting the number of taxa in the Order Plecoptera and the Order Trichoptera respectively. Ephemeroptera, Plecoptera, and Trichoptera taxa richness are correlated to water quality (Lenat and Resh 2001).
- % Ephemeroptera was the average percentage of Ephemeroptera individuals per site, including individuals identified to the order level.
- Percent dominance was calculated as the proportion of individuals in the single most abundant taxon, averaged for the three replicates.
- The Family Biotic Index (FBI) is a modified Hilsenhoff Biotic Index designed for family-level data, and was calculated by multiplying the number of individuals in each taxa by their assigned tolerance value (Resh *et al.* 1996), and then summing these values and dividing the resulting number by the total number of individuals in the sample. The FBI scores for the three replicates were averaged to give a final FBI score for the site.

Candidate metrics for the family level and their expected response to increased human influence within the watershed are included in Table 2.

Table 2: Expected family-level metric response to increasing human influence within a watershed
(modified from Karr and Chu 1999).

Category	Metric	Definition	Expected Response to Increasing Human Influence within the watershed	Reference
Taxa Richness & Composition	No. of Taxa	Total number of different taxa	Decrease	Karr and Chu 1999
	No. of Ephemeroptera Taxa	Total number of different Ephemeroptera taxa	Decrease	Karr and Chu 1999
	% Ephemeroptera	Proportion of Ephemeroptera individuals	Variable	Maxted <i>et al</i> 2000
	No. of Plecoptera Taxa	Total number of different Plecoptera taxa	Decrease	Karr and Chu 1999
	No. of Trichoptera Taxa	Total number of different Trichoptera taxa	Decrease	Karr and Chu 1999
Population Attributes	% Dominant Taxon	Measures the relative abundance of the single most abundant taxon	Increase	Karr and Chu 1999
Tolerants / Intolerants	Family Biotic Index (FBI)	Weighted average based on the relative abundance and tolerance of organisms	Increase	Resh <i>et al</i> 1996

2.4.2 Genus-Level Metric Definitions

Twenty-one genus-level metrics were calculated for each stream site. Taxa classifications were found on the Salmonweb internet site (www.salmonweb.org) or were taken from Merritt and Cummins (1996).

- Total taxa richness was the total number of distinct taxa identified in each replicate sample. The three replicates were then averaged to give a single value for total taxa richness.
- Ephemeroptera taxa richness was the total number of distinct taxa in the Order Ephemeroptera, identified in each replicate sample. The three replicates were then averaged to give one number for Ephemeroptera taxa richness. Plecoptera and Trichoptera taxa richness were calculated in the same way as Ephemeroptera taxa richness, counting the number of taxa in the Order Plecoptera and the Order Trichoptera respectively.
- % Ephemeroptera was the average percentage of Ephemeroptera individuals per site, including individuals identified to the order level.
- Diptera taxa richness was the total number of distinct Diptera taxa in each sample. The three replicate samples were averaged to give one number for Diptera taxa richness for each site.
- % Dipterans was the average percentage of Diptera individuals per site, including individuals identified to the order level.
- % Non-insects was the average percentage of non-insect individuals per site, including individuals identified to the order level.
- Long-lived taxa richness was defined as the number of taxa that reproduce only once a year, or once every few years. The best available information was used for this metric, provided by Robert Wisseman on Salmonweb (NuWiss.Master98), and was not specific to this region. The cumulative number of unique long-lived taxa in all three replicates was counted (and not averaged over the three samples).
- % Long-lived individuals is the average proportion of long-lived individuals per site.
- Intolerant taxa richness was the cumulative number of unique intolerant taxa in all three replicates. Intolerance is relative to a broad array of disturbances (Fore *et al.* 1996) and information on which taxa are intolerant was provided by Robert Wisseman on the Salmonweb website (NuWiss.Master98.xls).
- % tolerant individuals is the total number of tolerant individuals in each replicate, divided by the total number of individuals in that replicate and multiplied by 100. The results for the three replicates were averaged to give one final metric score.
- Clinger taxa richness is the total number of clinger taxa counted for each replicate and averaged to give one score for each site. Clinger refers to the primary behaviour exhibited by an invertebrate as documented by Leska Fore (Salmonweb) or Merritt and Cummins (1996).
- % Clingers is the percentage of individuals that exhibit clinger behaviour, calculated for each replicate and averaged to give one score for each site.
- % predator individuals is the percentage of individuals that belong to the predator functional feeding group. The results for the three replicates were then averaged to give one final metric score.
- % dominance is the percentage of individuals that belong to the three most abundant taxa in that replicate. The results for each replicate were then averaged to give one final metric score for the site.
- % sediment tolerant individuals is the percentage of individuals classified as sediment tolerant. The results for each replicate were then averaged to give one final metric score for each site. Sediment tolerant taxa were defined by Zweig and Rabeni (2001) and Kleindl (1995).
- % sediment intolerant individuals is the percentage of individuals classified as sediment intolerant. The results for each replicate were averaged to give one final metric score for each site. Sediment intolerant taxa were defined by Zweig and Rabeni (2001) and Kleindl (1995).

- % Oligochaetes is the percentage of Oligochaete individuals per sample, including individuals identified to order. The results for each replicate were averaged to give one final metric score for each site.
- % Dipterans and Non-insects is the percentage of individuals that belong to the Order Diptera and those that were identified as non-insects. The percent dipterans and non-insects were averaged over the three replicates to give one final metric score for the site.
- The Hilsenhoff Biotic Index (HBI) was calculated by multiplying the average number of individuals in each taxa by their assigned tolerance value, and then summing these values and dividing the resulting number by the average number of individuals per sample. The HBI is a community index that uses a tolerance classification based on the effects of organic pollution (Barbour *et al.* 1995).

A list of taxa, assigned functional feeding group, life history and tolerance designations have been included in Appendix E. Sample calculations have been posted by the Salmonweb organization on their internet website. A summary of family- and genus-level metric scores for sites sampled in 1999 and 2001 has been provided in Appendix F and Appendix G, respectively.

The twenty-one metrics considered have been successfully included in multimetric IBI's in North America (Karr and Chu 1999, Maxted et al. 2000, DeShon 1995, Zweig and Rabeni 2001). Genus-level candidate metrics and their expected response to increased human influence within the watershed are included in Table 3.

Table 3: Expected genus-level metric response to increasing human influence within a watershed (modified from Karr and Chu 1999).

Category	Metric	Definition	Expected Response to Increasing Human Influence within the Watershed	Reference
Taxa richness & composition	No. of taxa	Total number of different taxa	Decrease	Karr and Chu 1999
	No. of Ephemeroptera taxa	Total number of different Ephemeroptera taxa	Decrease	Karr and Chu 1999
	% Ephemeroptera	Relative abundance of Ephemeroptera individuals	Variable	Maxted et al 2000
	No. of Plecoptera taxa	Total number of different Plecoptera taxa	Decrease	Karr and Chu 1999
	No. of Trichoptera taxa	Total number of different Trichoptera taxa	Decrease	Karr and Chu 1999
	No. of Long -lived taxa	Cumulative number of unique long-lived taxa	Decrease	Karr and Chu 1999
	% Long Lived	Relative abundance of long- lived individuals	Decrease	
	% Diptera & Non- insects	Relative abundance of all dipterans and non-insects.	Increase	DeShon 1995
	No. of Diptera Taxa	Total number of different Diptera taxa	Decrease	DeShon 1995
	% Dipterans	Relative abundance of Diptera individuals	Increase	Maxted et al 2000
	% Non-insects	Relative abundance of non- insect individuals	Increase	Maxted et al 2000
Tolerants/ Intolerants	# of Intolerant taxa	Cumulative number of unique intolerant taxa	Decrease	Karr and Chu 1999
	% Tolerants	Relative abundance of tolerant individuals	Increase	Karr and Chu 1999
	% Sediment Tolerants	Relative abundance of sediment tolerant individuals	Increase	Zweig and Rabeni 2001
	% Sediment Intolerants	Relative abundance of sediment intolerant individuals	Decrease	Zweig and Rabeni 2001
	% Oligochaetes	Relative abundance of Oligochaete individuals	Increase	Maxted et al 2000
	Hilsenhoff Biotic Index (HBI)	Weighted average based on abundance and tolerance of organisms	Increase	Maxted et al 2000
Feeding / Habit Metrics	% Predators	Relative abundance of predator individuals	Decrease	Karr and Chu 1999
	No. of clinger taxa	Total number of clinger taxa	Decrease	Karr and Chu 1999
	% Clingers	Relative abundance of clinger individuals	Decrease	Maxted et al 2000
Population Attributes	% Dominance (3 taxa)	The proportion of the three most abundant taxa relative to the sample size	Increase	Karr and Chu 1999

2.5 Land Use Classification

Classification of human influence was based primarily on interpretation of Landsat¹ satellite imagery from 1995, which was provided by the Ministry of Sustainable Resource Management, and review of habitat and riparian assessment reports where available.

Of the eleven sites sampled in 2001, only one was expected to be uninfluenced, and after review of the satellite image for the watershed, it appeared that there was some land clearing and possibly agriculture upstream of the monitoring site. For this reason, four uninfluenced sites from the nearby Bulkley District that were sampled for another project (Bennett and Hewgill 2002) were added to the dataset for metric testing. One heavily influenced stream site sampled for the same Bulkley District project (Robin) was also added to the dataset as it was in the immediate vicinity of the Deep Creek sites.

There was evidence of agricultural land use or livestock access to the stream at nearly all the stream sites assessed in 2001. Low levels of agriculture and livestock access can lead to increased taxa richness metrics through introduction of alien taxa and nutrient enrichment, making it difficult to interpret metric results (Karr and Chu 1999). Assessment of the local area surrounding the sampling site, and in-stream conditions were considered to try and further separate the similar levels of watershed influence.

Stream buffers are important for predicting sediment related impacts (Richards et al. 1996). Sites with partially disturbed or removed riparian vegetation were expected to have lower metric scores than streams with intact riparian buffers, and were classified as more highly influenced (*e.g.* Cesford, Robin, Buck).

Sites were classified into four categories: little or no human influence, low -moderate influence, moderate influence, and heavy influence. Stream sites and associated human influence classifications are listed in Table 4.

Stream	Site Location	Riparian Condition	Human Influence Classification
Arnett		Mature coniferous forest	Uninfluenced
Driftwood	Bulkley Timber Supply Area (TSA) – see	Mature coniferous forest	Uninfluenced
Reiseter East	Bennett and Hewgill 2002	Mature coniferous forest	Uninfluenced
Reiseter West		Mature coniferous forest	Uninfluenced
Byman	upstream of Hwy 16	Deciduous forest (signs	Low-Moderate
Downstream		of grazing livestock)	
Barren	upstream of Hwy 16	Young deciduous forest	Low-Moderate
Crow	upstream of Forest Service Road	Young, mixed forest	Low-Moderate
Deep Reference	upstream of Farm irrigation system	Mature mixed forest	Low-Moderate
Richfield above	upstream of Hwy 16	Mature mixed forest,	Low-Moderate
Hwy 16		partially disturbed	
Richfield @ CN	upstream of CN bridge crossing	Young deciduous forest,	Low-Moderate
bridge		partially disturbed	
Foxy @ Maxan	above confluence with Maxan Creek	Mature mixed forest	Moderate
Deep Downstream	downstream of Farewell Creek Rd crossing	Partially removed, disturbed in local area	Moderate
McQuarrie Downstream	upstream of Hwy 16	Partially removed, disturbed (narrow buffer)	Moderate
Buck @ Mall	downstream of Hwy 16 and railway crossing	Partially removed, disturbed	Moderate
Cesford @ Topley	downstream of Hwy 16	Removed	High
Robin	Bulkley TSA – see Bennett and Hewgill 2002	Removed	High

Table 4: Human influence, location and local site riparian condition for stream sites² sampled in 2001 and used for testing metrics (data for sites in italics from Bennett and Hewgill, 2002).

¹ Landsat data © 1995 provided by the Ministry of Sustainable Resource Management, Skeena Region, Government of BC.

² For consistency, site names are from Rysavy 2000a.

3 Results & Discussion

3.1 Invertebrate Abundance and Sample Area

Other B-IBI projects in the Skeena Region found that naturally low invertebrate abundance at some uninfluenced sites was skewing metric results (Bennett and Hewgill 2001, Bennett 2001a and Bennett 2001b). Samples containing fewer than 300 individuals have been correlated with increased measurement error for some metrics (J. Karr, pers. comm. Feb 2001). For sites with naturally low invertebrate densities, lower taxa richness can be more strongly linked to the size of the area sampled, than to the level of human influence in the watershed.

A review of the 1999 Upper Bulkley data found that 64% of sites sampled had fewer than 500 individuals per sample, and 16% had fewer than 300 invertebrates per sample. As a solution to this regional problem, the area sampled for each replicate was tripled from 0.09 m^2 to 0.27m^2 in the 2001 field season. As shown in Table 5, more than 500 individuals per replicate were collected from each site in 2001. Invertebrates were least abundant in Richfield Creek above Highway 16 (684 per sample), and most abundant in Foxy Creek upstream of the confluence with Maxan Creek (4551 per sample).

Table 5: Average number of individuals collected per replicate at stream sites assessed in 1999 and 2001. Sample area per replicate increased from 0.09 m2 in 1999 to 0.27 m2 in 2001.

Stream Site	Average number of invertebrates per replicate		
	1999 Sample area 0.09m²	2001 Sample area 0.27 m²	
Ailport	670		
Barren	378	1376	
Bessemer	1598		
Bob	587		
Bulkley @ Craker	301		
Bulkley @ Knockholt	440		
Bulkley @ Morice	340		
Buck @ Mall	380	3707	
Buck @ 12km FSR crossing	290		
Buck Confluence	378		
Byman downstream	198	3279	
Byman Reference	245 etc.		
Cesford above hwy 16	909		
Cesford below hwy 16		4152	
Cesford Reference	1683		
Cesford upstream	482		
Crow	803	1849	
Deep downstream		3789	
Deep reference		1723	
Foxy below mine	535		
Foxy @ Maxan	749	4551	
Foxy upstream	263	······································	
Johnny David	436		
McQuarrie downstream	351	3072	
McQuarrie Reference	381		
Richfield @ CN	1269	1749	
Richfield above Hwy 16	359		
Richfield upstream	454	684	

Invertebrate abundance was plotted against family- and genus-level taxa richness for streams sampled in 1999 and 2001 as shown in Figure 2. In 1999, there was an increasing pattern of taxa richness with abundance at both the family- and genus-levels. Lower abundance was associated with lower taxa richness, although higher abundance did not always result in greater taxa richness. In 2001, there was no correlation between abundance and taxa richness at either the family- or genus-levels.

While sampling over a larger area ensured that richness metric scores were not determined by sample size at streams with naturally low invertebrate densities, abundance was not considered as a metric for the multimetric index. Although human influence in a watershed can affect invertebrate abundance (density), it is not expected to vary predictably with all types of increasing human influence, which makes it an unreliable community metric for inclusion in a multi-metric index. For example, abundance might increase with agricultural land use through nutrient enrichment, while it might decrease with increasing industrial land use and associated point source and non-point source discharges.

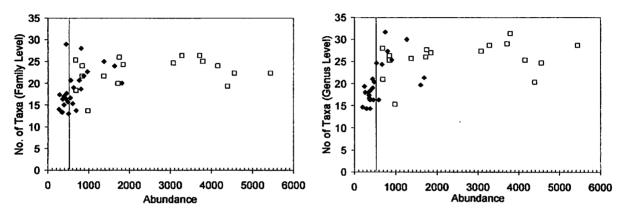


Figure 2: Invertebrate abundance plotted against taxa richness (family- and genus- level) for sites sampled in 1999 (black diamonds) and 2001 (open boxes).

3.2 Family-level Metrics

3.2.1 Trends with Human Influence

A multimetric index combines a number of individual metrics into one score or value, easing comparison of multiple sites. The index of biological integrity is the sum of scores for a set of core metrics that are known to respond in a predictable way across a gradient of human influence (Karr and Chu 1999). Each metric is assigned a set of unitless values across the range of results, which reflect whether the results were similar to those expected of an uninfluenced stream, a moderately influenced stream or a highly influenced stream.

Metrics can be calculated for various taxonomic resolutions of the invertebrate data including family-, genus- and species-level. In the Puget Sound area, Salmonweb is a community based monitoring program that uses a combination of a family-level B-IBI with genus- and species-level B-IBI's when data for the lower taxonomic resolutions is available.

As shown in Figure 3, two of the seven family-level metrics tested did not vary predictably with increasing human influence. There was not a clear trend across the gradient of human influence with either total taxa richness or Ephemeroptera taxa richness.

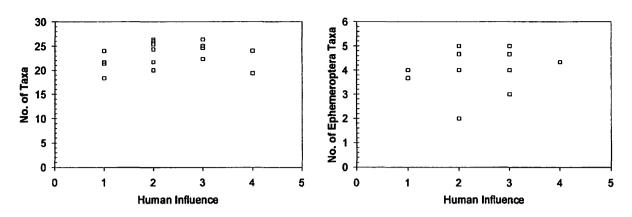
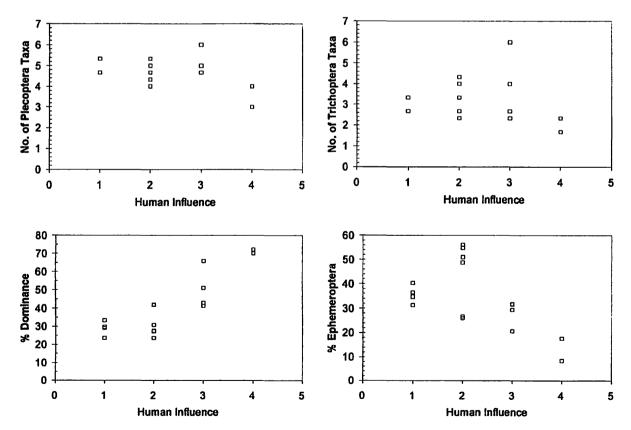



Figure 3: Family-level metrics that did not vary predictably with increasing land use influence for sites sampled in 2001. Human influence increases from uninfluenced on the far left (category 1) to heavily influenced on the far right (category 4).

Five of the seven metrics tested varied predictably with increasing human influence and clearly differentiated between uninfluenced sites and heavily influenced sites as shown in Figure 4. The proportion of the dominant taxon, the family biotic index, Plecoptera taxa richness, Trichoptera taxa richness and the proportion of Ephemeroptera were all successful metrics. However, there was high variability at moderately influenced sites for both the Plecoptera and Trichoptera taxa richness metrics.

As expected, the proportion of the dominant taxon and the family biotic index increased with increasing human influence, while the other three metrics decreased with increasing human influence.

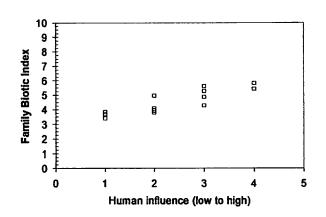


Figure 4: Family-level metrics that varied predictably with increasing land use influence for sites sampled in 2001. Human influence increases from uninfluenced on the far left (category 1) to heavily influenced on the far right (category 4).

