MEMORANDUM NOTE DE SERVICE

То	Distribution	 •مر	Security Classification - Classification de sécurité UNCLASSIFIED
À			Our file - Notre référence
	L		
	Steve Cox-Rogers		Your File - Votre référence
From De			Date
			October 30, 2001
	L		

Subject 2001 ASSESSMENT UPDATE FOR MORICE-NANIKA SOCKEYE

The Morice-Nanika sockeye stock has been assessed by DFO since the late 1940's. The stock received considerable attention in the 1950's and early 1960's with the completion of the Moricetown Fishways on the Bulkley River (Palmer 1967). During the 1960's, 1970's and 1980's the stock was the focus of substantial study conducted as a direct result of Alcan's Kemano Completion Project initiative for the Morice-Nanika (Sheperd 1979). In the mid-1990's, the productive potential of the stock was reviewed and updated (Shortreed et al 1998). Over the past two years both DFO and Wet'suewet'en Fisheries have been addressing Morice-Nanika stock status with respect to productive potential and exploitation rate trends in both the mixed-stock commercial and terminal food fisheries. Management actions in 2001 focused on reducing Morice-Nanika harvests, in both Canadian commercial and in-river food fisheries, to address recent declines in escapement for this stock since the late 1990's. A previous memo (Cox-Rogers 2000) addressed 2000 impacts and pertinent background information for this stock.

Escapement Trends

-

The B.C. 16 escapement record (Table 1, Figure 1) and total in-river Bulkley stock (Table 1, Figure 2) data for Morice-Nanika sockeye indicates that, prior to about 1954 or so, total in-river Bulkley returns were apparently quite strong (the average 1940-49 stock was 70000 fish). A period of marked decline in annual returns began after 1954. The decline continued throughout the 1960's, 1970's, and 1980's with annual average returns into the Bulkley of between 1700-9000 fish. During the early to mid 1990's, returns into the Bulkley were much stronger with the decade average close to 32000 fish. In-river returns since 1998, however, have been similar to the 1960-1980 average returns. For example, the 2000 visual spawning ground escapement estimate for Nanika River was just 3000 fish and the total in-river return to the Bulkley was estimated at 4905. For 2001, a mark-recapture estimate of spawning ground escapement was 5047 fish into the Bulkley (past Moricetown Canyon) with spawners distributed in the Nanika River, Morice Lake, and Atna Lake (Appendix 1). Several field surveys of the Little Bulkley system by Wet'suewet'en Fisheries in 2001 found few or no sockeye in the outlet area below Maxan Lake (Ron Austin, Wet'suewet'en Fisheries, pers. comm).

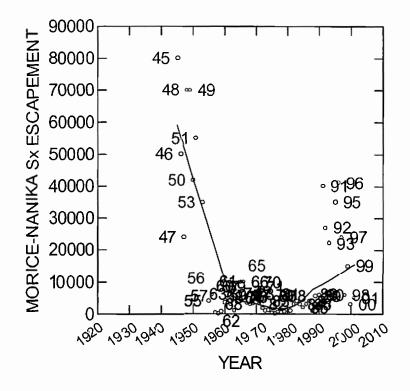


Figure 1. Morice-Nanika Escapements 1945-2001

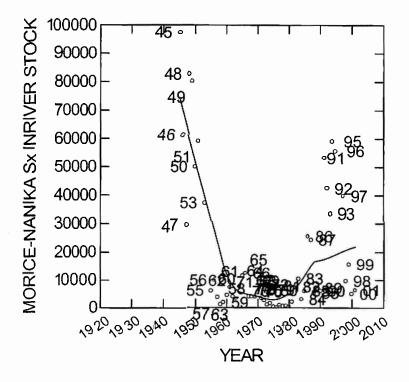
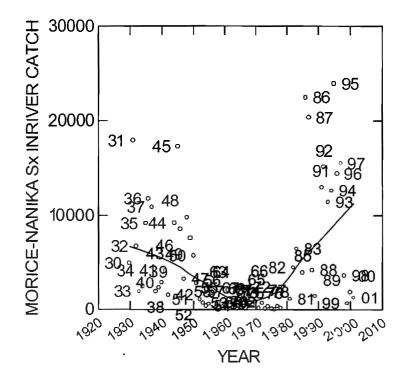
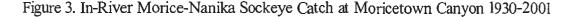


