Davidson Project Meteorology and Hydrology Baseline Report 2006-2008

May 2009
Project \#750-003-04

BLUE PEARL MINING

Blue Pearl Mining Inc.
Vancouver, British Columbia

Report Prepared by:
Review by:

Greg Norton, M.Sc.
Hydrologist

EXECUTIVE SUMMARY

Executive Summary

The Davidson Project is located on the east flank of Hudson Bay Mountain, approximately nine kilometres outside of the town of Smithers, British Columbia. Blue Pearl Mining Inc. (Blue Pearl) is proposing to develop the deposit as a 2000 t/day underground molybdenum mine.

This meteorology and hydrology baseline report summarizes results from 2006, 2007, and 2008 from the Davidson meteorology station and for 6 hydrometric stations established for the Davidson Project, as well as available data from government operated stations at the Smithers Airport, Hudson Bay Mountain, Bulkley River and Simpson Creek. This report is a supplement to previous baseline reports that were completed for 2005 and the first half of 2006 (Rescan, 2008). The previous reports also included detailed regional analysis of long-term meteorology and hydrology data from stations monitored by Environment Canada and the WSC.

Results observed in 2006 to 2008 cover a wide range of hydro-climatic conditions. In 2006, 1-in-100 year dry conditions were experienced (based on observed runoff for Bulkley River and Simpson Creek). This resulted in record summer low flows for the Bulkley River, Simpson Creek, and other non-glaciated streams in the area. For Glacier Gulch and Toboggan Creeks, watersheds with glaciers in their headwaters, warmer average summer temperatures resulted in more glacial ablation, which helped maintain higher base flows in these streams.

In 2007, 1-in-100 year wet conditions were experienced (based on runoff for Bulkley River and Simpson Creek). Near-record snowpack and delayed on-set of melt resulted in a large freshet response, which produced the highest observed flood flows in the 78 year record for the Bulkley River station at Quick. Similarly, large freshet flows were observed at Project specific gauges. Secondary peak flows were also observed in July and August, especially for the Glacier Gulch Creek stations (GG4a and GG3), due to a combination of warm temperatures followed by rain storms.

In contrast, 2008 produced near average runoff conditions, as well as relatively moderate peak and low flows.

Davidson Meteorology and Hydrology Baseline Report 2006-2008
 TABLE OF CONTENTS

Executive Summary
Table of Contents iii
List of Appendices iv
List of Figures v
List of Tables vi
List of Plates vi

1. Introduction 1-1
1.1 Project Setting 1-1
1.1.1 Climate 1-1
1.1.2 Hydrology 1-1
2. Methodology 2-1
2.1 Meteorology 2-1
2.1.1 Available Regional Data 2-1
2.1.2 On-Site Data Collection 2-1
2.2 Hydrology 2-3
2.2.1 Available Regional Data 2-3
2.2.2 On-Site Data Collection 2-5
3. Results and Discussion 3-1
3.1 Meteorology 3-1
3.1.1 Temperature 3-1
3.1.2 Wind 3-1
3.1.3 Precipitation 3-7
3.2 Hydrology 3-13
3.2.1 Stage-Discharge Curves 3-13
3.2.2 Hydrographs 3-13
3.2.2.1 Runoff 3-13
3.2.2.2 Low Flows 3-39
3.2.2.3 Peak Flows 3-39
3.2.3 Flow Monitoring at A1 (1066 Adit) 3-39
4. Summary 4-1
References R-1

LIST OF APPENDICES

Appendix 3.1-1 Daily Meteorological Data from Davidson Met Station

Appendix 3.2-1 Summary of Daily Flow: KC1
Appendix 3.2-2 Summary of Daily Flow: KC4
Appendix 3.2-3 Summary of Daily Flow: KC3/16
Appendix 3.2-4 Summary of Daily Flow: GG3
Appendix 3.2-5 Summary of Daily Flow: GG4a
Appendix 3.2-6 Summary of Daily Flow: TC2
Appendix 3.2-7 Summary of Daily Flow: A1