Each of the graphs for the five successful metrics was studied closely, and cut-off points were selected for scoring sites. Similar to Karr and Chu (1999), a site scores 5 points if the metric value was similar to those at uninfluenced streams, 1 point if values were similar to heavily influenced streams, and 3 points if values were in-between the two extremes. All selected metrics and scoring cut-off points are summarized in Table 6.

Table 6: Five metrics and scoring cut-offs chosen for inclusion in a Bulkley River watershed familylevel multimetric index.

Metric Score			·····
Metric	1	3	5
No. of Plecoptera Taxa	< 3.5	≥ 3.5, < 4.6	≥ 4.6
No. of Trichoptera Taxa	< 1.8	1.8 - 2.3	≥ 2.4
% Ephemeroptera Individuals	< 22	22 - 34	> 34
% Dominant Taxon	> 50	30 - 50	< 30
Family Biotic Index (FBI)	> 5	4 - 5	< 4

3.2.2 Family-level site scores based on 1999 & 2001 data

Based on the metric value cut-offs presented in Table 6, family-level B-IBI scores were calculated for all sites sampled in 1999 and 2001. Since there are five metrics in the family-level B-IBI, the maximum possible score for a site is 25 and the minimum possible score is 5. A score close to 25 would be expected at uninfluenced sites. Using an approach similar to one on the Salmonweb (2001), stream conditions were assigned to sites sampled in 2001 based on the B-IBI score as summarized in Table 7. The family-level B-IBI score and the average sample size for each site are summarized in Table 8.

Table 7: Five metric Family-level B-IBI scores and associated stream condition	Table 7:	Five metric	: Family-level B-IB	I scores and	associated stream condition
--	----------	-------------	---------------------	--------------	-----------------------------

5-metric Family-level B- IBI Score	Stream Condition
23 - 25	Excellent
19 - 22	Good
14 - 18	Fair
9 - 13	Poor
5-8	Very Poor

For the 2001 field season, Crow, Arnett, Driftwood and Reiseter West creeks had the highest B-IBI scores (25), while Robin creek had the lowest (5). With one stream scoring the lowest possible score (5) during

index calibration, this may potentially limit the effectiveness of the index for heavily influenced streams. If the conditions at that site deteriorate further, the index will not be able to reflect it. As expected, streams with low to moderate levels of agricultural influence and intact riparian buffers scored relatively high for taxa richness metrics, most likely due to nutrient enrichment.

There were three sites (Crow, Foxy at Maxan and Richfield CN) that had an average of more than 500 individuals per sample in both 1999 and 2001, despite the difference in sample collection area. At Crow and Richfield CN, there was an increase in family-level B-IBI scores from 1999 to 2001. At Richfield CN, scores in 1999 and 2001 both indicated good stream condition. However, at Crow the increase in scores from 1999 to 2001 translated to an increase from good to excellent stream condition. The higher scores in 2001 may have been due to the increase in area sampled. At the Foxy site, there was an unexpected decrease in family-level B-IBI scores from 1999 to 2001, and relative stream condition dropped from excellent to fair.

14

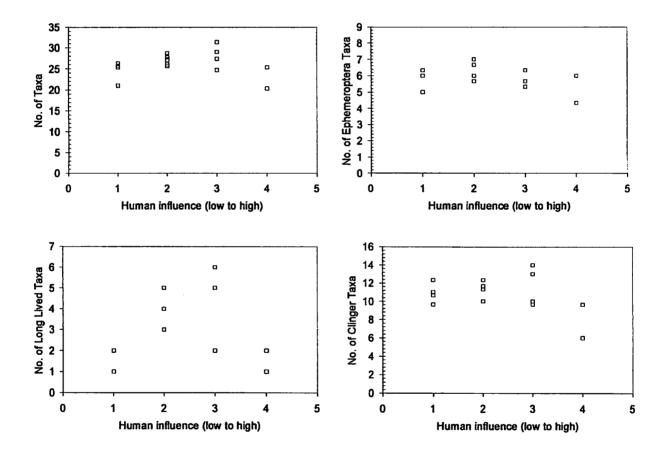
Table 8: Average number of invertebrates per sample and 5-metric family level B-IBI results for
Upper Bulkley stream sites sampled in the 1999 and 2001 field seasons ³ . Samples with an average
number of invertebrates less than 500 have been underlined.

	1999 Field	d Season	2001 Field Season			
Site	Invertebrates R IBI Score		Average # of InvertebratesFamily- Level B-IBI Score		Stream Condition	
Ailport	670	25				
Barren	<u>378</u>	<u>15</u>	1376	23	Excellent	
Bessemer	1598	21	_			
Вор	587	9				
Buck @ Mall	<u>380</u>	5	3707	19	Good	
Buck @ 12 km FSR crossing	290	13				
Buck @ Bulkley R. confluence	<u>378</u>	9				
Bulkley @ Morice	340	<u>11</u>				
Bulkley @ Craker	<u>301</u>	15				
Bulkley @ Knockholt	440	21				
Byman	198	<u>13</u>	3279	23	Excellent	
Byman Reference	245	11				
Cesford downstream (above hwy 16)	909	9				
Cesford @ Topley (below hwy 16)			4152	9	Poor	
Cesford Reference	1683	9				
Cesford upstream	482	17				
Crow	803	21	1849	25	Excellent	
Deep downstream			3789	13	Poor	
Deep upstream			1723	23	Excellent	
Foxy @ Maxan	749	23	4551	17	Fair	
Foxy below mine	535	21				
Foxy upstream (above mine)	263	<u>25</u>				
Johnny David	436	13				
McQuarrie Downstream	351	11	3072	15	Fair	
McQuarrie Reference	381	19				
Richfield CN	1269	19	1749	21	Good	
Richfield Downstream (above Hwy 16)	359	11	684	17	Fair	
Richfield Upstream	454	15				
Arnett			686	25	Excellent	
Driftwood Reference			1135	25	Excellent	
Lemieux downstream (above Hwy 16)			979	13	Poor	
Lemieux upstream			5436	9	Poor	
Reiseter East			844	23	Excellent	
Reiseter West			846	25	Excellent	
Robin			4390	5	Very Poor	

• •

~

³ Data for sites in italics from Bennett and Hewgill 2002.


3.3 Genus Level Metrics

3.3.1 Trends with Human Influence

In 1999, twelve genus-level metrics were considered for inclusion in the multimetric index. Nine were found to vary systematically across a gradient of human influence. Several changes were made in 2001 with respect to how raw data was treated, how metrics were calculated, and how sites were classified. As a result, all the 1999 data was reworked, and the metrics were re-tested using the 2001 data.

Twenty-one metrics were considered for inclusion in the multimetric index. Each metric was tested to determine whether it varied systematically across a gradient of human influences specific to the Bulkley River watershed, and could discriminate uninfluenced sites from heavily influenced sites using simple graphical analysis.

As shown in Figure 6, eight of the twenty-one metrics tested did not vary predictably with increasing human influence. Similar to the family-level metrics, there was no decrease in either total taxa richness or Ephemeroptera taxa richness with increasing human influence. Other richness metrics that did not vary with human influence were clinger taxa richness and Diptera taxa richness.

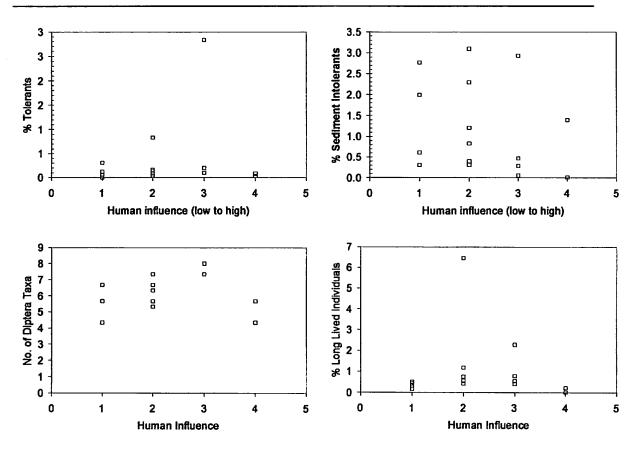
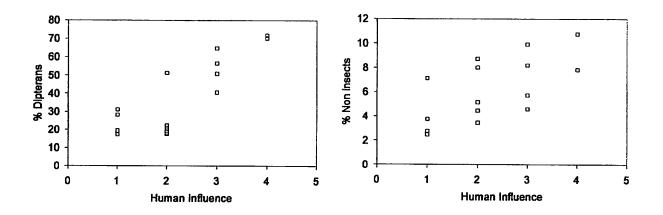



Figure 6: Genus-level metrics that did not vary predictably with increasing land use influence for sites sampled in 2001. Human influence increases from uninfluenced on the far left (category 1) to heavily influenced on the far right (category 4).

There were 13 metrics that did vary predictably with human influence, and clearly differentiated between the two human influence extremes as shown in Figure 7 and Figure 8. However, the three metrics shown in Figure 7 were redundant with metrics that ended up being selected for inclusion in the genus-level B-IBI for the Bulkley River watershed.

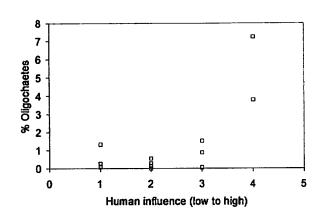
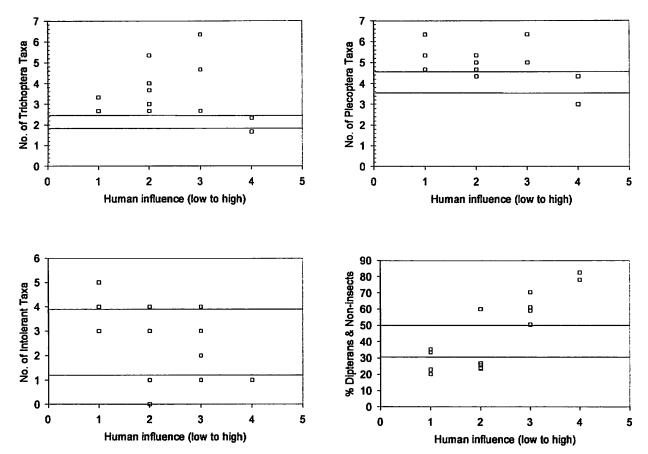



Figure 7: Genus-level metrics that varied predictably with increasing land use influence for sites sampled in 2001, but were redundant with other metrics selected for the index. Human influence increases from uninfluenced on the far left (category 1) to heavily influenced on the far right (category 4).

Bio Logic Consulting

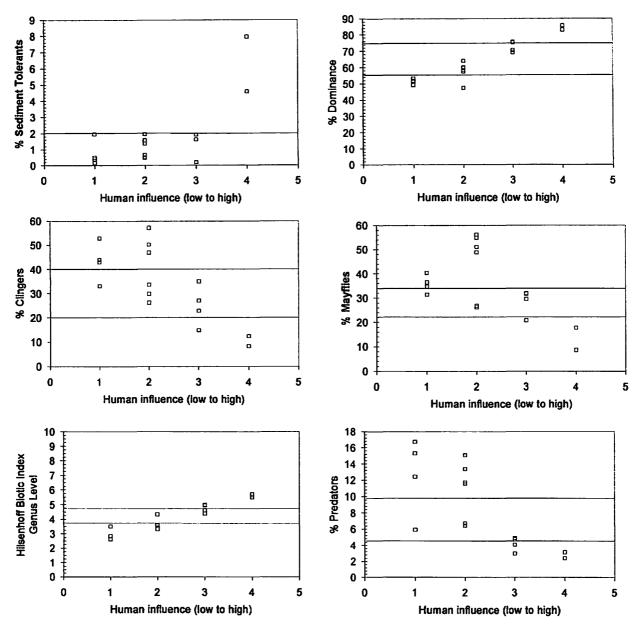


Figure 8: Genus-level metrics that varied predictably with increasing land use influence for sites sampled in 2001. Human influence increases from uninfluenced on the far left (category 1) to heavily influenced on the far right (category 4). Scoring cut-offs have been drawn in for reference.

Each of the graphs for the ten successful metrics was studied closely, and cut-off values were selected for scoring sites. Similar to Karr and Chu (1999), a site scores 5 points if the metric value was similar to those at uninfluenced streams, 1 point if values were similar to heavily influenced streams, and 3 points if values were in-between the two extremes. All selected metrics and scoring cut-off points are summarized in Table 9.

The relative proportion of Ephemeroptera individuals (% Ephemeroptera) does not require taxonomic resolution lower than the Order level. Therefore, the metric results and scoring cut-off values are the same at the family- and genus-levels.

Calculated taxa richness values for Plecopterans and Trichopterans increased only slightly at the genuslevel compared with values calculated at the family-level. Cut-off thresholds for scoring the metrics were set at the same values for both levels of B-IBI. At the genus-level, overall taxa richness was greater in the Bulkley River watershed than the Bulkley and Kispiox Forest District areas where the B-IBI is also being tested (Bennett and Hewgill 2002, Bennett et al. in prep.), and the cut-off values were set higher to reflect this.

Metric	Metric Score						
	1	3	5				
No. of Plecoptera Taxa	< 3.5	3.6 - 4.5	≥ 4.6				
No. of Trichoptera Taxa	< 1.8	1.8 – 2.3	≥ 2.4				
% Diptera & Non-insects	> 50	30 – 50	< 30				
% Ephemeroptera	< 22	22 - 34	> 34				
No. of Intolerant Taxa	≤ 1	2 - 3	≥4				
% Predators	< 4.5	4.5 - 10	> 10				
% Dominance (3 taxa)	> 75	55 - 75	< 55				
% Sediment Tolerants	> 10	2.1 - 10	≤ 2				
% Clingers	< 20	20 - 40	> 40				
Hilsenhoff Biotic Index (HBI)	> 4.75	3.75 - 4.75	< 3.75				

Table 9: Ten metrics selected for inclusion in the genus-level B-IBI for the Bulkley River watershed, and associated scoring cut-off points.

3.3.2 Genus-level site scores based on 1999 & 2001 data

Based on the metric value cut-offs presented in Table 9, genus-level B-IBI scores were calculated for all sites sampled in 1999 and 2001. Since there are ten metrics in the genus-level B-IBI, the maximum possible score for a site is 50 and the minimum possible score is 10. A score close to 50 would be expected at uninfluenced sites. Using an approach similar to one on the Salmonweb (2001), stream conditions were assigned to sites sampled in 2001 based on the B-IBI score as summarized in Table 10. The genus-level B-IBI score and the average sample size for each site are summarized in Table 11.

10-metric Genus-level B- IBI Score	Stream Condition		
46 - 50	Excellent		
38 - 44	Good		
28 - 36	Fair		
18 - 26	Poor		
10 - 16	Very Poor		

Table 10: Ten metric genus-level B-IBI scores and relative stream condition.

For the 2001 field season, the uninfluenced Arnett, Driftwood and Reiseter West streams had the highest B-IBI scores (48), while Robin had the lowest (12). As expected, streams with low to moderate levels of agricultural influence and intact riparian buffers scored relatively high for taxa richness metrics, most likely due to nutrient enrichment.

Three sites (Crow, Foxy at Maxan and Richfield CN) had an average of more than 500 individuals per sample in both 1999 and 2001, despite the difference in sample collection area. Similar to the family-level B-IBI results, at Crow and Richfield CN there was an increase in genus-level B-IBI scores from 1999 to 2001, while at the Foxy site, there was a decrease. Relative stream condition was fair at both Crow and Richfield CN sites in 1999. At both sites, relative stream condition increased to good in 2001. At the Foxy site, the relative stream condition was fair in both years and the decrease in B-IBI score was not as great at the genus-level as it was at the family-level.

Table 11: Average number of invertebrates per sample and 10-metric genus level B-IBI results for Upper Bulkley stream sites sampled in the 1999 and 2001 field seasons⁴. Samples with an average number of invertebrates less than 500 have been underlined.

	1999 Field	Season	2001 Field Season			
Site	Average # of Invertebrates per sample	Genus Level B-IBI Score	Average # of Invertebrates per sample	Genus Level B-IBI Score	Stream Condition	
Ailport	670	44				
Barren	<u>378</u>	<u>34</u>	1376	44	Good	
Bessemer	1598	32				
Bob	587	26				
Buck @ Mall	<u>380</u>	<u>20</u>	3707	32	Fair	
Buck @ 12 km FSR crossing	<u>290</u>	28				
Buck @ Bulkley R. confluence	<u>378</u>	20				
Bulkley @ Morice	<u>340</u>	<u>26</u>				
Bulkley @ Craker	<u>301</u>	32				
Bulkley @ Knockholt	440	44				
Byman	<u>198</u>	30	3279	46	Excellent	
Byman Reference	245	28				
Cesford downstream (above hwy 16)	909	28				
Cesford @ Topley (below hwy 16)			4152	16	Fair	
Cesford Reference	1683	18				
Cesford upstream	482	36				
Crow	803	34	1849	44	Good	
Deep downstream			3789	24	Poor	
Deep upstream			1723	40	Good	
Foxy @ Maxan	749	36	4551	32	Fair	
Foxy below mine	535	46				
Foxy upstream (above mine)	263	36				
Johnny David	<u>436</u>	<u>30</u>				
McQuarrie Downstream	351	26	3072	32	Fair	
McQuarrie Reference	<u>381</u>	38		· ·		
Richfield CN	1269	32	1749	44	Good	
Richfield Downstream (ab. Hwy)	359	26	684	32	Fair	
Richfield Upstream	454	28				
Arnett			686	48	Excellent	
Driftwood Reference			1135	48	Excellent	
Lemieux downstream (ab. Hwy)			979	20	Poor	
Lemieux upstream			5436	26	Poor	
Reiseter East			844	42	Good	
Reiseter West			846	48	Excellent	
Robin			4390	12	Very Poor	

.

⁴ Data for sites in italics from Bennett and Hewgill 2002.

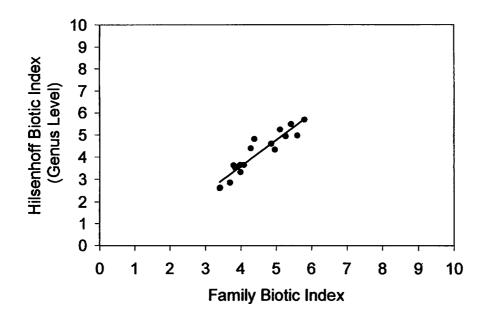
3.4 Taxonomic Resolution and Metric Results

An initial stage family- and genus-level B-IBI were calibrated for the Bulkley River watershed based on sampling in the 2001 field season at 11 sites, and data for another four uninfluenced sites and one heavily influenced site from a nearby (BTSA) project (Bennett and Hewgill 2002). B-IBI results were calculated for the 16 sites, and for two sites on Lemieux Creek that were sampled for the BTSA project. Data from the Lemieux sites were not used for testing the metrics, as both sites had some degree of influence in the watershed and were difficult to classify using satellite photo interpretation.