Figure 2. In-River Bulkley Stock (Catch+Esc) 1945-2001


Recent trends in escapement, despite the good returns in the 1990's, are still well below the predicted optimum for this stock. From Shortreed et al (1998), optimal escapements for the Morice-Nanika system range from 116300 based on spawning capacity to 137000-211000 based on PR model calculations of lake rearing capacity. Shortreed et al (1998) recommends an optimum escapement target of 110000 spawners for this system based on a consideration of the modified PR model estimate (137000) and spawning ground capacity. More recent consideration of spawning capacity suggest the optimum escapement target should be closer to the 137000 PR model estimate (Ken Shortreed, DFO, pers comm.).


Catch Trends

Morice-Nanika sockeye are harvested in marine commercial fisheries in south-southeast Alaska and Canada (Areas 1-5), in mainstem Skeena River food and ESSR fisheries below Hazelton, and in the native food fishery at Moricetown Canyon. From about 1900 to 1964, a major native food fishery also took place at Hagwilget Canyon on the lower Bulkley River.

-In-River Fisheries

In-river food fishery catches at Moricetown have mirrored the escapement record (e.g. catch has increased with abundance, Table 1, Figure 3). Average catches at Moricetown were approximately 7000 from 1930-1939, 7000 from 1940-1949, 1400 from 1950-1959, 1400 from 1960-1969, 300 from 1970-1979, 8100 from 1980-1989, and 11000 from 1990-2000. The highest food fish catch on record occurred in 1995 (24000). The 2000 Moricetown catch was 1905. The 2001 Moricetown catch was 1289.

Calculated harvest rates for the food fishery (within the Bulkley system) are shown in Figure 4. Harvest rates show a fair amount scatter and have declined in recent years coincident with reduced returns since the mid-1990's. It is likely that errors in the catch or escapement data are responsible for a significant portion of the variability seen in figure 4, although harvest rates do appear highest in the late 1950's and throughout the 1980's. Average in-river harvest rates on Morice-Nanika sockeye were 0.43 from 1950-59, 0.26 from 1960-69, 0.20 from 1970-79, 0.57 from 1980-1989, and 0.28 from 1990-2000. The Moricetown harvest rate on Nanika sockeye was 0.39 in 2000 and 0.20 in 2001.

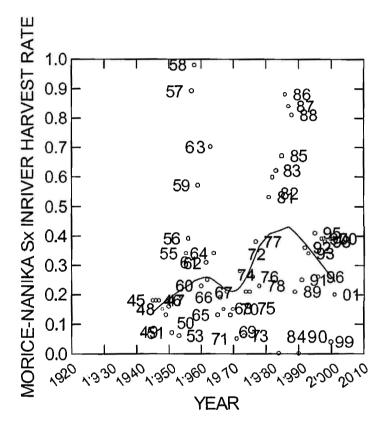


Figure 4. In-River Morice-Nanika Sockeye Harvest Rates 1945-2001

-Marine Commercial Fisheries

Catch estimates for Morice-Nanika sockeye do not exist for marine commercial fisheries in Alaska or in Canadian Areas 1-5 and so marine exploitation rates cannot be calculated directly. An alternative option is to use harvest rate analysis to compute catches and escapements indirectly (Cox-Rogers 1994, Cox-Rogers 2000).

Annual catch, escapement, harvest rates, and exploitation rates for Morice-Nanika sockeye in the Area 1-5 marine fishery were calculated by applying known weekly sockeye harvest rates (source, Les Jantz, DFO) from 1956-2001 to the expected weekly proportions of Morice-Nanika sockeye migrating through the

fishery (normal curve peak W/E July 1-8, s.d. = 1.5 weeks). Morice-Nanika run-timing was assumed stable among years. For 2001, in-river food fish catches of Morice-Nanika sockeye in the mainstem Skeena River below Hazelton were calculated by applying known weekly harvest rates for the IFF fisheries to the weekly escapements of Morice-Nanika sockeye calculated past the Tyee escapement boundary. Travel times for Morice-Nanika escapement moving upriver were 1 week Tyee to Terrace, 1 week Terrace to Hazelton, and 1 week Hazelton to Moricetown.