LIST OF FIGURES

Figure Page
1.1-1 Map of Bulkley River Watershed 1-3
1.1-2 Davison Project Meteorology and Hydrology Study Area 1-4
3.1-1 Davidson Station Daily Temperature January 1, 2006 to November 16, 2008 3-2
3.1-2 Smithers Airport Daily Temperature January 1, 2006 to December 31, 2008 3-3
3.1-3 2006 Wind Roses at Davidson Meteorology Station 3-4
3.1-4 2007 Wind Roses at Davidson Meteorology Station 3-5
3.1-5 2008 Wind Roses at Davidson Meteorology Station 3-6
3.1-6 Daily Total Precipitation 3-8
3.1-7 Historical Annual Precipitation at the Smithers Airport (1943 to 2008) 3-9
3.1-8 Davidson Station Snow Depth November 1, 2007 to May 31, 2008 3-11
3.1-9 Precipitation Gradient Based on Data from Smithers Airport, Davidson Meteorology Station, and Hudson Bay Mountain Snow Course 3-12
3.2-1 KC1 Stage Discharge Curve 3-14
3.2-2 KC3/16 Stage Discharge Curve 3-15
3.2-3 KC4 Stage Discharge Curve 3-16
3.2-4 GG4a Stage Discharge Curve 3-17
3.2-5 GG3 Stage Discharge Curve 3-18
3.2-6 TC2 Stage Discharge Curve 3-19
3.2-7 2006 to 2008 Hydrographs: Bulkley River at Quick. 3-20
3.2-8 2006 to 2008 Hydrographs: Simpson Creek 3-23
3.2-9 2006 to 2008 Hydrographs: KC1 3-25
3.2-10 2006 to 2008 Hydrographs: KC4 3-25
3.2-11 2006 to 2008 Hydrographs: KC3/16 3-27
3.2-12 2006 to 2008 Hydrographs: GG3 3-29
3.2-13 2006 to 2008 Hydrographs: GG4a 3-31
3.2-14 2006 to 2008 Hydrographs: TC2 3-33
3.2-15 2006 to 2008 Hydrographs: A1 3-41
LIST OF TABLES
Table Page
2.2-1 WSC Hydrometric Stations in Hydrological Zones 8 and 9 2-4
2.2-2 Davidson Baseline Study Hydrometric Stations 2-5
3.1-1 Comparison of Mean Monthly Temperatures $\left({ }^{\circ} \mathrm{C}\right)$ with Climate Normals (1971 to 2000) 3-1
3.1-2 Comparison of Monthly Total Precipitation (mm) with Climate Normals (1971 to 2000) 3-7
3.1-3 Intensity-Duration-Frequency Precipitation Analysis (1971 to 1990) for Smithers Airport. 3-10
3.2-1 Summary Statistics of Hydrological Parameters for 2006, 2007 and 2008 3-20
3.2-2 Summary of Calculated Monthly Runoff (mm) 3-35
3.2-3 Annual Runoff Return Period Estimates for the Bulkley River and Simpson Creek 3-38
LIST OF PLATES
Plate Page
2.1-1 Photo of Davidson Meteorology Station 2-2

1. Introduction

The Davidson Project is located on the east flank of Hudson Bay Mountain, approximately nine kilometres outside of the town of Smithers, British Columbia. Blue Pearl Mining Inc. (Blue Pearl) is proposing to develop the deposit as a 2000 t /day underground molybdenum mine.

In 2005, Rescan initiated a comprehensive baseline monitoring program to support Project development, and to provide a basis for conducting an environmental assessment. This included establishing meteorology and hydrology monitoring stations in the Project area. Baseline studies were completed for both meteorology and hydrology, and were included as part of Blue Pearl Mining Inc.'s Application for an Environmental Assessment Certificate, which was submitted to the BC Environmental Assessment Office in September 2008 (Rescan, 2008; see Appendices D1 and F1). These baseline reports include results of on-site monitoring for 2005 and the first half of 2006, as well as a detailed regional analysis of long-term meteorology and hydrology data from stations monitored by Environment Canada and the Water Survey of Canada (WSC).

Since the completion of the original baseline reports, additional on-site data has been collected. This report presents baseline meteorology and hydrology data collected on-site as well as from relevant regional stations between 2006 and 2008.

1.1 Project Setting

1.1.1 Climate

There is a strong precipitation gradient between the west coast and Smithers, which is approximately 200 km inland. As moist maritime air masses from the coast move inland, they are forced to release much of their moisture on the windward slopes of Coast Mountains before reaching the Project area. Average annual precipitation at the Smithers Airport is 513 mm , compared with $1,322 \mathrm{~mm}$ at Terrace and $2,594 \mathrm{~mm}$ at Prince Rupert (Environment Canada, 2006). Maximum precipitation occurs in the fall and early winter due to the frequent development of Pacific storms.