The family-level B-IBI is composed of five metrics, while the genus-level B-IBI is composed of ten metrics. Other studies have looked at the differences in cost and effectiveness as a monitoring tool between family- and genus- level multimetric indices. Bailey et al. (2001) found that in areas that are taxonomically rich, data at the species-level index were more effective for differentiating between reference and stressed stream conditions than data at the family-level. To compare the effectiveness of family- and genus-level data in the Bulkley River watershed in assessing stream quality, we focussed on the biotic index metrics and the overall B-IBI scores and associated stream conditions.

3.4.1 Hilsenhoff Biotic Index

The premise behind the Hilsenhoff biotic index is that organic pollution tolerance differs among various benthic organisms, and assigning tolerance values to taxa in a sample allows calculation of a weighted average. Although it is generally calculated at a genus- or species-level, there is also a modified index that can be calculated for data at the family-level. In this study, both the genus-level Hilsenhoff Biotic Index (HBI) and a Family Biotic Index (FBI) were calculated for all stream sites. For both indices, scores range from 0 to 10, and a low score indicates better water quality, while a higher score indicates poorer water quality.


There are a couple of potential concerns when calculating the biotic index at the family-level. Within a benthic invertebrate family, there are usually many genera and species, and each of these can vary widely in pollution tolerance (Lenat and Resh 2001). One tolerance value must be assigned to a family to calculate the index, although even trying to assign a single pollution tolerance value to a genus can be difficult as the species within it may have different levels of pollution tolerance. Lenat and Resh (2001) compared a genus-level biotic index and a family-level biotic index for three regions and found that the family-level biotic index did not detect the finer differences in water quality, but it could consistently separate reference sites from stressed sites. The family-level biotic index was not as accurate at detecting water quality extremes, and missed 22 to 45% of the excellent sites and roughly 28% of the poor sites (Lenat and Resh 2001).

A second concern is that the tolerance values are derived from studies completed mostly in the Eastern United State, which likely differ substantially from the Pacific Northwest.

In the Kispiox Forest District, the FBI was tested as an indicator of forest harvesting impacts in 2000 (Bennett 2001a). As expected, while the FBI could detect changes in water quality between reference sites and sites with urban influences, it did not detect differences in water quality at any of the sites with forest harvesting in the watershed.

However, in the Bulkley watershed, the biotic index was selected as a metric for inclusion in the B-IBIs at both the family- and genus- levels. Biotic index values increased with increased human influence in a watershed, and clearly differentiated uninfluenced sites from heavily influenced sites at both taxonomic resolutions.

When the 2001 FBI results were plotted against the HBI results as shown in Figure 9, the two indices were correlated (r^2 0.88) suggesting that they supply similar information.

Figure 9: Modified Hilsenhoff Family Biotic index values for streams sampled in 2001, plotted against Genus-level Hilsenhoff Biotic index values (n=18, r² 0.88).

For both the FBI and the HBI, the range of possible scores is from 0 to 10, with 0 representing the best water quality, and 10 representing the most degraded water quality as shown in Table 12. For the FBI, values for the 2001 sampled streams varied from 3.41 to 5.8, a total range of 2.39 points. For the HBI, values for the same sites ranged from 2.61 to 5.69, a total range of 3.08 points.

Table 12:	Water	Quality	based	on	Hilsenhoff	Genus-	and	Family-	level	Biotic	Index	Values
(modified fr	rom Res	h <i>et al</i> . 19	996).									

Hilsenhoff and Family Biotic Index Values	Water Quality
0.00 - 3.75	Excellent
3.76 - 4.25	Very Good
4.26 - 5.00	Good
5.01 - 5.75	Fair
5.76 - 6.50	Fairly Poor
6.51 - 7.25	Poor
7.26 - 10.00	Very Poor

The number of observations for each water quality rating based on the FBI and HBI values were plotted as shown in Figure 10. Similar to the results of Lenat and Resh (2001), it was found that more excellent water quality sites were identified with the genus-level biotic index than with the family-level biotic index. Although there were four uninfluenced sites in the group, the FBI classified only three sites as having excellent water quality, while the HBI classified nine sites as having excellent water quality.

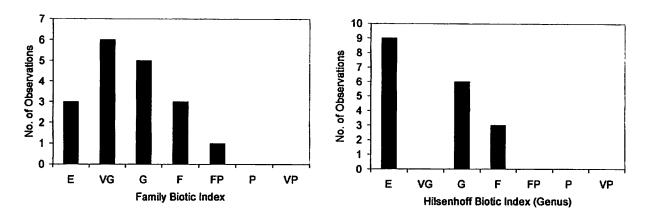


Figure 10: Frequency distribution of water quality rating as measured by the Family Biotic Index and Hilsenhoff Biotic Index (genus-level) for streams sampled in 2001.

Overall, it appears that the biotic index may under-rate water quality at the family-level compared with the genus-level. However, in this study scoring cut-offs were adjusted for the family-level metric to accommodate this (see Table 6 and Table 9).

3.4.2 Comparison of Family- and Genus- level B-IBIs

This study has focussed on initial development of two B-IBI's at different taxonomic resolutions of the same data for 16 stream sites. A five metric family-level B-IBI and a ten metric genus-level B-IBI were calibrated for human influence specific to the Bulkley watershed. B-IBI calibration was initiated at two taxonomic resolutions because the family-level B-IBI may be a less costly monitoring program to maintain on a regular basis, and may facilitate volunteer help with invertebrate identification compared to the genus-level B-IBI.

The final scores for the family- and genus-level B-IBI's were plotted against one another as shown in Figure 11. The scores for the two B-IBI's were highly correlated (r^2 0.91). Stream condition thresholds were drawn on the graph to help identify streams that were classified differently by the two indices.

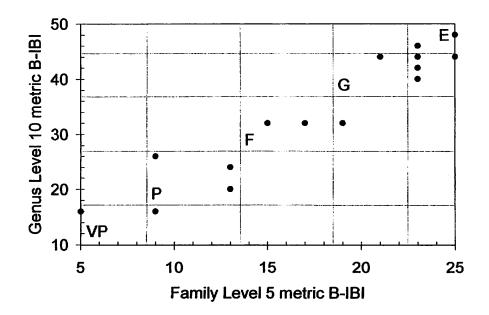


Figure 11: 5-metric family-level B-IBI scores plotted against 10-metric genus-level B-IBI scores for sites sampled in 2001. (n = 18, r^2 0.91)

In twelve out of eighteen streams sampled, the family-level B-IBI and genus-level B-IBI ranked the stream condition in the same category. In 6 cases (Barren, Buck @ Mall, Cesford, Crow, Deep upstream, and Reiseter East), stream sites were classified one level higher by the family-level B-IBI than the genus-level B-IBI.

Overall, the family-level B-IBI classified more streams as excellent stream condition than the genus-level B-IBI, as shown in Figure 12. Compared to the number of uninfluenced sites in the group (4), this number was relatively high. However, if the numbers of excellent and good streams are combined for each B-IBI, this added up to 9 streams for the genus-level index and 10 streams for the family-level index.

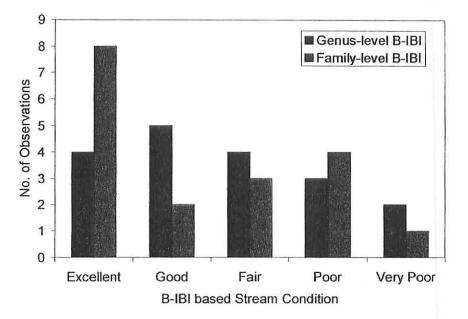


Figure 12: Frequency distribution of stream condition for genus- and family-level B-IBI for streams assessed in the 2001 field season.

3.5 B-IBI and Biotic Index Verification

Comparison of B-IBI results between sites on the same stream provides a preliminary means of verifying the indices, especially in cases where one site is uninfluenced. Two sites were sampled on each of three streams in 2001. Streams with two sites included Deep, Richfield and Lemieux. However, all stream sites had some degree of land use influence at both the upstream and downstream sites. All metric and index responses between the upstream and downstream sites for the three creeks are summarized in Table 13.

3.5.1 Deep Creek

On Deep Creek, an upstream site was sampled that was relatively uninfluenced compared to the downstream site. Both the family-level and genus-level multimetric indices described the downstream site as poor, while the upstream site was described as excellent and good, respectively. The results of familyand genus- level biotic indices described the upstream water quality as very good (family) and excellent (genus), while the water quality at the downstream site was described as fair (family) and good (genus).

At the family-level, Plecoptera and Trichoptera taxa richness were slightly lower at the upstream site. Nutrient enrichment at the downstream site was likely the cause of the slight increase in taxa richness at the downstream site. Percent dominant taxon, relative abundance of mayflies and biotic index results all responded as predicted with increasing human influence between the two sites.

At the genus-level, Plecoptera, Trichoptera and intolerant taxa richness were greater at the downstream site. Relative abundance of predators decreased from 11.7% to 3% at the downstream site. Ephemeroptera individuals and clingers decreased, and dominance and abundance of Diptera individuals and non-insects increased at the downstream site as expected. Relative abundance of sediment tolerant individuals did not change between the two sites.

Overall, the family- and genus-level multimetric indices decreased at the downstream site compared to the upstream site.

3.5.2 Lemieux Creek

On Lemieux Creek, two sites were chosen for monitoring as part of the Bulkley TSA B-IBI development project (Bennett and Hewgill 2002). Land use influence at the upstream site was mostly livestock access to the stream, with some forest harvesting further upstream. The downstream site was located upstream of Highway 16, near the Quick Elementary School. Influences at the downstream site included agriculture, rural residences, road crossings and disturbed riparian areas. Stream water levels and flow were very low at the downstream site, and habitat was mostly pools. Classification and assignment of a relative degree of human influence was difficult for both sites, and neither site was used to test metrics. Both the family-level and genus-level multimetric indices described the downstream and upstream sites as poor. With the family-level index, the upstream site scored lower, while with the genus-level index it scored higher. The results of family- and genus- level biotic indices found the downstream water quality to be better than the upstream water quality. The downstream water quality was described as good with both indices, while the water quality at the upstream site was described as fair with both indices.

At the family-level, Plecoptera and Trichoptera taxa richness were higher at the upstream site. Nutrient enrichment due to livestock access was likely the cause of the slight increase in taxa richness at the site. However, streamflow was also greater and the substrate was more suitable for invertebrate colonization at the upstream site. Percent dominant taxon was higher upstream than downstream, while relative abundance of mayflies was lower upstream than downstream.

At the genus-level, Plecoptera, Trichoptera and intolerant taxa richness were greater at the upstream site. Relative abundance of predators was low at both sites, and decreased from 5.4% to 2.6% at the downstream site. Results for percent dominance were similarly very high at both sites. Ephemeroptera individuals increased from 13% to 45% at the downstream site, while clingers decreased from 13% to 8%. Abundance of Diptera individuals and non-insects decreased at the downstream site (42%) from the upstream site (75%). Relative abundance of sediment tolerant individuals was slightly greater at the downstream site.

3.5.3 Richfield Creek

Two sites were assessed on Richfield Creek; a site upstream of the highway crossing, and a downstream site located upstream of the railway bridge. The sites were expected to have fairly similar index results after in-stream habitat assessment was completed and satellite images were reviewed. Surprisingly, the downstream site above the railway bridge was described as good by both indices, while the more upstream site above the highway was described as fair. It was not clear why the invertebrate community at the site above the highway was less taxonomically rich and diverse than the downstream site. However, the biotic index results agreed at both the family- and genus-levels. Water quality as measured by the FBI and HBI was very good (3.98) and excellent (3.64) at the site above the railway bridge, while water quality at the site upstream of the highway was good (4.96 and 4.33) with both indices. These results are very preliminary but may still provide support for re-assessment of the sites in coming years, and direction for investigating site-specific water quality issues.

At the family-level, Trichoptera taxa richness and relative abundance of Ephemeroptera individuals were higher at the downstream site, while Plecoptera taxa richness was lower. Percent dominant taxon did not change between the two sites.

At the genus-level, Plecoptera taxa richness was slightly higher upstream, while Trichoptera taxa richness was greater at the downstream site. There were no intolerant taxa at the downstream site, while three unique intolerant taxa were collected at the upstream site. The proportion of predator, clinger and Ephemeroptera individuals was twice as great at the downstream site, while the proportion of Diptera and non-insect individuals was greater at the upstream site. The proportion of sediment tolerant individuals did not change between the two sites. Percent dominance was slightly greater at the downstream site compared with the upstream site.

Table 13: Summary of metric response to family- and genus-level metrics between upstream and downstream monitoring sites on Deep, Lemieux⁵ and Richfield Creeks. A plus sign represents an increase at the downstream site, while a minus sign represents a decrease.

Metrics and Indices	Expected Response with increasing human	Change from	Upstream to Downstream		
metrics and mulces	influence	Deep	Lemieux	Richfield	
Human Influence		Increased	?	No change?	
Family-Level Results					
Plecoptera Taxa Richness	decrease	+	-	+	
Trichoptera Taxa Richness	decrease	+	-	-	
% Ephemeroptera	decrease	_	+	+	
% Dominant Taxon	increase	+		~	
Family Biotic Index	increase	+	-	-	
Family-level B-IBI	decrease	-	+	+	
Genus-Level Results					
Plecoptera Taxa Richness	decrease	+	-	+	
Trichoptera Taxa Richness	decrease	+	-	-	
% Ephemeroptera	decrease	-	+	+	
% Dipterans & Non-insects	increase	+	-	-	
No. of Intolerant Taxa	decrease	+	-	-	
% Predators	decrease	-	-	+	
% Dominance	increase	+	≅	ĩ	
% Sediment Tolerants	increase	พ	+	≅	
% Clingers	decrease		-	+	
Hilsenhoff Biotic Index	increase	+	-		
Genus-level B-IBI	decrease	-	-	+	

4 Recommendations

- Development and calibration of a B-IBI is an iterative process. Any additional benthic invertebrate or land use classification data collected should be used to re-check metric trends, and re-affirm the metric scoring cut-off points.
- Annual variation (temporal variability) of metrics and index results should be evaluated by re-sampling some of the 2001 sites. Re-sampling uninfluenced sites would be the most practical method for assessment of year-to-year variability. Particularly, annual variability of metrics that represent a proportion of the sample (e.g. % Clingers) should be evaluated.
- Both family- and genus-level indices should be validated by sampling several sites with varying degrees or types of human influence on one stream. Ideally, the sampling should include an uninfluenced reference site.
- Initial results suggest that both the family- and genus-level indices may be suitable monitoring tools. However, the family-level index may not be as sensitive to smaller changes in biological integrity, especially at the higher end of the scoring range (excellent sites). If the goal is to protect uninfluenced streams in the area, it might be more effective to use the genus-level index. However, these results should be re-evaluated with data from at least one more year of sampling.
- For effectiveness monitoring of restoration projects, a BACI (before-after-control-impact) design is recommended with either index. If before data is not available, efforts should still be made to find a

⁵ Raw data for Lemieux Creek from Bennett and Hewgill 2002.

suitable upstream reference site. If a reference site is not available, before sampling becomes more important for establishing baseline information.

- The increase in area sampled per replicate from 0.09 m² in 1999 to 0.27 m² in 2001, appeared to lessen the taxa richness skewing error associated with naturally low invertebrate abundance in some streams. Any future sampling should maintain the larger area per replicate.
- In similar B-IBI projects, it has been recommended that a core set of streams be identified and monitored each year that sampling occurs. This core set of streams will be useful for assessing changes to B-IBI due to widespread, naturally occurring events (for example, a very low water year). Ideally, this core set of streams would be made up of uninfluenced reference sites.

5 Literature Cited

- Bailey, R.C., R.H. Norris, and R.B. Reynoldson. 2001. Taxonomic resolution of benthic macroinvertebrate communities in bioassessments. J. N. Am. Benthol. Soc. 20(2): 280-286.
- Barbour, M.T., J.B. Stribling, and J.R. Karr. 1995. Multimetric Approach for Establishing Biocriteria and Measuring Biological Condition. Pages 63 – 77 in W.S. Davis and T.P. Simon, eds. Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis, Boca Raton, FL.
- Bennett, S. 2001a. Expansion and Recalibration of the Kispiox Benthic Invertebrate Index of Biological Integrity: Field Season 2000. Prepared for the Small Business Forest Enterprise Program, Hazelton, BC.
- Bennett, S. 2001b. A Benthic Invertebrate Index of Biological Integrity for Streams in the Bulkley TSA. Field Season 2000. Prepared for Pacific Inland Resources, the Bulkley Forest District Office and the BC Environment, Smithers, BC.
- Bennett, S. and K. Hewgill. 2002. The Development of a Benthic Invertebrate Index of Biological Integrity for Streams in the Bulkley Timber Supply Area. Field Season 2001. Prepared for Pacific Inland Resources, the Bulkley Forest District Office and BC Environment, Smithers, BC.
- Bennett, S. and K. Hewgill. 2001. Assessment of Forest Harvesting Impacts on Aquatic Ecosystems in the Kispiox & Kalum Forest Districts. Field Season 2000. Prepared for BC Environment, Smithers, BC.
- Cavanagh, N., R.N. Nordin, and P.D. Warrington. 1997. Freshwater Biological Sampling Manual. BC Ministry of Environment, Lands and Parks. Water Management Branch.
- Chaplin, J. 2001. Operational Inventory of Water Quality and Quantity of Rivers Ecosystems in the Bulkley, Lakes and Morice Districts of the Skeena Region, Northwest British Columbia. Prepared for BC Environment, Smithers, BC.
- DeShon, J.E. 1995. Development and application of the Invertebrate Community Index (ICI). Pages 217-243 in W.S. Davis and T.P. Simon, eds. Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis, Boca Raton, FL.
- Fish Inventory Stream Survey. 2001. Provincial Fish Inventory Stream Survey Database. BC Fisheries. (www.bcfisheries.gov.bc.ca/fishinv).
- Fore, L.S., J.R. Karr and L.L. Conquest. 2000. The effect of fixed-count subsampling on macroinvertebrate biomonitoring in small streams. *Freshwater Biology* 44: 355-371.
- Fore, L.S., J.R. Karr, and R.W. Wisseman. 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. J.N. Am. Benthol. Soc., 15(2): 212-231.
- Johnston, N.T., and P.A. Slaney. 1996. Fish Habitat Assessment Procedures. Watershed Restoration Technical Circular No. 8 (revised April 1996).
- Karr, J.R. and E.W. Chu. 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press, Washington, DC.
- Karr, J.R. and P.R. Yant, K.D. Fausch, and I.J. Schlosser. 1987. Spatial and temporal variability of the index of biological integrity in three Midwestern streams. *Trans. Am. Fish. Soc.* 116: 1-11.
- Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6(6): 21-27.
- Kerans, B.L. and J.R. Karr. 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee valley. *Ecological Applications* 4(4): 768 785.
- Kleindl, W.J. 1995. A benthic index of biotic integrity for Puget Sound lowland streams, Washington, USA. M. Sc. Thesis, University of Washington, Seattle.