The calculated pattern of Morice-Nanika marine exploitation from 1956-2001 (Table 1) is shown in Figure 5. Marine exploitation rates have varied over time without consistent trend and range from an average of 0.14 from 1956-59, 0.35 from 1960-69, 0.32 from 1970-1979, 0.21 from 1980-89, and 0.32 from 1990-2000.

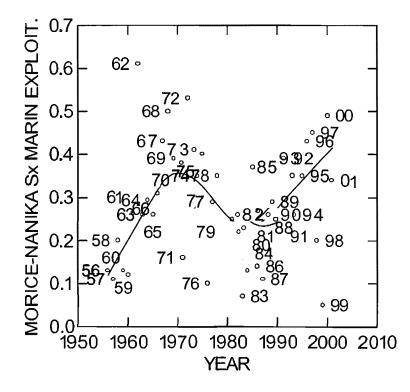


Figure 5. Morice-Nanika Sockeye Marine Exploitation 1956-2001

-2001 Fishery Impacts

Commercial fishing opportunities in Area 3/4/5 were reduced in 2001 during the inigration timing of Morice-Nanika sockeye. As a result of these management actions, marine exploitation on Morice-Nanika sockeye was estimated to be 30% less in 2001 compared 2000. The estimated 2001 Area 1-5 exploitation rate on Morice-Nanika sockeye was estimated to be 0.29 with a total marine exploitation of 0.34 (Table 2). In comparison, the estimated 2000 Area 1-5 exploitation rate on Morice-Nanika sockeye was estimated to be 0.49 (Table 3).

In freshwater, a small number of Morice-Nanika sockeye were estimated to have been caught in the Skeena River food fishery below Terrace in 2001 (Table 2). No ESSR fisheries were initiated below Terrace

in 2001. A moderate IFF harvest of Morice-Nanika sockeye occurred at Moricetown Canyon in 2001 (20% of the in-river stock, Table 2).

In summary, exploitation rates for the 2001 Morice-Nanika return were estimated at 0.05 in U.S. waters, 0.29 in Canadian Area 3/4/5, 0.002 in IFF fisheries below Hazelton, and 0.13 in the Moricetown IFF fishery (Table 2). Total exploitation (marine+food fishery) on Morice-Nanika sockeye was less in 2001 (0.48, Table 2) compared to 2000 (0.70, Table 3). Calculated total run size in 2001 (9659) was very similar to 2000 (10013). For 2001, 486 fish were estimated to have been caught in the south-southeast Alaska fishery, 2820 in the Canadian Areas 1-5 fishery, just 19 in the in-river Skeena IFF fishery, and 1289 in the Moricetown fishery (Table 2).

Lake Productivity

Limnetic fish data from Morice Lake were collected in the fall of 1993 and limnological data were collected once monthly in 1978 and 1980 (Shortreed 2001). The surveys indicated that Morice Lake had excellent physical conditions for juvenile sockeye. However, the lake is ultra-oligotrophic. Zooplankton biomass is very low, which results in very slow growth rates for sockeye fry. Age 0 fall fry averaged only 0.8g, among the lowest recorded for a B.C. nursery lake. Sockeye stomachs were only 30% full and contained mostly bosminids. 90% or more of the returning adults are offispring of two-year old smolts, which confirms the lakes' low productivity and deficient food supply.

Current factors limiting sockeye production in Morice Lake include a) low escapements and fry recruitment b) low in-lake growth and/or survival and c) nutrient limitation (Shortreed 2001). Morice Lake was fertilized in 1980 and responded positively, with a 35% increase in phytoplankton biomass and a 60% increase in zooplankton biomass. As such, Morice Lake is considered a good candidate for nutrient additions (Shortreed 2001). Lake fertilization in conjunction with increased escapements would be the most effective restoration technique for Morice Lake sockeye (Shortreed et al 1998). It would increase fry growth rates and would possibly increase productivity by reducing the proportion of age-2 smolts.