Being on the lee side of the mountains, the air in the region is dry, with cold winters and mild summers. Extreme temperatures range between -40° and $35^{\circ} \mathrm{C}$; however, average monthly temperatures range from -9° to $15^{\circ} \mathrm{C}$ (Environment Canada, 2006). Clear skies and stable air are common for the area.

Winds are generally from the southeast, flowing down the Bulkley Valley, except in May, June and July, when winds are typically from the northwest, flowing up the valley. Local topography may have significant effects on microscale weather patterns. For example, a mountain and valley circulation caused by differential heating of the surface air in the valley may form, with winds flowing up the mountainside during the day and down the mountainside at night.

1.1.2 Hydrology

The Davidson Project is located in the Kathlyn Creek watershed. Mine infrastructure will potentially affect Kathlyn and Glacier Gulch creeks. Mine water will be discharged into the

Bulkley River following treatment. The study area contains watersheds draining the east side of Hudson Bay Mountain and the Bulkley River.

The Bulkley River is a tributary of the Skeena River, which drains into the Pacific Ocean near Prince Rupert (Figure 1.1-1). The Bulkley River has a large watershed (approximately $9,000 \mathrm{~km}^{2}$ near Smithers) that supports populations of chinook and coho salmon, rainbow and cutthroat trout, Dolly Varden and steelhead. The fishery is important to local First Nations groups and the economy of the area. The streamflow on the Bulkley River has been monitored by the Water Survey of Canada (WSC) since 1915; therefore, a robust baseline dataset is available.

Simpson, Kathlyn, Glacier Gulch and Toboggan creeks - four watersheds that drain across alluvial fans at the base of Hudson Bay Mountain - were also included as part of the study area (Figure 1.1-2). Though the catchments are relatively small, they are in high energy environments that can produce relatively high flow rates and stream velocities. Flows in Glacier Gulch and Toboggan creeks are also influenced by glaciers in their headwaters.

The Kathlyn Creek and Glacier Gulch Creek watersheds have been affected by the historical exploration work at the site, and may be further affected by the proposed development. Kathlyn Creek flows down the mountainside draining into Lake Kathlyn. Based on a search of the Land and Water B.C. database and a survey of the local residents, a total of 35 households and businesses were identified that draw water from streams in the Kathlyn Creek watershed upstream of the lake. Below the lake, Kathlyn creek continues south where it flows into Chicken Creek, which drains into the Bulkley River just downstream of Smithers. Simpson Creek is a tributary that flows into Kathlyn Creek between Lake Kathlyn and Chicken Creek. The Simpson Creek watershed will not be affected by the proposed Project, but serves as a reference station. The WSC has operated a hydrometric monitoring station on Simpson Creek since 1969, providing a good dataset that can be used to prepare long-term average flow estimates applicable to other small watersheds in the study area.

Glacier Gulch Creek flows down the mountainside, then turns north and drains into Toboggan Lake. Groundwater from the existing 1066 adit currently discharges into Glacier Gulch Creek. Further downstream, a diversion structure diverts up to $0.34 \mathrm{~m}^{3} / \mathrm{s}\left(12 \mathrm{ft}^{3} / \mathrm{s}\right)$ of flow from Glacier Gulch Creek to Club Creek according to a water licence held by the Regional District of Bulkley Nechako. Club Creek drains into Lake Kathlyn. From May to October, the Lake Kathlyn Protection Society maintains and operates the diversion to help oxygenate Lake Kathlyn and prevent eutrophication, which was a problem in the early 1990s. Four households were identified with water licenses on Club Creek.

Toboggan Creek drains down the mountainside and reaches the Bulkley valley floor just downstream of Toboggan Lake. The watershed area upstream of the valley floor will not be affected by the proposed Project and serves as a second reference watershed. Downstream of Toboggan Lake, Toboggan Creek flows north and eventually joins the Bulkley River, approximately 28 km downstream of the Chicken Creek confluence.

2. METHODOLOGY

2. Methodology

2.1 Meteorology

2.1.1 Available Regional Data

Environment Canada has operated a meteorology station at the Smithers Airport dating back to 1942. The airport is located approximately 4.5 km east of the Project area, on the floor of the Bulkley Valley; therefore, a robust historical dataset is available for the general area. Hourly and daily data from this station were downloaded from the Environment Canada website (http://climate.weatheroffice.ec.gc.ca/Welcome_e.html). Climate Normals for this station (19712000) were also downloaded.