- Lenat, D.R. and V.H. Resh. 2001. Taxonomy and stream ecology The benefits of genus- and specieslevel identifications. J. N. Am. Benthol. Soc. 20(2):287-298.
- Major, E.B., B.K. Jessup, A Prussian, and D. Rinella. 2001. Alaska Stream Condition Index: Biological Index Development for Cook Inlet 1997 – 2000 Summary. Prepared for the Alaska Department of Environmental Conservation, Anchorage, AK.
- Maxted, J.R., M.T. Barbour, J. Gerritsen, V. Poretti, N. Primrose, A. Silvia, D. Penrose, and R. Renfrow. 2000. Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. J.N. Am. Benthol. Soc., 19(1): 128-144.
- Major, E.B. and M.T. Barbour. 1997. Standard Operating Procedures for the Alaska Stream Condition Index: A Modification of the U.S. EPA Rapid Bioassessment Protocols. Prepared for the Alaska Department of Environmental Conservation, Anchorage, Alaska.
- Merritt, R.W. and K.W. Cummins. 1996. An Introduction to the Aquatic Insects of North America, Third Edition. Kendall Hunt Publishing Company, Iowa.
- Resh et al. 1996. Macroinvertebrates as Biotic Indicators of Environmental Quality. Pages 647-667 in F.R. Hauer and G.A. Lamberti, eds. *Methods in Stream Ecology*. Academic Press, San Diego, California.
- Richards, C., L. B. Johnson, and G. E. Host. 1996. Landscape-scale influences on stream habitats and biota. Can. J. Fish. Aquat. Sci. 53(Suppl. 1): 295-311.
- Rysavy, S. 2000a. Calibration of a Multimetric Benthic Invertebrate Index of Biological Integrity for the Upper Bulkley Watershed: A Tool for Assessing & Monitoring Stream Condition. Prepared for Community Futures Development Corporation of Nadina, Houston, BC.
- Rysavy, S. 2000b. Calibration of a Multimetric Benthic Invertebrate Index of Biological Integrity for the Kispiox River Watershed: A Tool for Assessing & Monitoring Stream Condition. Prepared for the Kispiox Forest District Small Business Program, Hazelton, BC.
- Salmonweb. 2001. Salmonweb Community Based Monitoring for Biological Integrity of Streams (www.salmonweb.org). Revised Jan. 2001.
- Tamblyn, G. and B. Donas. 2001. Healthy Watersheds, Healthy Communities: Bulkley-Morice Salmonid Preservation Group Draft Strategic Plan – Phase 1. Review Draft. Houston, BC.
- USEPA. 2000. Bioassessment and Biocriteria: Steps in Developing a Bioassessment and Biocriteria Program. (www.epa.gov/ost/biocriteri/programs/steps1.html). Revised July 30, 2000.

Wisseman, R. 1997. BENTHOS Version 1.0. Aquatic Biology Associates, Inc. Corvallis, OR.

Zweig, L.D. and C.F. Rabeni. 2001. Biomonitoring for deposited sediment using benthic invertebrates: a test on 4 Missouri streams. J. N. Am. Benthol. Soc. 20(4): 643-657.

Bio Logic Consulting

Stream Name:		EMS:
Site Description:		1
Date:	Time:	Field Crew:
Comments:		·····
Air Temp: °C	Water Temp: °C	1
Weather Conditions: Now: storm (heavy rain) rain (steady rain) showers (intermittent) overcast clear/ sunny Has there been a heavy rain in the p	ast 7 days? Y N	' sunny
Sample Site Location Map (Draw a length of channel assessed)	diagram of the site and indicate th	e areas sampled, and estimate the
Record Time of Collection for each Sample 1: Sample 2		
Bed Characteristics Extensive areas of scour Large extensive sediment wedg Extensive riffle zones Channel Pattern Multiple channels (braiding) Banks	Limited pool frequency	vegetated) bar bars y and extent
 Eroding banks Large Woody Debris Most LWD parallel to banks 	 Isolated sidechannels of Recently formed LWD 	

e----

•----

•----

......

•••• •

• ---

-

-

-

۰ •

.

Riparian Vegetation Check off the dominant vegetation type: Unvegetated (much bare mineral soil is visible) Coniferous Forest	Shrub / Herb Mixed Conifer - Deciduous Forest
Connerous Porest	
Record the dominant species present:	
Record the Structural Stage of the dominant vegetation Non-vegetated or initial stage following disturba shrub / herb stage, less than 10% tree cover pole-sapling stage, with trees overtopping the sh young forest (30- 80 years) - forest canopy is diffind mature forest - well developed understory	nce, with less than 5% cover rub layer, usually less than 15-20 years old
Canopy Closure (proportion of the surface area of th 0 - 20% covered 20 - 40% covered 70 - 90% covered >90% covered	e stream covered by the projecting riparian canopy) 40 - 70% covered
Stream Characterization Glacial Clear Stained Other	Gradient (please estimate % gradient beside box) Steep Moderate Low
Logging Mining Co	ricultural Residential nmercial / Industrial Other
Local Watershed Erosion Heavy Moderate None	Local Watershed NPS Pollution Obvious sources Comments: Some potential Sources No evidence
Stream Parameters (Record 3 measurements) Stream Wetted Width: m m Stream Wetted Depth: m m m	Stream Bankfull Width:mmm Stream Bankfull Depth:mmm
	ts that occupy more than 50% of the wetted width
of the main channel) Pools Glides Riffles	Cascades Other
Sediment / Substrate <u>Odors</u> Sewage Petroleum Anaerobic	Chemical None Other
Oils Slight Moderate	Profuse
Bed MaterialSubstrate TypeDiameterSands, Silts, Clays & fine< 2mm	% composition in reach (=100%)
Organic materials Gravels 2 - 64 mm	
Cobbles64 - 256 mm	
Boulder > 256 mm	
Bedrock > 4000 mm	

••••

.

- -~ --

.. ..

•-- •

.....

----....

. ...

- - 4

-.. - ---

<u>Cover = %</u> (% cover is the percent of the wetted surface area that is covered by woody debris, boulders, cutbanks, deep pools, overhanging vegetation (within 1 m of water surface) or instream vegetation)

Alaska Stream Condition Index (ASCI) Habitat Assessment Field Data Sheet

Major, E.B. and M.T. Barbour. 1997. Standard Operating Procedures for the Alaska Stream Condition Index: A Modification of the U.S. EPA Rapid Bioassessment Protocols. Prepared for Alaska Department of Environmental Conservation, Anchorage, Alaska.

Site Name:	Date/Time:	
Sampling Team:	Comments	

Habitat Parameter		Categ		
	Optimal	Suboptimal	Marginal	Poor
1. Epifaunal Substrate / Available Cover	Greater than 70% of substrate favorable for epifaunal colonization, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (ie, logs/snags that are not new fall and not transient	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale)	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides substantial niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
3. Velocity-Depth Combinations	All four velocity-depth combinations present (slow-deep, slow- shallow, fast-deep, fast- shallow)	Only 3 of the 4 combinations present (if fast-shallow is missing, score lower than if missing other combinations)	Only 2 of the 4 habitat combinations present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity-depth combination (usually slow-deep).
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% (<20% for low gradient streams) of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% (20- 50% for low-gradient) of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% for low-gradient) of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more that 50% (80% for low- gradient) of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Habitat Parameter		Categor		
	Optimal	Suboptimal	Marginal	Poor
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, ie, dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; ove 80% of stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
7. Channel Sinuousity	Occurrence of riffles (or bends) relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important. All 4 velocity-depth	Occurrence of riffles (or bends) infrequent; distance between riffles divided by the width of the stream is between 7 to 15. Only 3 of 4 velocity-depth pattens present (ie, slow-deep, slow-shallow, fast-deep, fast- shallow).	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles (or bends) divided by the width of the stream is between 15 to 25. Only 2 velocity-depth patterns present; usually lacking deep	Generally all flat wate or shallow riffles (or bends); poor habitat; distance between riffles divided by the width of the stream is a ratio of >25. Dominated by one velocity-depth pattern
	patterns present.		areas.	
SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
8. Bank Stability (score each bank) Note: determine left or right side by facing downstream	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion, mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many erode areas; 'raw' areas frequent along straigh sections and bends; obvious bank sloughing; 60 – 100% of bank has erosional scars.
SCORE (LB)	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
SCORE (RB)	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 (
9. Bank Vegetative Protection (score each bank)	More than 90% of the streambank & immediate riparian zone surfaces covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the stream- bank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble heigh
SCORE (LB)	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 (
SCORE (RB)	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (ie parking, roadbeds, clearcuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zon <6 meters; little or no riparian vegetation du to human activities.
SCORE (LB)	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
SCORE (RB)	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1

×

-

-

-

L.,

Figure 1: Barren Creek

1

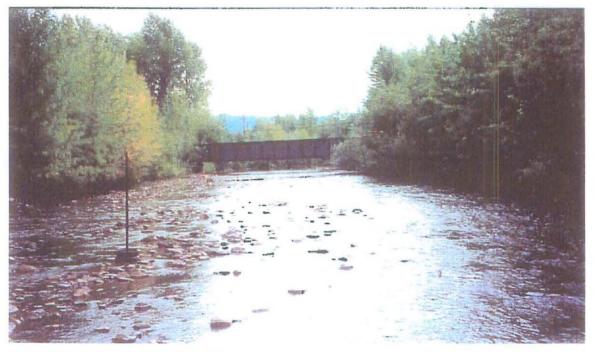


Figure 2: Buck Creek at Houston Mall

Figure 3: Byman Creek

Figure 4: Cesford Creek at Topley

Bio Logic Consulting

Figure 5: Crow Creek

Figure 6: Deep Creek downstream

Bio Logic Consulting

J

Figure 7: Foxy at Maxan

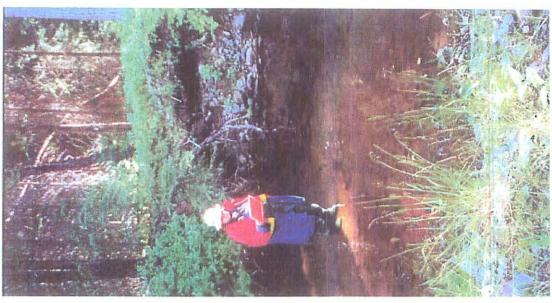
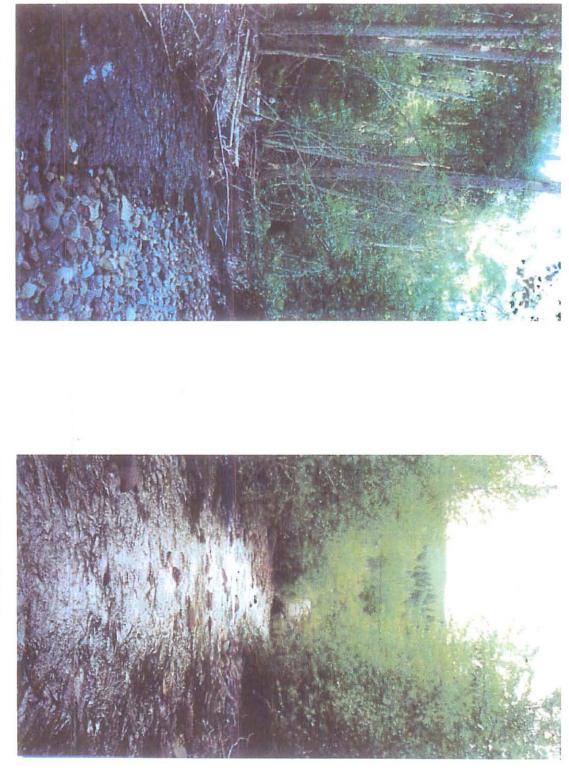



Figure 8: Foxy at Maxan, sediment deposition

Bio Logic Consulting

P

Figure 10: McQuarrie Creek

Figure 11: Richfield Creek at CN tracks

Figure 12: Richfield Creek above highway

Bio Logic Consulting

1

				Dee	p Ustr	mag	1 1	Deep d	. 1	Ric	hfield 🧔	D CN	Rich	field at) hwv		Barren	. 1	Bu	:k @ N	laii
				1	2	3		2	3	1	2	3	1	2	3	1	2	3	1	2	3
Class	Order	Family	Genus	-		-		- E24520			E23864	-		E22863	1	Ē	23862	6	E	23862	4
<u>معافلات في مراجع من م</u>	Collembola	•	-					7	4	4	2	2	2	2	6	10	17				
	Collembola	Sminthuridae	-												1						
	Beetles																				
Insecta	Coleoptera	•	-	l																	
Insecta	Coleoptera	Curculionidae	-	i i																	
Insecta	Coleoptera	Dytiscidiae	-																		
Insecta	Coleoptera	Dytiscidiae	Hydaticus?																		
Insecta	Coleoptera	Elmidae	•	6	2	6			15	4	2	5	2	1		12	5	9	70	17	26
Insecta	Coleoptera	Elmidae	Cleptelmis																		
Insecta	Coleoptera	Elmidae	Heterlimnius																}		•
Insecta	Coleoptera	Elmidae	Lara																		
Insecta	Coleoptera	Elmidae	Narpus				l	2										2			1
Insecta	Coleoptera	Elmidae	Optioservus																		
Insecta	Coleoptera	Elmidae	Zaitzevia						8					1		1		2			
Insecta	Coleoptera	Gyrinidae?														1]		
Insecta	Coleoptera	Haliplidae	Brychius	i i												ł					
Insecta	Coleoptera	Halipidae	Haliplus									5	ł								
Insecta	Coleoptera	Hydrophilidae	•				1						1								
Insecta	Coleoptera	Hydrophilidae	Lacoblus																		
Insecta	Coleoptera	Noteridae	•																		
Insecta	Coleoptera	Staphylinidae	-													1			Î		
	True Files															Į					
Insecta	Diptera	-	•										2			ł					1
Insecta	Diptera	Athericidae	-																		
Insecta	Diptera	Athericidae	Atherix	l															11		14
Insecta	Diptera	Blephariceridae	•										•								
Insecta	Diptera	Ceratopogonidae	•							8			3						1		
Insecta	Diptera	Ceratopogonidae	Bezzia	4	2	12	1	1	5	-	4	5		4	4		2	9		2	
Insecta	Diptera	Ceratopogonidae	Ceratopogoninae	1 '	-				Ţ		•	•					-	•			
Insecta	Diptera	Ceratopogonidae	Forcipomyiinae										ł								
Insecta	Diptera	Chironomidae	-	218	3	373	2893	1988	2024	656	391	318	239	340	282	42	59	678	1335	1353	2034
Insecta	Diptera	Culicidae	-		•	••••					•••										
Insecta	Diptera	Dbddae	-	ł									Į						Į		
Insecta	Diptera	Dbddae	Dbca																l		
Insecta	Diptera	Dividae	Dixella	I												1			1		
Insecta	Diptera	Dixidae	Meringodixa				1						1			1]		
Insecta	Diptera	Dolichopodidae														ſ			1		
Insecta	Diptera	Deuterophiebiidae	Deuterophlebia	Į									l			Į			[
Insecta	Diptera	Empididae	-	7					8	1	12		3					37			8
Insecta	Diptera	Empldidae	Chelifera				31	33	70	·		1							52	20	19
Insecta	Diptera	Empididae	Clinocera	l								•	(

				Dee	p Ustr	eam	j (Deep d	8	Rich	fleid 🧶	CN	Rich	fioid at	hwy		Barren		Buc	ck 🕑 N	lall
				1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Class	Order	Family	Genus		E24520	1	E	24520	0	E	23864	6	E	22863	1	1	23862	6	E	23862	4
Insecta	Diptera	Empididae	Hemerodromia		2	8			1						1						2
Insecta	Diptera	Empididae	Oreogeton						1												
Insecta	Diptera	Empldidae	Wiedemannia																		
Insecta	Diptera	Ephydridae	-	1																	
Insecta	Diptera	Muscidae	-																		
Insecta	Diptera	Pelecorhynchidae	Glutops												i						
Insecta	Diptera	Phoridae	-	1																	
Insecta	Diptera	Psychodidae	-																4		
Insecta	Diptera	Psychodidae	Maruina	1									ł								
Insecta	Diptera	Psychodidae	Pericoma	175	72	213	363	127	196	6	6	21	47	24	53	60	91	398		1	•
Insecta	Diptera	Psychodidae	Psychoda	1									1								
Insecta	Diptera	Sciomyzidae	-																		
Insecta	Diptera	Simuliidae	-	1	3			2		7			6						10		
Insecta	Diptera	Simuliidae	Cnephia	1			1						ļ								
Insecta	Diptera	Simuliidae	Simulium	16		10	155		46		10	41		22	48			7			
Insecta	Diptera	Simuliidae	Prosimulium																		
Insecta	Diptera	Stratiomyidae	-	1																	
Insecta	Diptera	Tabanidae	-																		
Insecta	Diptera	Tabanidae	Tabanus																		
Insecta	Diptera	Tanyderidae	-	1																1	
Insecta	Diptera	Tipulidae	-			4			17						4			33	13	6	
Insecta	Diptera	Tipulidae	Antocha						2											3	24
Insecta	Diptera	Tipulidae	Dicronata	5	2	8	3		3	14			7	13	3	13		34	12		
Insecta	Diptera	Tipulidae	Hexatoma	1 1	1		3		4	19	5	17		4	1	3	4	5	3	8	7
Insecta	Diptera	Tipulidae	Limnophila	1																	
Insecta	Diptera	Tipulidae	Molophilus	1																	
Insecta	Diptera	Tipulidae	Ormosia																		
Insecta	Diptera	Tipulidae	Rhabdomastix	1			Ì						l l								
Insecta	Diptera	Tipulidae	Tipula		2	11					1							5		2	
	Mayfiles		· •																		
Insecta	Ephemeroptera	•	-	122			1340			1181			36			8			542		
Insecta	Ephemeroptera	Ameletidae	-																		
Insecta	Ephemeroptera	Ameletidae	Ameletus	1			8	8	6	12		26	3		2	6	13	6	2	1	1
Insecta	Ephemeroptera	Baetidae	•					-													
Insecta	Ephemeroptera	Baetidae	Acentrella	1			l						l								
Insecta	Ephemeroptera	Baetidae	Baetis	650	335	772	159	89	278	47	60	133	38	73	66	21	117	209	80	356	88
Insecta	Ephemeroptera	Baetidae	Centroptilum																		
nsecta	Ephemeroptera	Baetidae	Diphetor																I		
nsecta	Ephemeroptera	Ephemerellidae		18	35	53	11	61	126	8	69	27	3	7	3				186	519	130
Insecta	Ephemeroptera	Ephemerellidae	Attenella					2.						-	-						
Insecta	Ephemeroptera	Ephemerellidae	Caudatella	1]			1			1								