Discussion

The adult return to the Morice-Nanika each year is determined by the interaction between freshwater production for the brood year (s), marine survivals for the production from the brood years (s), and overall fishery exploitation on the production from the brood year (s). The Morice-Nanika sockeye stock is in the lower end of the range of productivities of Skeena wild stocks. However, its unlikely that excessive exploitation has been responsible for the historic fluctuations in escapement seen for this stock (compare Figures 1 and 5). It's more likely that Morice-Nanika sockeye are responding to changing freshwater or marine productivity.

As background, total catches of Skeena sockeye have been steadily increasing coincident with increasing production from the enhanced component from Babine Lake. Exploitation rates have not shown the same coincident increase but have remained rather stable, as sockeye harvest rates were constrained by concerns for steelhead and coho. Sockeye escapements to most of the wild non-enhanced sockeye populations in the Skeena have been stable or increasing despite the sustained high harvest rates on the Skeena run as a whole (Wood et al 1998). Presumably this has been a direct result of continuing efforts to harvest the mid-timing Babine stock as selectively as possible (Wood et al 1998). Survivals may also have been high enough in recent years (for the less productive wild stocks) to offset the sustained high

exploitation rates. However <u>all</u> escapements to wild non-enhanced sockeye stocks within the Skeena system are still much too low (e.g. exploitation is too high) if the objective is to fully utilize lake rearing habitat and maximize smolt production (Wood et al 1998).

Morice-Nanika sockeye, up until 1998 or so, seemed to be following the same trend of increasing escapements as other wild Skeena stocks. For some reason, however, returns to the Morice-Nanika in 2000 and 2001 have been going in the opposite direction and may be returning to the lower return levels seen in the 1960's through 1980's. It's difficult to predict future production trends for this stock at this time. Given the marked trend towards lower escapements in 2000 and 2001, minimizing harvest impacts during the migration timing of Morice-Nanika sockeye in 2002 and beyond will be required if increased escapements are desired. Realizing the full productive potential of Morice Lake might, however, require lake fertilization in conjunction with increased escapements.

Suggested 2002 assessment programs

Escapement Estimation

2

- 1) beach seine tagging and dipnet recovery of sockeye passing through Moricetown Canyon
- 2) fall assessment of mark rates on the upper Morice-Nanika
- 3) fall assessment of lake spawning distribution and mark rates in Morice Lake
- 4) fall assessment of spawning ground distribution and mark rates in Atna River/Atna Lake
- 5) fall assessment of spawning ground distribution and mark rates in Little Bulkley River

Catch Estimation

- 1) continued harvest rate/exploitation rate modeling
- 2) sockeye stock I.D. at Tyee and in Area 3/4/5 commercial fisheries, and in-river IFF/ESSR fisheries

Lake Productivity

- 1) Morcie Lake spawning area capacity assessment update
- 2) Morice Lake capacity assessment update

References

,

Cox-Rogers, S. 2000. Memo to file dated November 28, 2000 (DFO Prince Rupert).

Cox-Rogers, S. 1994. Description of a daily simulation model for the Area 4 (Skeena) commercial gillnet fishery. Can. Man. Rep. Fish. and Aquat. Sci. No. 2256. 45p.

Palmer, R.N. 1967. An assessment of salmon migration and the native food fishery at Moricetown Falls in 1966. Unpublished Report. Dept of Fisheries and Oceans, Vancouver, B.C. 14p.

Sheperd, B. 1979. Salmon studies on Nanika and Morice Rivers and Morice Lake relative to the proposed Kemano II development: Volume 5. Dept. of Fisheries and the Environment, Vancouver. B.C.

Shortreed, K.S., J.M.B. Hume, K.F. Morton, and S.G. MacLellan. 1998. Trophic status and rearing capacity of smaller sockeye nursery lakes in the Skeena River system. Can. Tech. Report of Fish. and Aquat. Sci. 2240. 78p.