				Dee	p Ustr	eam	i 1	Deep d		Rici	hfield @	CN	Rich	field at	o hwy	1	Barrer	.	Bu	ck @ N	laii
				1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Class	Order	Family	Genus		E24520	1		E24620	0		E23864	5	1	E22863	1		E23862	6	E	23862	4
Insecta	Ephemeroptera	Ephemerellidae	Drunella	25	22	28	63	52	92	95	44	60	47	44	30	25	13	14	8	3	18
Insecta	Ephemeroptera	Ephemerellidae	Ephemerella	ł			ł								1	1					
Insecta	Ephemeroptera	Ephemerellidae	Serratella		1	2	1	1									1				
Insecta	Ephemeroptera	Ephemerellidae	Timpanoga				ł														
Insecta	Ephemeroptera	Heptageniidae	-	21	20	133	24	37	171	54	1002	457	6	52	46	44	112	275	20	404	172
Insecta	Ephemeroptera	Heptageniidae	Cinygmula	1									1	2		1	3				
Insecta	Ephemeroptera	Heptageniidae	Epeorus	49	27	45	22	4	3	4	10	15	1	3	3	8	10	15			2
Insecta	Ephemeroptera	Heptageniidae	Heptagenia																		
Insecta	Ephemeroptera	Heptageniidae	tronodes				[
Insecta	Ephemeroptera	Heptageniidae	Nbæ													1					•
Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	11	81	112	314	30	84	110	71	122	35	35	36	31	44	205	19	17	1
Insecta	Ephemeroptera	Leptophlebiidae	-	5		4	30		20	8		1			4	1		69	5		8
Insecta	Ephemeroptera	Leptophiebiidae	Paraleptophiebia		44	22		14	47		7	47				ł	12	7		122	2
Insecta	Ephemeroptera Alderfiles	Tricorythidae	Tricorythodes															i			
Insecta	Megaloptera Stonefiles	Sialidae	Sialis																		
Insecta	Piecoptera	-	-	67	24	129	58		30	18	37	28	22	24	5	51	88	653	152	44	83
Insecta	Piecoptera	Capnidae	-	14	17	46	29	10		9	11	14	8	53	3	4	4	50		1	
Insecta	Piecoptera	Chloroperiidae	-		4	14		3	l	1		7	12	4	11	64	96	30			4
Insecta	Plecoptera	Chloropertidae	Kathroperla	ł	-	19		_	1						1			3			
Insecta	Plecoptera	Chicroperiidae	Isoperia			•••												-			
Insecta	Piecoptera	Chloroperlidae	Paraperta																		
Insecta	Plecoptera	Chloroperlidae	Neaviperla ?																		
Insecta	Plecoptera	Chloroperlidae	Plumiperta													ł					
Insecta	Piecoptera	Chloroperiidae	Suwalla	ł					1							1					
Insecta	Piecoptera	Chloroperiidae	Sweltsa	408	22	6	81	15	28	206	209	142	19	12	16	1 11	62	107	29	33	12
Insecta	Piecoptera	Leuctridae	-			•															
Insecta	Plecoptera	Nemouridae	-							2						14					
Insecta	Plecoptera	Nemouridae	Amphinemura							-											
Insecta	Piecoptera	Nemouridae	Malenka																		
Insecta	Plecoptera	Nemouridae	Zapada	81	13	86	172	39	106	6	2	31		4	8	18	182	235	109	4	4
insecta	Piecoptera	Periidae	-		10					Ŭ	-	1		-	•				4	•	•
Insecta	Plecoptera	Peridae	Calineuria									•									
Insecta	Piecoptera	Peridae	Doroneuria												1						
Insecta	Plecoptera	Peridae	Hesperoperta				5	1	1						•	1					
Insecta	Piecoptera	Periodidae	-			8	Ă	•	1	1			1			1		1		56	
Insecta	Plecoptera	Periodidae	Cuttus					2				l		1		1	3	•			
nsecta	Piecoptera	Periodidae	Isoperia					-						•		ł	J				
Insecta	Piecoptera	Periodidae	Megarcys													1	2				
	•								E							1	4		12	6	R
Insecta	Piecoptera	Periodidae	Skwala	I					5				I			ł			13	Ö	

			1	Dee	p Ustr	eam	0)eep d	•	Rici	ifield (CN	Rich	field ab	hwy	1	Barren		Bu	:k @ N	lati
				1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Class	Order	Family	Genus	E	24520	1	E	24520	0		23864	6	E	E22863	t	E	23862	8	E	23862	A
Insecta	Plecoptera	Pteronarcyldae	•				1		1					_							
Insecta	Plecoptera	Pteronarcyldae	Pteronarcella							1	3	3							12	10	5
insecta	Piecoptera	Pteronarcyidae	Pteronarcys													ļ					
Insecta	Plecoptera	Taeniopterygidae	-	188		36	86		1	34		1	4	1		169		42	5		
Insecta	Plecoptera	Taeniopterygidae	Taenionema																		
	Caddisfiles						l														
Insecta	Trichoptera	-	-	18		8	265		36	57	48	12	6	4	9		16	7	173		26
Insecta	Trichoptera	Apataniinae	Apatania																		2
Insecta	Trichoptera	Brachycentridae	-				1		4				1						6		
Insecta	Trichoptera	Brachycentridae	Brachycentrus			1	ł	4							1					2	-1
Insecta	Trichoptera	Brachycentridae	Micrasema																		
Insecta	Trichoptera	Glossosomatidae	-		38									1		ł					
Insecta	Trichoptera	Giossosomatidae	Glossosoma	2	2	128	1	1	10		1						2	6	24	88	107
Insecta	Trichoptera	Giossosomatidae	Protoptila				1														
Insecta	Trichoptera	Hydropsychidae	•	7		2	140	24	65	86	33	115	4		2	2			104	72	60
Insecta	Trichoptera	Hydropsychidae	Arctopsyche		3	14	9	5	11		3	13		2	4		2	6	37	26	5
Insecta	Trichoptera	Hydropsychidae	Ceratopsyche																		
Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche				ł														
Insecta	Trichoptera	Hydropsychidae	Hydropsyche		1		l i	1	16			49			3			1		24	19
Insecta	Trichoptera	Hydropsychidae	Parapsyche				ł									1					
insecta	Trichoptera	Hydroptilidae	-				Į.						1						117		6
Insecta	Trichoptera	Hydroptilidae	Agraylea				}					-								136	
Insecta	Trichoptera	Hydroptilidae	Hydroptila																		370
Insecta	Trichoptera	Lepidostomatidae	Lepidostoma																		
Insecta	Trichoptera	Limnephilidae	•				I .				6								1	1	1
Insecta	Trichoptera	Limnephilidae	Dicosmoecus																		
Insecta	Trichoptera	Limnephilidae	Eccosmoecus				1														
Insecta	Trichoptera	Limnephilidae	Ecclisocosmoecus																		
Insecta	Trichoptera	Limnephilidae	Eccilsomyia																		
insecta	Trichoptera	Limnephilidae	Hydatophylax																		
Insecta	Trichoptera	Limnephilidae	Onocosmoecus				ŀ														
Insecta	Trichoptera	Limnephilidae	Psychoglypha				1									1					
Insecta	Trichoptera	Philopotamidae	Wormaldia																		
Insecta	Trichoptera	Polycentropodidae	Polycentropus				1														
Insecta	Trichoptera	Rhyacophilidae	•				ŀ														
Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	23	17	61	3	2	4		1	5	2	2	4	3	9	22	9		2
Insecta	Trichoptera	Uenoldea	•																		
Insecta	Trichoptera	Vencidea	Neophylax]					
Insecta	Trichoptera	Vencidea	Neothremma													ł					
Insecta	Thysanoptera	-	-									I									

				Doe	p Ustre	m	1	Deep d		Rici	nfield (B CN	Rich	ield ab	hwy		Barren	•	Bu	ck @N	Azil
				1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Class	Order	Family	Genus	E	24520	1		E24520	Ю	1	E23864	5	E	228631	1	1	E23862	6	E	23862	4
Insecta	Hymenoptera	-	-				2		1	8		2	2		8			4			
Insecta	Hemiptera	-	•																		
Insecta	Hemiptera	Aphidid ae	-	2			2			6	2		5	2		13					
Insecta	Hemiptera	Corbidae	*																		
Insecta	Lepidoptera	-	-																		1
Arachnoida	Hydracarina	-	-	13	43	73	68	70	402	42	87	98	28	3	84	2	80	126	303	343	363
Crustacea	Amphipoda	-	-			1															
Crustacea	Cladocera	Chydoridae	-											1	1						
Crustacea	Decapoda	•	-																		•
Crustacea	Copepoda	-	-	1																	
Crustacea	Harpacticoida	-	-																		
Crustacea	Cyclopoida											4		2	4						
Crustacea	Isopoda	-	-																		
Crustacea	Mysis	-	-																		
Crustacea	Ostracoda	-	-		36		24	8	72	4					8			49	16		4
Hirudinea	-	-	-																		
Oligochaeta	-	-	-	9			7		1	4		4	8	1	2			1	84		13
Hydrazoa	-	-	-	ł					1				-								
Gastropoda	-	-	-																		
Pelecypoda		-	-																	•	
Pelecypoda		Sphaeriidae	-															1			
Pelecypoda		Unionacea	-																		
-	-	-	-	18		18	23		19	5		2	42		1			1	17		45
Turbellaria	•	-	-	2	5	8	3		5	4	3	21	2					1		1	

					Crow		Fo	ky 🤁 Ma	xan	(Byman d	B	Cesf	ord @ T	opley	Mc	Quarrie	d/s
				1*	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Class	Order	Family	Genus		E238638			E238636	<u> </u>		E238629	1		E238636	s		E238627	<u>/</u>
	Collembola	•	-			1			4	1		2	19	1	5	2		11
	Collembola	Sminthuridae	-		4	1									4			
	Beetles																	
Insecta	Coleoptera	•	-				50			2			1			4		
Insecta	Coleoptera	Curculionidae	-															
Insecta	Coleoptera	Dytiscidiae	-				ł											
Insecta	Coleoptera	Dytiscidiae	Hydaticus?															
Insecta	Coleoptera	Elmidae	-	124		82		40	43		1	2	9	6	7			
Insecta	Coleoptera	Elmidae	Cleptelmis				ł											
Insecta	Coleoptera	Elmidae	Heterlimnius				1								-			•
Insecta	Coleoptera	Eimidae	Lara]											
Insecta	Coleoptera	Elmidae	Narpus			5									1			
Insecta	Coleoptera	Elmidae	Optioservus															
Insecta	Coleoptera	Elmidae	Zaitzevia		29	4			4								15	
Insecta	Coleoptera	Gyrinidae?																
Insecta	Coleoptera	Halipiidae	Brychius															
Insecta	Coleoptera	Halipildae	Haliptus				1											
Insecta	Coleoptera	Hydrophilidae	•				l											
Insecta	Coleoptera	Hydrophilidae	Lacobius															
Insecta	Coleoptera	Noteridae	-										l i		1			
Insecta	Coleoptera	Staphylinidae	-										-					
	True Files						1											
Insecta	Diptera	•	-									1						
Insecta	Diptera	Athericidae	-				ł					·	l					
Insecta	Diptera	Athericidae	Atherix				Į					2						
Insecta	Diptera	Blephariceridae	-				l					-						
Insecta	Diptera	Ceratopogonidae	-	3			36			21			3					
Insecta	Diptera	Ceratopogonidae	Bezzia	Ĩ	8	3		62	32	- '	32	11	ľ			15	15	
Insecta	Diptera	Ceratopogonidae	Ceratopogoninae		Ŭ	5	[VE			JE							
Insecta	Diptera	Ceratopogonidae	Forcipomylinae				1											
Insecta	Diptera	Chironomidae	-	212	172	583	2144	2550	1177	390	624	574	1462	5863	2316	1181	1544	1
Insecta	Diptera	Culicidae	_		112	~~~		2000			UL4	0.4		0000				•
Insecta	Diptera	Dixidae	-				ł						ł					
	•	Dixidae	Dica				l]			
Insecta	Diptera Diptora	Dbidae					ł						1					
Insecta	Diptera	Doddae	Dixella Mortmondhra				l						1					
Insecta	Diptera		Meringodixa				I						Ī					
Insecta	Diptera	Dolichopodidae	Deuteenstlahle				ł						l					
Insecta	Diptera	Deuterophiebiidae	Deuterophlebia				Į			1								
Insecta	Diptera	Empididae	-					-	1							1		
Insecta	Diptera	Empididae	Chelifera			4	2	3	1	1		1					4	
Insecta	Diptera	Empididae	Clinocera	l			l			ł			I			l		

 $(\mathbf{t} + \mathbf{t} +$

					Crow	1	Fo	ry 🔁 Mai		E	Syman di		Cesf	ord 🔁 To	opley	Mc	Quarrie (Va
			_	1"	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Class	Order	Family	Genus		E238638			E238636	_		E238629			E238636			E238627	
Insecta	Diptera	Empididae	Hemerodromia	l								8			5			1
Insecta	Diptera	Empldidae	Oreogeton	1					1	11								
Insecta	Diptera	Empididae	Wiedemannia	ł														
Insecta	Diptera	Ephydridae	-	ţ.														
Insecta	Diptera	Muscidae	-	1					1									
Insecta	Diptera	Pelecorhynchidae	Glutops	1														
Insecta	Diptera	Phoridae	-	1														
Insecta	Diptera	Psychodidae	-	i i														
Insecta	Diptera	Psychodidae	Manina	l														
Insecta	Diptera	Psychodidae	Pericoma	7	32	71	369	493	212	74	140	117	80	35	151	46	23	·24
Insecta	Diptera	Psychodidae	Psychoda	1														
Insecta	Diptera	Sciomyzidae	•	1														
Insecta	Diptera	Simuliidae	-	2				64	2	2	18	5			4	10		12
Insecta	Diptera	Simuliidae	Cn o phia	1														
Insecta	Diptera	Simuliidae	Simulium	Į	92	78	1079	7	101		3						19	25
Insecta	Diptera	Simulidae	Prosimulium															
Insecta	Diptera	Stratiomyidae	-	l														
Insecta	Diptera	Tabanidae	-	ſ														
Insecta	Diptera	Tabanidae	Tabanus	I											1			
Insecta	Diptera	Tanyderidae	-	1				1			1							
Insecta	Diptera	Tipulidae	-	1	12				7	14		1		4	3			57
Insecta	Diptera	Tiputidae	Antocha	1								12			_		4	9
Insecta	Diptera	Tiputidae	Dicronata	6		4	3	12				1	12		5	4	7	1
Insecta	Diptera	Tipulidae	Hexatoma	3		•	4			2	12	7			-	2		1
Insecta	Diptera	Tipulidae	Limnophila	ľ			, i			-						-		-
Insecta	Diptera	Tipulidae	Molophilus	[
Insecta	Diptera	Tipulidae	Ormosia	1														
insecta	Diptera	Tipulidae	Rhabdomastix	[
insecta	Diptera	Tipulidae	Tipula	ł														
n Becce	Mayfiles	Tipukado	Tithaa	1														
Insecta	Ephemeroptera			245			245			1045			197	262		434		
Insecta	Ephemeroptera	- Ameletidae	-	245			240			1045			187	ZUZ		-3-		
Insecta	Ephemeroptera	Ameletidae	- Ameletus			1	13	8		23	2	11	2	3	11	1		2
	Ephemeroptera	Baetidae	Ausieus	4		1	13	0		23	2		2	3		'		2
Insecta	• •		- Aonaine ile	1														
Insecta	Ephemeroptera	Baetidae	Acentrella Realia			400	400	4470		05		000		40		192	400	222
Insecta	Ephemeroptera	Baetidae Baetidae	Baetis	165	679	496	409	1478	868	65	673	228	46	19	49	104	192	226
Insecta	Ephemeroptera	Baetidae Baetidae	Centroptilum			I						l						
Insecta	Ephemeroptera	Baetidae Enhamore/lideo	Diphetor	1				400	6 7		040			~~				~~
Insecta	Ephemeroptera	Ephemerellidae	A.M	ł	200	40	84	135	87		612	144	19	20	43	69	232	228
Insecta	Ephemeroptera	Ephemerellidae	Attenella	I														
Insecta	Ephemeroptera	Ephemereliidae	Caudatella	1						1						J		

				l	Crow		Fo	ky 🕲 Max	kan	[Byman d	8	Cest	ford @ To	opley	Mc	Quarrie	d/s
				1*	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Class	Order	Family	Genus		E238638			E238638			E23862	•		E238635			E238627	
Insecta	Ephemeroptera	Ephemereliidae	Drunella	81	144	137	192	134	88	67	47	51	10	7	12	11	5	5
Insecta	Ephemeroptera	Ephemerellidae	Ephemerelia															
Insecta	Ephemeroptera	Ephemerellidae	Serratella		4	2												
Insecta	Ephemeroptera	Ephemerellidae	Timpanoga															
Insecta	Ephemeroptera	Heptageniidae	-	2	246	575	8	82	231	44	1257	1130	20	4	137	88	208	561
Insecta	Ephemeroptera	Heptageniidae	Cinygmula			1	11	7	7]			8	7	7		9	
Insecta	Ephemeroptera	Heptageniidae	Epeorus	31	85	55	8	15	8	3			22	12	34	1		
Insecta	Ephemeroptera	Heptageniidae	Heptagenia															
Insecta	Ephemeroptera	Heptageniidae	Ironodes															
Insecta	Ephemeroptera	Heptageniidae	Nixe						:	ł								·
Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	59	70	76	17		25	108	218	171	7	2	i	236	174	118
Insecta	Ephemeroptera	Leptophiebiidae	-							2		5				3		2
Insecta	Ephemeroptera	Leptophlebiidae	Paraleptophlebia	2								23			1		27	16
Insecta	Ephemeroptera Alderfiles	Tricorythidae	Tricorythodes		11	8		12										
Insecta	Megaloptera Stonefiles	Sialidae	Sialis															
Insecta	Plecoptera	-	-	40	48	37	61	132	48	50	247	56	32	36	50	16	26	39
Insecta	Plecoptera	Capnidae	-	11	16	7	2	8	9	28	10	17				39	48	69
Insecta	Piecoptera	Chloroperiidae	-	20	15	60	3	32	28	11		19			15	11	18	14
Insecta	Piecoptera	Chioroperiidae	Kathroperia															
Insecta	Plecoptera	Chloroperlidae	Isoperla	1			1			1								
Insecta	Piecoptera	Chloroperlidae	Paraperla															
Insecta	Plecoptera	Chloroperlidae	Neaviperta ?															
Insecta	Plecoptera	Chloroperlidae	Ptumiperta							ł								
Insecta	Plecoptera	Chioroperiidae	Suwallia				l			l		i						
Insecta	Piecoptera	Chloroperiidae	Sweltsa	116	8 5	35	39	54	49	92	256	59	74	102	51	110	86	48
insecta	Plecoptera	Leuctridae	OWCLIBE		00	00	, v	•••	-10		200				•••		•••	
Insecta	Plecoptera	Nemouridae	-											4				
Insecta	Plecoptera	Nemouridae	Amphinemura	ŀ										-				
Insecta	Plecoptera	Nemouridae	Malenka												1			
insecta	Plecoptera	Nemouridae	Zapada	1	12	8	10	39	60	22	168	91	21		14	24	50	40
Insecta	Piecoptera	Periidae	-		12	0		00	2	9	100	1	2,					
Insecta	Plecoptera	Perlidae	Calineuria				ł		-	ľ		•						
Insecta	•	Periidae	Doroneuria				1				17	1						
Insecta	Plecoptera Plecoptera	Peridae	Hesperoperta				[•				1		
Insecta	Piecoptera	Periodidae		2		7				1					6	1		
Insecta	Piecoptera	Periodidae	- Cuttus	1		•	'	5			1				v	l '		
Insecta	•	Periodidae	isoperia				1	5								1		
insecta	Plecoptera Riscontoro		•		40	•			1						9	l		1
insecta	Plecoptera Plecoptera	Perlodidae Perlodidae	Megarcys Skwala		12	2]		I			4	3	8	9 1			3