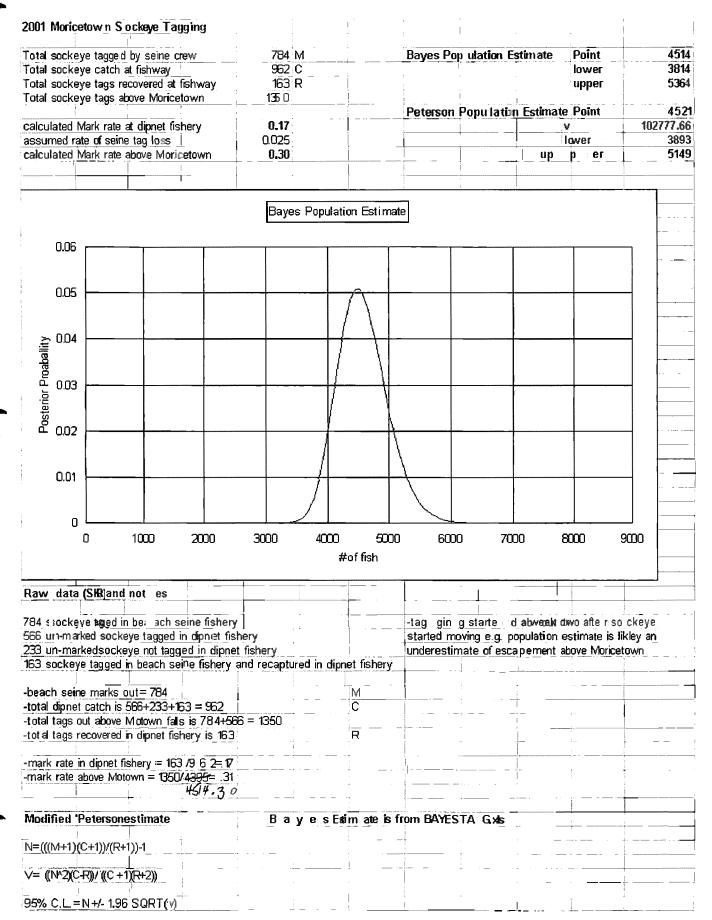
Shortreed, K.S. 2001. Factors Limiting Sockeye Production in Selected B.C. Nursery Lakes. Can. Stock Assessment Secretariat. Research Document 2001/xxxx (in press).

Wood, C.C., D.T. Rutherford, D. Bailey, and M. Jakubowski. 1998. Assessment of sockeye salmon production in Babine Lake, British Columbia with forecast for 1998. Can. Tech. Report of Fish. and Aquat. Sci. 2241 50p.

Table 1. Nanika Sockeye Assessment Data: 1951-2000

ą

~	Year		•		l Estimated Nanika Total Stock		Estimatec Nanika 1,3,4,5 h.r.	Nanika B.C. 16 Escape.	Hagwilget Mo	nika	?DFO Nanika Motown Calch	Best Info Nanika Motown Catch	Inriver Bulkley Nanika Stock	Inriver Bulkley Nanika H.R
	1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1939 1940 1941 1942 1943 1944 1945 1946 1947 1946 1947 1948 1959 1951 1952 1953 1954 1955 1956 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1977 1978 1970 1971 1972 1973 1974 1975 1976 1976 1977 1978 1970 1971 1972 1973 1974 1975 1976 1977 1978 1976 1977 1978 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1970 1971 1972 1973	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.06 0.15 0.08 0.07 0.25 0.56 0.21 0.28 0.21	0.89 0.00 0.87 0.88 0.70 0.39 0.74 0.67 0.74 0.69 0.57	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.13 0.13 0.11 0.20 0.13 0.26 0.33 0.26 0.33 0.26 0.33 0.26 0.35 0.40 0.10 0.29 0.35 0.40 0.10 0.29 0.35 0.22 0.23 0.25 0.26 0.27 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.3	0.08 0.08 0.06 0.15 0.08 0.27 0.59 0.22 0.28 0.39 0.48 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	400 25 750 3500 5000 3000 1000 5000	2764 2129 2753 2550 2340 1405 1965 1630 2000 2500 3000 000 400 523 178 189 226	$\begin{array}{c} 4920\\ 17871\\ 6715\\ 2451\\ 9122\\ 2451\\ 91731\\ 10864\\ 1951\\ 23200\\ 2873\\ 3279\\ 91533\\ 8673\\ 3279\\ 9829\\ 5735\\ 2805\\ 1087\\ 727\\ 4455\\ 5775\\ 1429\\ 1265\\ 2316\\ 1265\\ 2284\\ 1501\\ 2442\\ 598\\ 840\\ 516\\ 844\\ 185\\ 702\\ 575\\ 366\\ 150\\ 1140\\ 6450\\ \end{array}$	2805 1087 727 445 575 30582 20434 155 824 473 2092 756 2316 2284 1501 2442 598 840 516 844 185 702 67 322 59 366 150 1140 4500 6450 4000 4250 14453 3674	1100 700 400 200 200 600 2100 2300 2300 2300 2300 2300 2300 23	97300 61264 29429 82553 80150 50040 59205	0.18 0.18 0.18 0.15 0.13 0.34 0.39 0.98 0.57 0.23 0.31 0.25 0.70 0.34 0.13 0.25 0.23 0.31 0.25 0.21 0.21 0.21 0.21 0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.23
	30-39 AVG 40-49 AVG 50-59 AVG 60-69 AVG 70-79 AVG 80-89 AVG 90-00 AVG	0.05 0.05 0.05 0.05	0.09 0.30 0.27 0.16 0.27	0.86 0.65 0.68 0.79 0.68	1.00 1.00 1.00 1.00 1.00	0.14 0.35 0.32 0.21 0.32	0.09 0.32 0.28 0.17 0.28	50800 17897 4720 1413 2700 21900	5023 2348 1754 279	6984 5658 1487 1382 303 4030	6405 1382 303 4068 9064	6984 7018 1370 1382 303 8067 11231	70139 21119 6213 1686 9154 31868	0.16 0.43 0.26 0.20 0.57 0.28