			1		Crow		Fox	y 🕲 Ma	kan	E	Syman di		Cosf	ord 🕲 T	optey	Mc	Quarrie	d/s
				1"	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Class	Order	Family	Genus		E238638			E238636		1	E238629			E238636	5		E238627	
Insecta	Plecoptera	Pteronarcyidae	-				1											
Insecta	Piecoptera	Pteronarcyldae	Pteronarcella				1											
Insecta	Plecoptera	Pteronarcyidae	Pteronarcys															
Insecta	Piecoptera	Taeniopterygidae	-	5	2		6			30			79	86	4	7	5	2
Insecta	Piecoptera Caddisfiles	Taeniopterygidae	Taenionema															
Insecta	Trichoptera	•	-	24	16	17	100	168	21	72	212	424	14	2	18	11		15
Insecta	Trichoptera	Apataniinae	Apatania															
Insecta	Trichoptera	Brachycentridae	-															
Insecta	Trichoptera	Brachycentridae	Brachycentrus		2	2		3			10							•
Insecta	Trichoptera	Brachycentridae	Micrasema				ł				1							
Insecta	Trichoptera	Glossosomatidae	-				1	3			8							
Insecta	Trichoptera	Glossosomatidae	Glossosoma	3	6	23				30	5	46	58	25	48		6	
Insecta	Trichoptera	Glossosomatidae	Protoptila				l											
Insecta	Trichoptera	Hydropsychidae	-	4	3	8	26	5	15	83	264	42			5	35	57	27
nsecta	Trichoptera	Hydropsychidae	Arctopsyche		16	5			4		3	1				8	4	6
Insecta	Trichoptera	Hydropsychidae	Ceratopsyche															
insecta	Trichoptera	Hydropsychidae	Cheumatopsyche															
nsecta	Trichoptera	Hydropsychidae	Hydropsyche				l				212	51						1
nsecta	Trichoptera	Hydropsychidae	Parapsyche				1	1										
Insecta	Trichoptera	Hydroptilidae	-	1								1						
insecta	Trichoptera	Hydroptilidae	Agraylea															
nsecta	Trichoptera	Hydroptilidae	Hydroptila									2						
Insecta	Trichoptera	Lepidostomatidae	Lepidostoma				1											
nsecta	Trichoptera	Limnephilidae	-]			370	6	1						
nsecta	Trichoptera	Limnephilidae	Dicosmoecus															
nsecta	Trichoptera	Limnephilidae	Eccosmoecus				ł											
nsecta	Trichoptera	Limnephilidae	Ecclisocosmoecus				İ											
nsecta	Trichoptera	Limnephildae	Ecclisomyia															
nsecta	Trichoptera	Limnephilidae	Hydatophylax				ł											
nsecta	Trichoptera	Limnephilidae	Onocosmoecus															
nsecta	Trichoptera	Limnephilidae	Psychoglypha				ł											
nsecta	Trichoptera	Philopotamidae	Wormaldia				1											
nsecta	Trichoptera	Polycentropodidae	Polycentropus															
nsecta	Trichoptera	Rhyacophilidae	-															
nsecta	Trichoptera	Rhyacophilidae	Rhyacophila	18	51	64	32	44	166	16	3		15	12	12	2	4	7
nsecta	Trichoptera	Uenoidea		-														
nsecta	Trichoptera	Uenoidea	Neophylax				1											
nsecta	Trichoptera	Uenoidea	Neothremma															
İnsecta	Thysanoptera	-	-															

				1	Crow		Fo	xy @ Max	an Í		Byman de		Cesf	ord @ To	opley	Mc	Quarrie	d/s
				1 11	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Class	Order	Family	Genus		E238638			E238636			E238629			E238635			E238627	,
Insecta	Hymenoptera	-	-			i					_	3	19	13	21			
Insecta	Hemiptera	•	-										2					
Insecta	Hemiptera	Aphididae	-	1						1			37	23		1	5	
Insecta	Hemiptera	Corbdae	-															
Insecta	Lepidoptera	-	-													1		
Arachnoida	Hydracerina	-	-	47	26	82	97	203	247	261	111	406	38	49	151	102	174	391
Crustacea	Amphipoda	•	-															
Crustacea	Cladocera	Chydoridae	-															
Crustacea	Decapoda	-	-															
Crustacea	Copepoda	-	•															
Crustacea	Harpacticoida	-	-			1									1			
Crustacea	Cyclopoida			1											j			
Crustacea	Isopoda	-	-															
Crustacea	Mysis	-	-															
Crustacea	Ostracoda	-	-			4				1			13	80	20			
Hirudinea	-	-	-															
Oligochaeta	•	•	-	4				13		2	40	1	328	165	242	36	58	52
Hydrazoa	-	-	-															1
Gastropoda	•	-	-															
Pelecypoda		-	-															
Pelecypoda		Sphaeriidae	-															
Pelecypoda		Unionacea	-															
-	-	-	-	9		14	45		1	13		10		81		2		1
Turbellaria	-	-	-	2	3	7	6	A	6	9		17	15	6	3	5	14	4

Phylum	Class	Order	Family	Genus	CL	FFG	ТЛ	LL	%SV	н
		Collembola	-	-		CG				
		Collembola	Sminthuridae	•						
NSECTS		Beetles								
	Insecta	Coleoptera	-	-		UN				
Arthropoda	Insecta	Coleoptera	Curculionidae	-		SH				
Arthropoda	Insecta	Coleoptera	Dytiscidiae	-		PR	Т	LL	100	:
	Insecta	Coleoptera	Dytiscidiae	Hydaticus?		PR	Т			
	Insecta	Coleoptera	Elmidae	-	CL	CG		LL	100	
	Insecta	Coleoptera	Elmidae	Cleptelmis	CL	CG		LL	100	
Arthropoda	Insecta	Coleoptera	Elmidae	Heterlimnius	CL	CG		LL	100	
Arthropoda	Insecta	Coleoptera	Elmidae	Lara	CL	SH		LL	100	
Arthropoda	Insecta	Coleoptera	Elmidae	Narpus	CL	CG		LL	100	
Arthropoda	Insecta	Coleoptera	Elmidae	Optioservus	CL	SC	т	LL	100	
Arthropoda	Insecta	Coleoptera	Elmidae	Zaitzevia	CL	CG	т	LL	100	
	Insecta	Coleoptera	Gyrinidae?			PR	т	LL	100	
Arthropoda	insecta	Coleoptera	Haliplidae	Brychius	CL	MH	т	LL	100	
Arthropoda	Insecta	Coleoptera	Haliplidae	Haliplus		MH	Ť	LL	100	
Arthropoda	Insecta	Coleoptera	Hydrophilidae	-		PR	•	LL	100	
Arthropoda	Insecta	Coleoptera	Hydrophilidae	Lacobius		PR		L	100	
	Insecta	Coleoptera	Noteridae	-		PR				
	Insecta	Coleoptera	Staphylinidae	-	CL	PR				
	mooda	True Flies	Otaphyaniado		UL.					
Arthropoda	Insecta	Diptera	_	_		UN				
Arthropoda	Insecta	Diptera	Athericidae	_		PR	т			
Arthropoda	Insecta	Diptera	Athericidae	Atherix		PR	Ť			
Arthropoda	Insecta	Diptera	Blephariceridae		CL	SC	i			
Arthropoda	Insecta	Diptera	Ceratopogonidae	-	06	PR	•			
Arthropoda	Insecta	Diptera	Ceratopogonidae	- Bezzia		PR				
Arthropoda	Insecta	Diptera	Ceratopogonidae	Ceratopogoninae		PR				
Arthropoda	Insecta	Diptera	Ceratopogonidae	Forcipomylinae		PR				
•	Insecta	•	Chironomidae	roicipontyinae		UN				
Arthropoda		Diptera		-		CG	Ŧ			
Actions and a	Insecta	Diptera	Culicidae	-			Т			
Arthropoda	Insecta	Diptera	Dixidae	-		CG				
Arthropoda	Insecta	Diptera	Dixidae	Dixa		CG	-			
Arthropoda	Insecta	Diptera	Dixidae	Dixella		CG	Т			
Arthropoda	Insecta	Diptera	Dixidae	Meringodixa		CG	-			
Arthropoda	Insecta	Diptera	Dolichopodidae		•••	PR	T			
Arthropoda	Insecta	Diptera	Deuterophlebiidae	Deuterophlebia	CL	SC	1			
Arthropoda	Insecta	Diptera	Empididae	-		PR				
Arthropoda	insecta	Diptera	Empididae	Chelifera		PR				
Arthropoda	Insecta	Diptera	Empididae	Clinocera	CL	PR				
Arthropoda	Insecta	Diptera	Empididae	Hemerodromia		PR	Т			
Arthropoda	Insecta	Diptera	Empididae	Orecgeton		PR	1			
Arthropoda	Insecta	Diptera	Empididae	Wiedemannia	CL	PR				
	Insecta	Diptera	Ephydridae	-		CG	Т			
Arthropoda	Insecta	Diptera	Muscidae	-		PR	Т			
Arthropoda	Insecta	Diptera	Pelecorhynchidae	Glutops		PR	1			
Arthropoda	Insecta	Diptera	Phoridae	-		CG				
	Insecta	Diptera	Psychodidae	-		CG				
Arthropoda	Insecta	Diptera	Psychodidae	Maruina	CL	SC				
Arthropoda	Insecta	Diptera	Psychodidae	Pericoma		CG				
Arthropoda	Insecta	Diptera	Psychodidae	Psychoda		CG	Т			
Arthropoda	Insecta	Diptera	Sciomyzidae	-		PR				

. .

. .

Phylum	Class	Order	Family	Genus	CL	FFG	<u>T/I</u>	LL	%sv	HE
	Insecta	Diptera	Simuliidae	-	CL	CF				6
Arthropoda	Insecta	Diptera	Simuliidae	Cnephia		CF				
Arthropoda	Insecta	Diptera	Simuliidae	Simulium	CL	CF				6
Arthropoda	Insecta	Diptera	Simuliidae	Prosimulium	CL	CF				3
	Insecta	Diptera	Stratiomyidae	-		CG	Т			ε
	Insecta	Diptera	Tabanidae	-		PR	Т			8
	Insecta	Diptera	Tabanidae	Tabanus		PR	Т			
	Insecta	Diptera	Tanyderidae	-		UN	L			
	Insecta	Diptera	Tipulidae	-		UN				:
Arthropoda	Insecta	Diptera	Tipulidae	Antocha	CL	CG	ST			:
Arthropoda	Insecta	Diptera	Tipulidae	Dicronata		PR	ST			:
Arthropoda	Insecta	Diptera	Tipulidae	Hexatoma		PR	ST			
Arthropoda	Insecta	Diptera	Tipulidae	Limnophila		PR	T			
Arthropoda	Insecta	Diptera	Tipulidae	Molophilus		UN	Ì			
· · · · · · · · · · · · · · · · · · ·	Insecta	Diptera	Tipulidae	Ormosia		CG	-			:
	Insecta	Diptera	Tipulidae	Rhabdomastix		UN	1			
Arthropoda	Insecta	Diptera	Tipulidae	Tipula		OM	•			
raanopoda	mocota	Mayfiles	Tipanado	ripula		0				
	Insecta	Ephemeroptera	-			UN				
	Insecta	Ephemeroptera	Ameletidae	_		CG				
	Insecta	Ephemeroptera	Ameletidae	Ameletus		CG				
Arthropoda	Insecta	Ephemeroptera	Baetidae	Anteietus		CG				
Arthropoda	insecta	Ephemeroptera	Baetidae	- Acentrella		CG				
Arthropoda	insecta		Baetidae	Baetis		CG				
•		Ephemeroptera	Baetidae			CG	т			
Arthropoda	Insecta	Ephemeroptera	Baetidae	Centroptilum		CG	1			
Arthropoda	Insecta	Ephemeroptera		Diphetor	~	CG				
	Insecta	Ephemeroptera	Ephemerellidae	Attenalla	CL					
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Attenella	CL	CG	,			
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Caudatella	CL	CG	I			
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Druneila	CL	CG				
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Ephemerella	CL	CG				
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Serratella	CL	CG				
Arthropoda	Insecta	Ephemeroptera	Ephemerellidae	Timpanoga	CL	CG				
	Insecta	Ephemeroptera	Heptageniidae	-	CL	SC				
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Cinygmula	CL	SC				
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Epeorus	CL	SC				
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Heptagenia	CL	SC				
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Ironodes	CL	SC				
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Nixe	CL	SC				
Arthropoda	Insecta	Ephemeroptera	Heptageniidae	Rhithrogena	CL	SC				
	Insecta	Ephemeroptera	Leptophlebiidae			CG				
Arthropoda	Insecta	Ephemeroptera	Leptophlebiidae	Paraleptophlebia		CG				
Arthropoda	Insecta	Ephemeroptera Alderfiles	Tricorythidae	Tricorythodes		CG	Т			
Arthropoda	Insecta	Megaloptera Stonefiles	Sialidae	Sialis		PR				
	Insecta	Plecoptera	-	-		UN				
Arthropoda	Insecta	Plecoptera	Capnidae	-		SH				
	Insecta	Plecoptera	Chloroperlidae	-	CL	PR				
Arthropoda	Insecta	Piecoptera	Chloroperlidae	Kathroperla	CL	PR	1			
	Insecta	Plecoptera	Chloropenidae	isoperla	CL	PR	•			
	Insecta	Plecoptera	Chloroperlidae	Paraperla	CL	PR	ı			
	mocula	i icopteia	onoropeniude			гл				

,

.

- •

·.... `

	Phylum	Class	Order	Family	Genus	CL	FFG	T/I	LL	%sv	HBI
	Arthropoda	Insecta	Plecoptera	Chloropertidae	Plumiperla	CL	PR				
	Arthropoda	Insecta	Plecoptera	Chloroperlidae	Suwallia	CL	PR				0
	Arthropoda	Insecta	Plecoptera	Chloroperlidae	Sweitsa	CL	PR				1
	Arthropoda	Insecta	Plecoptera	Leuctridae	-		SH	1			0
•		Insecta	Plecoptera	Nemouridae	-		SH				2
	Arthropoda	Insecta	Plecoptera	Nemouridae	Amphinemura		SH				2
	Arthropoda	Insecta	Plecoptera	Nemouridae	Malenka		SH				2
• •	Arthropoda	Insecta	Plecoptera	Nemouridae	Zapada		SH				2
		Insecta	Plecoptera	Perlidae	-	CL	PR		LL	100	1
	Arthropoda	Insecta	Plecoptera	Perlidae	Calineuria	CL	PR		LL	100	2
	Arthropoda	Insecta	Plecoptera	Perlidae	Doroneuria	CL	PR	1	LL	100	1
	Arthropoda	Insecta	Plecoptera	Perlidae	Hesperoperia	CL	PR		LL	100	2
		Insecta	Plecoptera	Periodidae	-	CL	PR				2
	Arthropoda	Insecta	Plecoptera	Periodidae	Cultus	CŁ	PR	1			2
	Arthropoda	Insecta	Plecoptera	Perlodidae	Isoperla	CL	PR				2
•	Arthropoda	Insecta	Plecoptera	Perlodidae	Megarcys	CL	PR	1			2
	Arthropoda	Insecta	Plecoptera	Periodidae	Skwala	CL	PR				2
مدينا	Arthropoda	Insecta	Plecoptera	Pteronarcyidae	-	CL	OM		LL	100	0
	Arthropoda	Insecta	Plecoptera	Pteronarcyidae	Pteronarcella	CL	OM		LL	100	0
	Arthropoda	Insecta	Plecoptera	Pteronarcyidae	Pteronarcys	CL	OM		LL	100	0
·• ·•		Insecta	Plecoptera	Taeniopterygidae	-		OM				2
		Insecta	Plecoptera	Taeniopterygidae	Taenionema		OM				2
^ •			Caddisflies								
		Insecta	Trichoptera	-	-		UN				
	Arthropoda	Insecta	Trichoptera	Apataniinae	Apatania	CL	SC	1			
•- •	Arthropoda	Insecta	Trichoptera	Brachycentridae	-	CL	UN				1
	Arthropoda	Insecta	Trichoptera	Brachycentridae	Brachycentrus	CL	OM		LL	100	1
~ •	Arthropoda	Insecta	Trichoptera	Brachycentridae	Micrasema	CL	MH				1
	Arthropoda	Insecta	Trichoptera	Glossosomatidae	-	CL	SC				0
	Arthropoda	Insecta	Trichoptera	Glossosomatidae	Glossosoma	CL	SC	SIT			1
•	Arthropoda	Insecta	Trichoptera	Glossosomatidae	Protoptila	CL	SC				1
ar - 13	Arthropoda	Insecta	Trichoptera	Hydropsychidae	-	CL	CF				4
	Arthropoda	Insecta	Trichoptera	Hydropsychidae	Arctopsyche	CL	CF	SIT	LL	100	1
	Arthropoda	Insecta	Trichoptera	Hydropsychidae	Ceratopsyche		CF				
	Arthropoda	Insecta	Trichoptera	Hydropsychidae	Cheumatopsyche	CL	CF	SIT			8
	Arthropoda	Insecta	Trichoptera	Hydropsychidae	Hydropsyche	CL	CF	SIT			4
	Arthropoda	Insecta	Trichoptera	Hydropsychidae	Parapsyche	CL	CF	SIT	LL	100	0
	Arthropoda	Insecta	Trichoptera	Hydroptilidae		CL	PH				4
• •	Arthropoda	Insecta	Trichoptera	Hydroptilidae	Agraylea		PH				8
	Arthropoda	Insecta	Trichoptera	Hydroptilidae	Hydroptila	CL	PH	т			6
	Arthropoda	Insecta	Trichoptera	Lepidostomatidae	Lepidostoma		SH				1
	Arthropoda	Insecta	Trichoptera	Limnephilidae	-		UN				4
	Arthropoda	Insecta	Trichoptera	Limnephilidae	Dicosmoecus		OM	ł	LL	100	1
	Arthropoda	Insecta	Trichoptera	Limnephilidae	Eccosmoecus		OM	i	LL	100	•
	Arthropoda	Insecta	Trichoptera	Limnephilidae	Ecclisocosmoecus		SH	i		50	0
_	Arthropoda	Insecta	Trichoptera	Limnephilidae	Ecclisomyia	CL	OM	1		•••	2
	Arthropoda	Insecta	Trichoptera	Limnephilidae	Hydatophylax		SH	•			1
	Arthropoda	Insecta	Trichoptera	Limnephilidae	Onocosmoecus		OM				1
	Arthropoda	Insecta	Trichoptera	Limnephilidae	Psychoglypha		OM				0 0
	Arthropoda	Insecta	Trichoptera	Philopotamidae	Wormaldia	CL	CF	SIT			3
	Arthropoda	Insecta	Trichoptera	Polycentropodidae	Polycentropus	CL	PR				6
	Arthropoda	Insecta	Trichoptera	Rhyacophilidae	-	CL	PR			50	0
	Arthropoda	Insecta	Trichoptera	Rhyacophilidae	Rhyacophila	CL	PR			50	Õ
					· · · · · · · · · · · · · · · · · · ·						-

ن

.....