Table 2: 2001 Nanika River sockeye harvest rate analysis

•			Area 3/4 R	un	Nanika		Notes: 1) A	ea 1-5 weekl	y harvest rati	es come fion	n 2001 run-re	construction	1		
			•				2)	Terrace-Haz	elton harvest	rates from 2	001 IFF catcl	h data and T	yee Esc		
			Other Fish	Catch	0.05			Moricetown							
			Area 3/4/5		0.95										to Moricetown
			ENTER pe		27			Moricetown					e reported so	ickeye catci	hof 1289
			Enter Weel		5		6)	Total stock (alculated as	: esc/(1-cumu	ılative explo	tation)			
~	0004		ENTER SI	0	1.5										
Range	2001					A 4 F	A	A 1 C	* - 11	T . 11	T 1 !				A.L. T
Week	Week	Dini	uland.		Dine	Area 1-5	Area 1-5	Area 1-5	Ter-Haz	Ter-Haz	Ter-Haz	Motown	Motown		Calc. Tot. Stock
Ending	Ending	Stat	Week	code	Рюр	h. r(1)	catch	Tyee esc	h₋r(2)	Catch	Esc	h.r (3)	Catch	Esc	SIDUK
Jun 3	Jun 2	54	22	0	0.0010	0.0000	0,0000	0.0010	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Jn 4-10	Jun 9	61	23	1	0.0072	. 0,0000	0.0000	0.0072	0.0000	0.0000	0.0010	0.0000	0.0000	0.0000	
Jn 11-17	Jun 16	62	24	2	0.0342	0.0039	0.0001	0.0341	0.0000	0.0000	0.0072	0.0000	0.0000	0.0010	
Ju 18-24	Jun 23	ស	25	3	0.1039	0.0172	0.0018	0.1021	0 .000 0	0.0000	0.0341	0.0000	0.0000	0.0072	
Jn 25-1	Jun 30	64	26	4	0.2023	0.0510	0.0103	0.1920	0.0000	0.0000	0.1021	0.0000	0.0000	0.0341	
JI 2-8	Jul 7	71	27	5	0.2526	0.3421	0.0864	0.1662	0.0000	0.0000	0.1920	0.0000	0.0000	0.1021	
JI 9-15	Jul 14	72	28	6	0.2023	0.5490	0.1110	0.0912	0.0010	0.0002	0.1660	0.0000	0.0000	0.1920	
JI 16-22	Jul 21	73	29	7	0.1039	0.5557	0.0577	0.0461	0.0150	0.0014	0.0899	0.3000	0.0498	0.1162	
JI 23-29	Jul 28	74	30	8	0.0342	0.6025	0.0206	0.0136	0.0040	0.0002	0.0460	0.5150	0.0463	0.0436	
JI 30-5	Aug 4	75	31	9	0.0072	0.4874	0.0035	0.0037	0.0100	0.0001	0.01 35	0.6000	0.0276	0.0184	
Au 6-12 Au 13-19	Aug 11	81 82	32 33	10 11	0.0010	0.3813	0.0004 0.0000	0.0006	0.0140	0.0001	0.0036	0.6000	0.0001	0.0054	
Au 20-26	Aug 18 Aug 16	83	33 34	12	0.0001	0.3426		0.0001	0.0150	0.0000	0.0006	0.4500	0.0016	0.0020	
AU 20-26 AU 27-2	Aug 25 Sep 1	63 84	39 35	13	0.0000 0.0000	0.0205 0.0000	0.0000 0.0000	0.0000 0.0000	0.0330 0.0190	0.0000 0.0000	0.0001 0.0000	0.0000 0.0000	0.0000 0.0000	0.0006 0.0001	
Se 3-9	Sep 8	91		14	0.0000	0.0000	0.0000	0.0000	0.0530	0.0000	0.0000	0.0000	0.0000	0.0001	
Se 10-16	Sep 15	51 92	30 37	15	0.0000	0.0000	0.0000	0.0000	0.0330	0.0000	0.000	0.0000	0.0000	0.0000	
Se 17-23	Sep 22		38	15	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Se 24-30	Sep 29	94 94	39	17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
00 21 30		51	55	12	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	
				Total	0.9497		0.2919	0.6578		0.0019	0,6559		0.1334	0.5225	i
				h.r	0.3074 0.0029 0.2034										
				exploit.	0.0503		0.2919			0.0019			0.1334		
				cum explo			0.3422			0.3441			0.4775	F0 0	0050
				cal, fish	486		2820			19			1288	5047	9659

			Area 3/4 Ri	มก	Nanika			ea 1-5 weekt Terrace-Haze						and weekly	Tyee escapema
			Other Fish		0.05			Moricetown							
			Area 3/4/5		0.95										a Maricelawn
			ENTER pe		27								a reported ar	inual harvesi	rate calculated
			Enter Weekly Code ENTERS.D		5 1.5		6)	Total stock o	alcutated as	esc/(1-cumi	Native explo	itation)			
Range	2000														
Week	Week					Area 1-5	Area 1-5	Area 1-5	Ter-Haz	Ter-Haz	Ter-Haz	Motown	Motown	Motown	Calc. Tot.
Ending	Ending	Stat	Week	cede	Prop	h.r (1)	catch	Type esc	h.r (2)	Catch	Esc	hr (3)	Catch	Esc	Stock
Jun 3	Jun 3	54	22	0	0.0010	0.0000	0.0000	0.0010	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Jn 4-10	Jun 10	61	23	1	0.0072	0.0000	0.0000	0.0072	0.0000	0.0000	0.0010	0.0000	0.0000	0.0000	
Jn 11-17	Jun 17	62		2	0,0342	0.0100	0.0003	0.0338	0.1671	0.0012	0.0060	0.0000	0.0000	0.0010	
Ju 18-24	Jun 24	63		Э	0.1039	0.0160	0.0019	0.1020	0.0167	0.0008	D.0333	0.0000	0.0000	0.0060	
Jn 25-1	Jul 1	64		4	0.2023	0.4090	0.0827	0.1195	0.0059	0.0006	0.1014	0.0000	0.0000	0.0333	
J12-8	Jul0	71	27	5	0.2526	0.6030	0.1523	0.1003	0.0287	0.0034	0.1161	0.0000	0.0000	0.1014	
JI9-15	Jul 15	72		6	0.2023	0.5880	0.1185	0.0837	0.0367	0.0037	0.0966	0.0000	0.0000	0.1161	
JI 16-22	Jul 22	73		2	0.1039	0.6670	0.0693	0.0346	0.0314	0.0026	0.0811	0.8500	0.0821	0.0145	
JI 23-29	Jul 29	74		8	0.0342	0.4550	0.0156	0.0188	0.0636	0.0022	0.0324	0.8250	0.0669	0.0142	
JI 30-5	Aug5	75		9	0.0072	0.3770	0.0027	0.0045	0.0564	0.0011	0,0176	0.8000	0.0259	0.0065	
Au 6-12	Aug 12	81	32	10	0.0010	0.2580	0.0003	0.0007	0.138D	0.0005	0.0039	0.7000	0.0123	0.0053	
Au 13-19	Aug 19	82		11	0.0001	0.0110	0.0000	0.0001	0.1547	0.0001	0.0005	0.7000	0.0027	0.0012	
Au 20-26	Aug 26	83		12	0.0000	0.0000	0.0000	0.0000	0.0590	0.0000	0.0001	0.7000	0.0004	0.0002	
Au 27-2 Se 3-9	Sep2	84 91	35 38	13	0.0000 0.0000	0.0000	0.0000	0.0000	0.1034	0.0000	0.0000	0.0000	0.0000	0.0001	
Se 10-16	Sep 9 Sep 16	51 52	30 37	14 15	0.0000	0.0000 0.0000	0.0000 0.0000	0.0000	0.0040 0.0867	0.0000	0.0000	0.0000	0.0000	0.0000	
Se 17-23	Sep 23	93		16	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	
Se 24-30	Sep 30		39	17	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000 0.0000	0.0000 0.0000	
		57		14	0.0000	0.0000	0,0000	0.0000		0.0000	0.0000		0.0000	0.0000	
	Total 0,9497						0.4435	0.5061		0.0181	0.4900		0.1904	0.2996	
			I	hr			0.4671			0.0318			0.3885		
			(expleit.	0.0503		0.4436			0.0181			0.1904		
				cum explo			0.4939			0.5100			0.7004		
				cal, fish	503		4442			161			1906	3000	10013

Table 3: 2000 Nanika River sockeye harvest rate analysis (Updated Oct 10, 2001)

APPENDIX 1. 2001 Morice-Nanika Escapement Estimation

APPENDIX 1 cont'd, 2001 Morice-Nanika Escapement Estimation

. . . .

1

Nanika Ma	irk Rates	-	Actual	Actual	Actual	Avg	Avg	Avg	Calculate
			Observed	Observed	Observed	Observed	Observed	Observed	Mark
		#passes	Unmarked	Marked	Total	Unmarked	Marked	Total	Rate
20-Sep	Reach 1	1	0		0	0	0	0	ç
	Reach 2	1 2	66	32	98	33	16	49	
	Reach 3	11	944	241	1185	86	22	108	
	Reach 4	0	0	0	0	0	0	0	
	Reach 5	1	6	2	8	6	2	8	
	Total		1016	275	1291	125	40	165	0.2
27-Sep	Reach 1	1	2	2	4	2	2	4	
	Reach 2	1	31	28	59	31	28	59	
	Reach 3	1	95	32	127	95	32	127	
ddi a	Reach 4	1	96		118	96	22	118	
	Reach 5	1	4	1	5		1	5	
	Total		228	85	313	228	85	313	0.2
	Total		1244	360	1604	363	125	478	0.2
	<u> </u>		ļ				R	C	
	Adjusted	esc. Above	e Moriceto	<u> </u> wn					
	Peterson	Population I	 Estimate	Point	5047				
				V	351630.49			[
				lower	3885			[
		1		upper	6210				[