Phylum	Class	Order	Family	Genus	CL	FFG	T/I	LL	%sv	HBI
Arthropoda	Insecta	Trichoptera	Uenoidea	-	CL	SC				0
Arthropoda	Insecta	Trichoptera	Uenoidea	Neophylax	CL	SC				3
	Insecta	Trichoptera	Uenoidea	Neothremma	CL	SC	I			0
Arthropoda	Insecta	Thysanoptera	-	-		UN				
Arthropoda	Insecta	Hymenoptera	-	-		PA				
Arthropoda	Insecta	Hemiptera	-	-		UN				
Arthropoda	Insecta	Hemiptera	Aphididae	-		UN				
Arthropoda	Insecta	Hemiptera	Corixidae	-		UN				8
Arthropoda	Insecta	Lepidoptera	-	-		UN				5
NON-INSECTS										
Arthropoda	Arachnoid a	Hydracarina	-	-		PA				
Arthropoda	Crustacea	Amphipoda	-	-		CG	ST			4
Arthropoda	Crustacea	Cladocera	Chydoridae	-		CF				8
Arthropoda	Crustacea	Decapoda	-	-		OM		LL	100	6
Arthropoda	Crustacea	Copepoda	-	-		CG				8
	Crustacea	Harpacticoida	-	-						
	Crustacea	Cyclopoida								
Arthropoda	Crustacea	Isopoda	-	-		CG				8
Arthropoda	Crustacea	Mysis	-	-						
Arthropoda	Crustacea	Ostracoda	-	-		CG				8
Annelida	Hirudinea	-	•	-		PR				10
Annelida	Oligochaeta	-	-	•		CG	ST		50	8
Coelenterata	Hydrazoa	-	-	-		PR	T			
Mollusca	Gastropoda	-	-	-		SC	ST			7
Mollusca	Pelecypoda	-	-	-		CF			75	
Mollusca	Pelecypoda	Veneroida	Sphaeriidae	-		CG			50	8
Mollusca	Pelecypoda	Unionoida	Unionacea	-		CF		LL	100	
Nematoda	-	-	-	-		PA				5
Platyhelminthes	Turbellaria	-	-	-		CG				4

?,

٠

. .

. .

...

.....

. .

.....

~~~

••••

-

|                                          | Sampling      |                    | Latitude**      | Longitude**      | Elevation** | ASCI Habitat        | Average          | Total # of |                   |                         |                   | % dom                 | %                | IBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FBI   |
|------------------------------------------|---------------|--------------------|-----------------|------------------|-------------|---------------------|------------------|------------|-------------------|-------------------------|-------------------|-----------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Stream                                   | Year          | EMS #              | dd mm'ss.sssss  | dd mm'ss.sssss   | (m)         | Rating              | <b>Bug Count</b> | Taxa       | E Taxa            | P Taxa                  | T Taxa            | (1 taxa)              | Mayfiles         | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Score |
| Ailport                                  | 1999          | E238640            |                 |                  |             | 129                 | 670.3            | 20.7       | 4.3               | 6                       | 2.7               | 27.1%                 | 40.0%            | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.69  |
| Barren                                   | 1999          | E238626            |                 |                  |             | 123.5               | 377.7            | 16.7       | 4.7               | 2.7                     | 2                 | 29.9%                 | 20.3%            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.92  |
| Barren                                   | 2001*         | E238626            | 54 27' 48.52101 | 126 31' 29.85348 | 622.33      | 138                 | 1375.7           | 21.7       | 5                 | 4.7                     | 2.7               | 23.6%                 | 26.1%            | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.99  |
| Bessemer                                 | 1999          | E238642            |                 |                  |             |                     | 1597.7           | 24         | 0                 | 5                       | 5                 | 35.7%                 | 35.3%            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.08  |
| Bob                                      | 1999          | E238623            |                 |                  |             | 154                 | 587.3            | 13.7       | 4.3               | 2                       | 1                 | 53.4%                 | 32.7%            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.65  |
| Bulkley @ Craker                         | 1999          | E238800            |                 |                  |             | 131.5               | 300.7            | 13.3       | 4                 | 3                       | 1.7               | 42.8%                 | 35.2%            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.79  |
| Buikley Knockholt                        | 1999          | E238643            |                 |                  |             | 157                 | 439.7            | 17.7       | 4.7               | 4.7                     | 2                 | 36.0%                 | 49.3%            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.95  |
| Buikiey @ Morice                         | 1999          | E400296            |                 |                  |             | 141.5               | 339.7            | 17         | 4.7               | 4.3                     | 2.3               | 59.9%                 | 17.9%            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.77  |
| Buck @ Mall                              | 1999          | E238624            |                 |                  |             | 123.5               | 379.7            | 13         | 3.3               | 3.3                     | 1                 | 52.7%                 | 14.8%            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.13  |
| Buck @ Mall                              | 2001*         | E238624            | 54 23' 58.09739 | 126 39' 16.05674 | 598.30      | 105                 | 3707.3           | 26.3       | 5                 | 5                       | 6                 | 43.0%                 | 31.8%            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.28  |
| Buck 12km                                | 1999          | E238622            |                 |                  |             | 159.5               | 289.7            | 13.3       | 3.3               | 2                       | 2.3               | 50.0%                 | 27.8%            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.66  |
| Buck Confluence                          | 1999          | E238625            |                 |                  |             | 134.5               | 378.3            | 15.3       | 4                 | 2.7                     | 2.7               | 66.0%                 | 13.8%            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.37  |
| Byman d/s                                | 1999          | E238629            |                 |                  |             | 122                 | 198.3            | 14         | 3.7               | 3                       | 1.7               | 33.8%                 | 27.9%            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.72  |
| Byman d/s                                | 2001*         | E238629            | 54 31' 08.73688 | 126 25' 17.72062 | 653.58      | 133.5               | 3279             | 26.3       | 4.7               | 5.3                     | 4.3               | 30.8%                 | 48.8%            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.08  |
| Byman Reference                          | 1999          | E238629            |                 |                  |             | 162.5               | 245              | 17.3       | 5                 | 3                       | 1.3               | 45.5%                 | 32.2%            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.61  |
| Cesford @ Topley                         | 1999          | E238635            |                 |                  |             | 111                 | 908.7            | 22.7       | 4.3               | 3.3                     | 2.3               | 52.9%                 | 15.7%            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.61  |
| Cesford @ Topley                         | 2001*         | E238635            | 54 30' 29.33003 | 126 18' 27.54964 | 674.25      | 100                 | 4152             | 24         | 4.3               | 4                       | 2.3               | 72.1%                 | 8.6%             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.8   |
| Cesford Reference                        | 1999          | E238633            |                 |                  |             | 169                 | 1683             | 20         | 3.7               | 3.3                     | 2.7               | 79.6%                 | 7.4%             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.53  |
| Cesford u/s                              | 1999          | E238634            |                 |                  |             | 130                 | 482              | 18.7       | 3.7               | 3.3                     | 2                 | 29.8%                 | 29.4%            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.06  |
| Crow                                     | 1999          | E238638            |                 |                  |             | 139                 | 803.3            | 21.7       | 4.7               | 3.7                     | 3.3               | 32.8%                 | 53.4%            | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.24  |
| Crow                                     | 2001*         | E238638            | 54 22' 18.76027 |                  | 787.20      | 132                 | 1849.3           | 24.3       | 4.7               | 5                       | 4                 | 27.7%                 | 56.1%            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.79  |
| Deep d/s                                 | 2001*         | E245200            | 54 35' 29.80336 |                  | 554.32      | 118                 | 3789.3           | 25         | 3                 | 6                       | 4                 | 65.9%                 | 20.8%            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.6   |
| Deep reference                           | 2001*         | E245201            | 54 36' 47.00813 | 126 47' 53.02075 | 673.04      | 174.5               | 1722.7           | 20         | 2                 | 4                       | 3.3               | 27.4%                 | 51.0%            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.91  |
| Foxy bm                                  | 1999          | 400764             |                 |                  |             | 181                 | 534.7            | 20.7       | 4.3               | 5                       | 2                 | 35.7%                 | 59.7%            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.17  |
| Foxy @ Maxan                             | 1999          | E238636            |                 |                  |             | 170                 | 748.7            | 28         | 4                 | 6                       | 3.7               | 30.4%                 | 40.8%            | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.47  |
| Foxy @ Maxan                             | 2001*         |                    | 54 18' 51.70557 | 126 07 36.97893  | 814.84      | 147                 | 4551             | 22.3       | 4                 | 5                       | 2.7               | 41.3%                 | 29.5%            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.27  |
| Foxy u/s                                 | 1999          | 400763             |                 |                  |             |                     | 282.7            | 29         | 5                 | 5                       | 5                 | 31.3%                 | 44.1%            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.71  |
| Johnny David                             | 1999          | E238630            |                 |                  |             | 116                 | 436              | 19         | 4.3               | 3                       | 2.7               | 45.1%                 | 25.8%            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.03  |
| McQuarrie d/s                            | 1999          | E238627            | 54 001 54 00070 | 400 07 40 00070  | 011 50      | 119                 | 350.7            | 16.3       | 4.7               | 3.3                     | 0.3               | 44.3%                 | 30.6%            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.24  |
| McQuarrie d/s                            | 2001*         |                    | 54 30' 51.66878 | 120 21 48.392/0  | 641.56      | 116                 | 3071.7           | 24.7       | 4.7               | 4.7<br>2.3              | 2.3<br>2.7        | 51.1%<br>30.3%        | 31.7%<br>45.9%   | <u>18</u><br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.86  |
| McQuarrie Reférence                      | 1999          | E238628<br>E238645 |                 |                  |             | 147                 | 381              | 16.3       | 4.3               |                         |                   |                       |                  | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 4.20  |
| Richfield @ CN                           | 1999<br>2001* |                    | 54 30' 34.71685 | 126 201 24 06947 | 660.31      | <u>144.5</u><br>153 | 1269.3<br>1749.3 | 25<br>26   | 4.7               | <u>4.7</u><br>5.3       | 2.7               | <u>34.0%</u><br>41.9% | 19.1%<br>54.8%   | 18<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.04  |
| Richfield @ CN<br>Richfield above Hwy 16 | 1999          | E238831            | 34 30 34./ 1083 | 120 20 31.0004/  | 000.31      | 131                 | 359              | 20<br>15   | <u>4.7</u><br>3.7 | - <del>5.3</del><br>- 3 | 2.3               | 41.975                | 22.9%            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.89  |
| Richfield above Hwy 16                   | 2001*         |                    | 54 30' 59.43397 | 128 201 12 54042 | 686.02      | 131                 | 683.7            | 25.3       | <u>3.7</u><br>4   | 4.3                     | 3.3               | 41.8%                 | <u></u><br>26.7% | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.09  |
| Richfield u/s                            | 1999          | E238631<br>E238632 | 34 30 38.4338/  | 120 20 12.04213  | 000.02      | 144,5               | 454.3            | <u> </u>   | 4.3               | 4.3                     | <u>3.3</u><br>2.7 | 41.8%                 | 20.7%            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.80  |
| Amett                                    | 2001*         |                    | 54 35' 24.49620 | 107 05 57 55704  | 734.81      | 154                 | 454.0<br>686     | 15.7       | 4.3               | 4.7                     | 2.7               | 40.97                 | 36.4%            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.69  |
| Driftwood Reference                      |               |                    | 54 51' 16.09032 |                  | 852.33      | 188.5               | 1135             | 21.3       | 3.7               | 4.7                     | 2.7               | 29.1%                 | 40.3%            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.41  |
| Lemieux d/s                              | 2001*         |                    | 54 38' 40.92212 |                  | <u> </u>    | 119                 | 979              | 13.7       | 3.7               | 2.3                     | 0.7               | 42.2%                 | 40.3%            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.38  |
| Lemieux u/s                              | 2001*         |                    | 54 39 47.44288  |                  | 715.10      | 169                 | 5436             | 22.3       | 5                 | 4.3                     | 2.3               | 42.2%<br>71.2%        | 13.4%            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.11  |
| Reiseter East                            |               |                    | 54 56' 00.88811 |                  | 702.84      | 185                 | <u> </u>         | 22.5       | 3.7               | 4.3<br>5.3              | 3.3               | 33.4%                 | 31.3%            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.84  |
| Reiseter West                            | 2001*         |                    | 54 56 02.62588  |                  | 702.84      | 178                 | 848              | 21.7       | 3.7               | 5.3                     | 3.3               | 23.7%                 | 31.3%            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4   |
| Robin                                    |               |                    | 54 37 31.12014  |                  | 560.09      | 70                  | 4390             | 19.3       | 4.3               | 3                       | 3.3<br>1.7        | 70.0%                 | 17.7%            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.42  |
| room                                     | 2001          | E243102            | 04 31 31.12014  | 120 02 01.40380  | 80.000      | //                  | 4390             | 18.3       | 4.3               | ्र                      | 1.7               | 10.076                | 11.170           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.42  |

\*\*Latitude, Longitude, and elevation were determined using a handheld GPS unit (NAD 83).

.

**KEY** E taxa = Ephemeroptera Taxa P Taxa = Plecoptera Taxa T Taxa = Trichoptera Taxa LL Taxa = Long Lived Taxa

| Stream                 | Sampling<br>Year | EMS #   | ASCI Habitat<br>Rating | Ave. Bug Count<br>(w/o order) | Ave. Bug<br>Count (ail) | Total # of<br>Taxa | E Taxa | P Taxa     | Т Таха | LL Taxa | Intol Taxa | % Tol | % Predators |
|------------------------|------------------|---------|------------------------|-------------------------------|-------------------------|--------------------|--------|------------|--------|---------|------------|-------|-------------|
| Ailport                | 1999             | E238640 | 129                    | 670.3                         | 768                     | 24.3               | 6      | 6          | 2.7    | 3       | 0          | 0.00% | 11.90%      |
| Barren                 | 1999             | E238626 | 123.5                  | 377.7                         | 545.7                   | 18.3               | 5.3    | 2.7        | 2      | 2       | 0          | 0.00% | 20.70%      |
| Barren                 | 2001*            | E238626 | 138                    | 1375.7                        | 1650                    | 25.7               | 7      | 5.3        | 3      | 3       | 3          | 0.00% | 15.10%      |
| Bessemer               | 1999             | E238642 |                        | 1597.7                        | 1636                    | 19.7               | 2.7    | 3.7        | 2      | 1       | 2          | 0.80% | 1.10%       |
| Bob                    | 1999             | E238623 | 154                    | 587.3                         | 693.7                   | 16.3               | 5.3    | 2          | 1      | 1       | 0          | 0.00% | 9.00%       |
| Bulkley @ Craker       | 1999             | E238800 | 131.5                  | 300.7                         | 341                     | 14.3               | 4      | 3          | 1.7    | 2       | 0          | 1.90% | 6.50%       |
| Bulkley Knockholt      | 1999             | E238643 | 157                    | 439.7                         | 458.7                   | 19                 | 5.7    | 5          | 2.7    | 3       | 2          | 0.20% | 13.70%      |
| Bulkley @ Morice       | 1999             | E400296 | 141.5                  | 339.7                         | 390.3                   | 18                 | 4.7    | 4.3        | 2.3    | 2       | 0          | 0.00% | 5.80%       |
| Buck @ Mail            | 1999             | E238624 | 123.5                  | 379.7                         | 500.3                   | 14.3               | 3.7    | 3.3        | 1      | 3       | 0          | 0.00% | 6.70%       |
| Buck @ Mail            | 2001*            | E238624 | 105                    | 3707.3                        | 4047.7                  | 29                 | 5.3    | 5          | 6.3    | 5       | 2          | 2.80% | 4.10%       |
| Buck 12km              | 1999             | E238622 | 159.5                  | 289.7                         | 356.3                   | 14.3               | 3.3    | 2          | 2.3    | 1       | Ō          | 0.00% | 11.20%      |
| Buck Confluence        | 1999             | E238625 | 134.5                  | 378.3                         | 605.3                   | 16.3               | 4      | 2.7        | 2.7    | 3       | ō          | 0.00% | 9.70%       |
| Byman d/s              | 1999             | E238629 | 122                    | 198.3                         | 269.3                   | 14.7               | 4      | 3          | 1.3    | 0       | ō          | 0.00% | 12.80%      |
| Byman d/s              | 2001*            | E238629 | 133.5                  | 3279                          | 3982                    | 28.7               | 5.7    | 5.3        | 5.3    | 4       | 4          | 0.10% | 6.40%       |
| Byman Reference        | 1999             | E238629 | 162.5                  | 245                           | 285.3                   | 19.3               | 5.7    | 3          | 1.3    | 4       | 2          | 0.30% | 7.80%       |
| Cesford @ Topley       | 1999             | E238635 | 111                    | 908.7                         | 966.3                   | 25.3               | 6      | 3.7        | 2.3    | 1       | 1          | 0.09% | 15.00%      |
| Cesford @ Topley       | 2001*            | E238635 | 100                    | 4152                          | 4355.7                  | 25.3               | 6      | 4.3        | 2.3    | 1       | 1 1        | 0.00% | 3.10%       |
| Cesford Reference      | 1999             | E238633 | 169                    | 1683                          | 1818.3                  | 21.3               | 4      | 3.3        | 2.7    | 1       | - ó        | 0.00% | 4.10%       |
| Cesford u/s            | 1999             | E238634 | 130                    | 482                           | 812                     | 20.3               | 4.7    | 3.3        | 2      | 1       | 0 O        | 0.00% | 30.70%      |
| Crow                   | 1999             | E238638 | 139                    | 803.3                         | 882                     | 27.3               | 7.3    | 3.7        | 3.3    | 3       | 1          | 0.41% | 5.10%       |
| Crow                   | 2001*            | E238638 | 132                    | 1849.3                        | 1991.7                  | 27                 | 6.7    | 5          | 4      | 5       | 1          | 0.80% | 11.60%      |
| Deep d/s               | 2001*            | E245200 | 118                    | 3789.3                        | 4365.7                  | 31.3               | 6.3    | 6.3        | 4.7    | 6       | 3          | 0.10% | 3.00%       |
| Deep reference         | 2001*            | E245201 | 174.5                  | 1722.7                        | 1845.3                  | 26                 | 6      | 4.3        | 3.7    | 3       |            | 0.20% | 11.70%      |
| Foxy bm                | 1999             | 400764  | 181                    | 534.7                         | 558.7                   | 24.7               | 6.3    | <u>4.5</u> | 2      | 6       | 2          | 0.20% | 17.30%      |
| Foxy @ Maxan           | 1999             | E238636 | 170                    | 748.7                         | 815.3                   | 31.7               | 6.7    | 6          | 3.7    | 6       | 0          | 0.43% | 7.00%       |
| Foxy @ Maxan           | 2001*            | E238636 | 147                    | 4551                          | 4825.3                  | 24.7               | 5.7    | 5          | 2.7    | 6       | 4          | 0.45% | 4.90%       |
| Foxy u/s               | 1999             | 400763  | 14/                    | 262.7                         | 444                     | 18                 | 5.7    | 3.7        | 1.7    | 2       |            | 0.00% | 12.00%      |
| Johnny David           | 1999             | E238630 | 116                    | 436                           | 628.3                   | 21                 | 5.3    | 3.7        | 2.7    | 2       | 0          | 0.00% | 7.60%       |
| McQuarrie d/s          | 1999             | E238630 | 119                    | 350.7                         | 361                     | 17.3               | 4.7    | 3.3        | 0.3    |         | 0          | 0.00% | 7.30%       |
|                        | 2001*            | E238627 |                        | 3071.7                        | 3253.3                  | 27.3               |        |            |        | 2       | 1          |       |             |
| McQuarrie d/s          |                  |         | 116                    |                               |                         |                    | 5.3    | 5          | 2.7    | 2       | I          | 0.20% | 4.80%       |
| McQuarrie Reference    | 1999             | E238628 | 147                    | 381                           | 448.3                   | 18.3               | 5.3    | 2.3        | 2.7    | 3       | 0          | 0.00% | 9.70%       |
| Richfield @ CN         | 1999             | E238645 | 144.5                  | 1269.3                        | 1374.3                  | 30                 | 5.7    | 4.7        | 3.3    | 5       | 0          | 0.20% | 8.70%       |
| Richfield @ CN         | 2001*            | E238645 | 153                    | 1749.3                        | 2209.7                  | 27.7               | 5.7    | 5.3        | 2.7    | 5       | 0          | 0.10% | 13.40%      |
| Richfield above Hwy 16 | 1999             | E238631 | 131                    | 359                           | 392.3                   | 16.7               | 4.3    | 3          | 1.7    | 3       | 0          | 0.00% | 9.20%       |
| Richfield above Hwy 16 | 2001*            | E238631 | 144.5                  | 683.7                         | 719.7                   | 28                 | 6      | 4.7        | 3.7    | 4       | 3          | 0.10% | 6.70%       |
| Richfield u/s          | 1999             | E238632 | 154                    | 454.3                         | 487                     | 16.3               | 4.3    | 3.3        | 2.7    | 2       | 1          | 0.00% | 3.50%       |
| Arnett                 | 2001*            | E245188 | 188.5                  | 686                           | 757.7                   | 21                 | 6.3    | 4.7        | 2.7    | 2       | 5          | 0.10% | 9.70%       |
| Driftwood Reference    | 2001*            | E245179 | 181                    | 1135                          | 1553.7                  | 25.7               | 6      | 5.3        | 2.7    | 1       | 3          | 0.30% | 15.30%      |
| Lemieux d/s            | 2001*            | E245180 | 119                    | 979                           | 1149                    | 15.3               | 3      | 2.3        | 0.7    | 2       | 1          | 0.00% | 2.60%       |
| Lemieux u/s            | 2001*            | E245781 | 169                    | 5436                          | 5549.3                  | 28.7               | 8      | 5.3        | 2.3    | 3       | 4          | 0.10% | 5.40%       |
| Reiseter East          | 2001*            | E242682 | 185                    | 844                           | 945.3                   | 25.3               | 6      | 6.3        | 3.3    | 2       | 4          | 0.00% | 5.90%       |
| Reiseter West          | 2001*            | E242681 | 178                    | 848                           | 975.7                   | 26.3               | 5      | 5.3        | 3.3    | 2       | 3          | 0.10% | 12.40%      |
| Robin                  | 2001*            | E245182 | 70                     | 4390                          | 4488                    | 20.3               | 4.3    | 3          | 1.7    | 2       | 1          | 0.10% | 2.40%       |

. ^

> 7 •

KEY E taxa = Ephemeroptera Taxa P Taxa = Plecoptera Taxa T Taxa = Trichoptera Taxa LL Taxa = Long Lived Taxa

| Stream                 | Sampling<br>Year | EMS #   | Clinger<br>Taxa | % dom (3<br>taxa) | % Oilgochaetes | % Mayfilos | % Sediment<br>Tolerant | % Sediment<br>Intolerant | % Dipterans and non-insects | % Clingers | # Diptera<br>taxa | % Dipterani |
|------------------------|------------------|---------|-----------------|-------------------|----------------|------------|------------------------|--------------------------|-----------------------------|------------|-------------------|-------------|
| Ailport                | 1999             | E238640 | 9               | 54%               | 0.1%           | 40.0%      | 0.1%                   | 0.3%                     | 19.7%                       | 39.7%      |                   |             |
| Barren                 | 1999             | E238626 | 7.7             | 56%               | 0.0%           | 20.3%      | 0.2%                   | 3.5%                     | 21.0%                       | 40.0%      |                   |             |
| Barren                 | 2001*            | E238626 | 11.3            | 47%               | 0.0%           | 26.1%      | 1.6%                   | 0.3%                     | 26.9%                       | 33.5%      | 5.3               | 22.4%       |
| Bessemer               | 1999             | E238642 | 5.3             | 80%               | 1.4%           | 35.3%      | 1.5%                   | 10.3%                    | 28.0%                       | 12.7%      |                   |             |
| Bob                    | 1999             | E238623 | 6.7             | 71%               | 0.0%           | 32.7%      | 0.0%                   | 0.0%                     | 48.8%                       | 32.0%      |                   |             |
| Buikley @ Craker       | 1999             | E238800 | 7.3             | 69%               | 0.7%           | 35.2%      | 0.8%                   | 0.0%                     | 47.7%                       | 42.0%      |                   |             |
| Bulkley Knockholt      | 1999             | E238643 | 9               | 58%               | 0.0%           | 49.3%      | 0.6%                   | 0.5%                     | 30.1%                       | 62.6%      |                   |             |
| Buikley @ Morice       | 1999             | E400296 | 8               | 79%               | 0.2%           | 17.9%      | 0.3%                   | 0.0%                     | 56.4%                       | 21.0%      |                   |             |
| Buck @ Mali            | 1999             | E238624 | 7               | 78%               | 0.0%           | 14.8%      | 0.0%                   | 3.5%                     | 55.5%                       | 23.0%      |                   |             |
| Buck @ Mail            | 2001*            | E238624 | 13              | 69%               | 0.9%           | 31.8%      | 1.6%                   | 2.9%                     | 50.4%                       | 35.0%      | 7.3               | 40.5%       |
| Buck 12km              | 1999             | E238622 | 7.3             | 69%               | 0.2%           | 27.8%      | 0.3%                   | 1.4%                     | 50.6%                       | 33.8%      |                   |             |
| Buck Confluence        | 1999             | E238625 | 8.3             | 84%               | 0.0%           | 13.8%      | 0.0%                   | 4.9%                     | 51.1%                       | 17.1%      |                   |             |
| Byman d/s              | 1999             | E238629 | 4.7             | 64%               | 2.9%           | 27.9%      | 3.9%                   | 0.0%                     | 43.1%                       | 34.0%      |                   |             |
| Byman d/s              | 2001*            | E238629 | 11.3            | 58%               | 0.3%           | 48.8%      | 0.7%                   | 3.1%                     | 25.6%                       | 46.9%      | 7.3               | 17.6%       |
| Byman Reference        | 1999             | E238629 | 6.7             | 62%               | 3.2%           | 32.2%      | 3.9%                   | 0.6%                     | 49.7%                       | 27.5%      |                   |             |
| Cesford @ Topley       | 1999             | E238635 | 10              | 69%               | 0.9%           | 15.7%      | 1.0%                   | 0.3%                     | 58.4%                       | 29.4%      |                   |             |
| Cesford @ Topley       | 2001*            | E238635 | 9.7             | 83%               | 7.2%           | 8.6%       | 7.9%                   | 1.4%                     | 82.5%                       | 8.2%       | 4.3               | 71.7%       |
| Cesford Reference      | 1999             | E238633 | 7.7             | 89%               | 0.4%           | 7.4%       | 0.6%                   | 0.1%                     | 81.7%                       | 7.6%       |                   |             |
| Cesford u/s            | 1999             | E238634 | 8.3             | 70%               | 0.1%           | 29.4%      | 0.2%                   | 1.7%                     | 29.5%                       | 59.1%      |                   |             |
| Crow                   | 1999             | E238638 | 12              | 65%               | 0.1%           | 53.4%      | 0.4%                   | 0.3%                     | 31.3%                       | 39.6%      |                   |             |
| Crow                   | 2001*            | E238638 | 12.3            | 58%               | 0.1%           | 56.1%      | 0.5%                   | 0.8%                     | 24.1%                       | 50.2%      | 5.7               | 20.7%       |
| Deep d/s               | 2001*            | E245200 | 14              | 76%               | 0.0%           | 20.8%      | 0.2%                   | 0.5%                     | 70.4%                       | 14.8%      | 7.3               | 64.7%       |
| Deep reference         | 2001*            | E245201 | 11.3            | 60%               | 0.1%           | 51.0%      | 0.5%                   | 2.3%                     | 23.6%                       | 29.8%      | 7.3               | 18.4%       |
| Foxy bm                | 1999             | 400764  | 11              | 54%               | 0.2%           | 59.7%      | 0.3%                   | 0.2%                     | 11.6%                       | 41.1%      |                   | 1           |
| Foxy @ Maxan           | 1999             | E238636 | 13              | 62%               | 0.1%           | 40.8%      | 0.4%                   | 0.3%                     | 41.1%                       | 30.1%      |                   |             |
| Foxy @ Maxan           | 2001*            | E238636 | 10              | 75%               | 0.1%           | 29.5%      | 0.2%                   | 0.1%                     | 61.0%                       | 22.8%      | 7.3               | 56.4%       |
| Foxy u/s               | 1999             | 400763  | 8.3             | 57%               | 0.2%           | 44.1%      | 0.4%                   | 0.0%                     | 22.4%                       | 44.4%      |                   |             |
| Johnny David           | 1999             | E238630 | 9.3             | 68%               | 0.1%           | 25.8%      | 0.2%                   | 1.3%                     | 42.0%                       | 24.9%      |                   | T           |
| McQuarrie d/s          | 1999             | E238627 | 5.7             | 71%               | 0.3%           | 30.6%      | 0.5%                   | 0.1%                     | 54.0%                       | 33.8%      |                   |             |
| McQuarrie d/s          | 2001*            | E238627 | 9.7             | 70%               | 1.5%           | 31.7%      | 1.9%                   | 0.3%                     | 59.0%                       | 27.0%      | 8.0               | 50.8%       |
| McQuarrie Reference    | 1999             | E238628 | 8.3             | 54%               | 1.2%           | 45.9%      | 1.4%                   | 3.7%                     | 31.7%                       | 44.2%      |                   | 1           |
| Richfield @ CN         | 1999             | E238645 | 11.7            | 64%               | 0.9%           | 19.1%      | 1.5%                   | 2.8%                     | 50.2%                       | 51.8%      |                   |             |
| Richfield @ CN         | 2001*            | E238645 | 10              | 64%               | 0.1%           | 54.8%      | 1.4%                   | 1.2%                     | 26.1%                       | 57.1%      | 6.7               | 21.7%       |
| Richfield above Hwy 16 | 1999             | E238631 | 7.7             | 72%               | 0.3%           | 22.9%      | 0.3%                   | 1.5%                     | 57.1%                       | 37.3%      |                   |             |
| Richfield above Hwy 16 | 2001*            | E238631 | 11.7            | 60%               | 0.5%           | 26.7%      | 2.0%                   | 0.4%                     | 60.0%                       | 26.2%      | 6.3               | 51.2%       |
| Richfield u/s          | 1999             | E238632 | 7.7             | 73%               | 0.0%           | 30.3%      | 0.0%                   | 0.2%                     | 49.1%                       | 23.8%      |                   |             |
| Arnett                 | 2001*            | E245188 | 16.7            | 49%               | 0.3%           | 36.4%      | 0.4%                   | 0.6%                     | 33.5%                       | 52.8%      | 4.3               | 31.1%       |
| Driftwood Reference    | 2001*            | E245179 | 10.7            | 51%               | 0.1%           | 40.3%      | 0.2%                   | 0.3%                     | 23.0%                       | 43.9%      | 5.7               | 19.3%       |
| Lemieux d/s            | 2001*            | E245180 | 3.3             | 82%               | 1.2%           | 44.8%      | 1.9%                   | 0.0%                     | 41.6%                       | 7.5%       | 4.3               | 37.9%       |
| Lemieux u/s            | 2001*            | E245781 | 12.3            | 83%               | 0.1%           | 13.4%      | 0.2%                   | 1.4%                     | 74.8%                       | 13.2%      | 6.0               | 70.1%       |
| Reiseter East          | 2001*            | E242682 | 12.3            | 53%               | 1.3%           | 31.3%      | 2.0%                   | 2.8%                     | 35.3%                       | 33.1%      | 4.3               | 28.1%       |
| Reiseter West          | 2001*            | E242681 | 11              | 52%               | 0.1%           | 34.7%      | 0.5%                   | 2.0%                     | 20.1%                       | 42.9%      | 6.7               | 17.3%       |
| Robin                  | 2001*            | E245182 | 6               | 86%               | 3.8%           | 17.7%      | 4.6%                   | 0.0%                     | 78.0%                       | 12.3%      | 5.7               | 70.2%       |

. ٩.,

> -4

|                                       | Sampling       |                    | % Non-       | % Long-  |    |              |
|---------------------------------------|----------------|--------------------|--------------|----------|----|--------------|
| Stream                                | Year           | EMS#               | insects      | lived    |    | HBI Score    |
| Ailport                               | 1999           | E238640            |              | <u> </u> | 44 | 3.45         |
| Barren                                | 1999           | E238626            |              | 1.004    | 32 | 2.75         |
| Barren                                | 2001*          | E238626            | 4.5%         | 1.2%     | 44 | 3.42         |
| Bessemer                              | 1999           | E238642            | ·····        | [        | 32 | 4.44         |
|                                       | 1999<br>1999   | E238623<br>E238800 | ·            |          | 28 | 4.4          |
| Buildey @ Craker<br>Buildey Knockholt | 1999           | E238643            |              |          | 44 | 3.1          |
| Buikley @ Morice                      | 1999           | E400296            |              |          | 26 | 4.59         |
| Buck @ Mall                           | 1999           | E238624            |              |          | 20 | 4.42         |
| Buck @ Mail                           | 2001*          | E238624            | 9.9%         | 2.3%     | 32 | 4.55         |
| Buck 12km                             | 1999           | E238622            | 0.0 /0       | 2.570    | 28 | 4.39         |
| Buck Confluence                       | 1999           | E238625            |              |          | 20 | 4.89         |
| Byman d/s                             | 1999           | E238629            |              |          | 30 | 3.5          |
| Byman d/s                             | 2001*          | E238629            | 8.0%         | 0.4%     | 46 | 3.53         |
| Byman Reference                       | 1999           | E238629            |              |          | 28 | 4.19         |
| Cesford (2) Topley                    | 1999           | E238635            |              |          | 28 | 4.58         |
| Cesford @ Topley                      | 2001*          | E238635            | 10.8%        | 0.2%     | 16 | 5.65         |
| Cesford Reference                     | 1999           | E238633            |              |          | 18 | 5.41         |
| Cesford u/s                           | 1999           | E238634            |              |          | 36 | 3.37         |
| Crow                                  | 1999           | E238638            |              |          | 34 | 4.22         |
| Crow                                  | 2001*          | E238638            | 3.5%         | 6.4%     | 44 | 3.63         |
| Deep d/s                              | 2001*          | E245200            | 5.7%         | 0.6%     | 24 | 4.93         |
| Deep reference                        | 2001*          | E245201            | 5.2%         | 0.6%     | 40 | 3.54         |
| Foxybm                                | 1999           | 400764             |              |          | 46 | 3.5          |
| Foxy @ Maxan                          | 1999           | E238636            |              |          | 36 | 3.86         |
| Foxy @ Maxan                          | 2001*          | E238636            | 4.6%         | 0.8%     | 32 | 4.92         |
| Foxy u/s                              | 1999           | 400763             |              |          | 38 | 3.53         |
| Johnny David                          | 1999           | E238630            |              |          | 30 | 4.3          |
| McQuarrie d/s                         | 1999           | E238627            |              |          | 26 | 3.15         |
| McQuarrie d/s                         | 2001*          | E238627            | 8.2%         | 0.4%     | 32 | 4.57         |
| McQuarrie Reference                   | 1999           | E238628            |              |          | 38 | 3.17         |
| Richfield @ CN                        | 1999           | E238845            |              |          | 32 | 4.46         |
| Richfield @ CN                        | 2001*          | E238645            | 4.5%         | 0.7%     | 44 | 3.66         |
| Richfield above Hwy 16                | 1999           | E238631            | 2 5 4        |          | 26 | 4.14         |
| Richfield above Hwy 16                | 2001*          | E238631            | 8.7%         | 0.6%     | 32 | 4.35         |
| Richfield u/s                         | 1999           | E238632            | 0.59/        |          | 28 | 4.52         |
| Arnett                                | 2001*          | E245188            | 2.5%         | 0.4%     | 48 | 2.79         |
| Driftwood Reference                   | 2001*          | E245179            | 3.8%         | 0.2%     | 48 | 2.43         |
| Lemieux d/s                           | 2001*          | E245180            | 3.8%         | 0.2%     | 22 | 4.13         |
| Lemieux u/s                           | 2001*<br>2001* | E245781            | 4.6%         | 1.1%     | 26 | 5.22         |
| Reiseter East                         |                | E242682            | 7.1%         | 0.3%     | 42 | 3.41         |
| Reiseter West<br>Robin                | 2001*<br>2001* | E242681<br>E245182 | 2.8%<br>7.8% | 0.5%     | 48 | 2.85<br>5.39 |

.

3 . . .