The BC Ministry of Environment (MOE) has established a snow course station on Hudson Bay Mountain (4B03A), which has been active since 1972. Data from this station was downloaded from the River Forecast Center website (http://www.env.gov.bc.ca/rfc/).

2.1.2 On-Site Data Collection

A meteorology station (Plate 2.1-1) was commissioned in October of 2005 in order to capture the local meteorological conditions within the Project area. The Davidson meteorology station is located at an elevation of approximately 700 metres above sea level (masl) at the first switchback on the access road to the 1066 m Adit (Figure 1.1-2). The station was sited according to guidelines set by Environment Canada (i.e., Meteorological Services of Canada (MSC) Guidelines for Co-operative Climatological Autostations; MSC 2004). Environment Canada has adopted and, wherever possible, follows standards set by the World Meteorological Organization (WMO, 1983). The Environment Canada guidelines were established to promote standardization and describe practices, procedures and specifications for proper siting of instruments, precision and accuracy of measurements and archive formats.

The Davidson meteorology station is automated and programmed according to the standard set by the MSC. Automatically logged meteorological data include:

1. two minute wind speed, wind direction and standard deviation of wind direction;
2. hourly average wind speed, wind direction and standard deviation of wind direction;
3. hourly average air temperature;
4. hourly average relative humidity;
5. total precipitation for the last hour; and
6. Hourly average snow depth.

Each day at midnight, the following data was also automatically recorded:

1. daily maximum and minimum air temperature;
2. daily maximum wind speed, wind direction at maximum speed and time;
3. total daily precipitation; and
4. diagnostic information.

Plate 2.1-1. Photo of Davidson Meteorology Station.
The primary concerns when selecting an appropriate location for the meteorological station were to avoid obstructions (e.g., future infrastructure, trees, etc.) that would bias the wind speeds and directions, and to avoid shaded areas that would limit full exposure of the solar panel to the sunlight. MSC guidelines suggest siting the station in a clearing with a radius of at least ten times the height of any nearby building, tree or other obstruction. Finding a location that met these guidelines was not possible, due to the heavy forest cover on the mountainside. Wind speed and direction are likely biased at the current location, the degree to which is not known; however, considering the amount of timber that would have to be harvested in order to meet the MSC guidelines, further clearing in the area was not prudent.

The station's sensors were mounted on a 10 m high aluminium tower that was anchored to a concrete base and strengthened with guy wires. Wind speed is measured in metres per second $(\mathrm{m} / \mathrm{s})$ and wind direction in degrees from true north by a RM Young Model 05305 air quality wind sensor.

The temperature and relative humidity sensors are combined into one unit (Campbell Scientific Model HMP45C212). The combination sensor was mounted on the tower protected from direct radiation by a multi-plate solar radiation shield. Air temperature is measured in degrees Celsius and relative humidity in percent.

Precipitation is measured with a Texas Electronics Model TE525WS tipping bucket rain gauge (TBRG). The TBRG is mounted on a vertical pole beside the 10 m tower and monitors precipitation in mm . For winter operation (October to April), the TBRG is converted (using the Campbell Scientific CS705 adapter) to enable it to monitor snow-water-equivalent (SWE) precipitation. A solution of polypropylene glycol melts snow precipitation and the corresponding solution volume is recorded with the TBRG mechanism. A Campbell Scientific Model SR50 Sonic Ranger is mounted to the 10 m tower and monitors the total depth of the snow pack on the ground.

The sensors for the meteorology station are connected to a Campbell Scientific CR10X datalogger that controls the operation of the station. The datalogger's program monitors the sensors every five seconds and generates hourly and daily averages. The hourly and daily averages are stored in a memory storage module connected to the CR10X datalogger. The modules are changed out on a regular basis and brought back to the office for downloading. The station is powered with a 50 Watt solar panel and a 12 volt deep cycle marine battery, with the entire station grounded to prevent lightning from damaging the electronics.

Regular visits were conducted by field technicians to conduct diagnostic of all sensors and download data. The downloaded data is visually inspected for consistency and any problems are noted before entering data into the database. Due to a malfunction with the snow depth sensor, the measured snow depths from January 16, 2007 to July 11, 2007 are unreliable making them unusable in the analysis. A problem with the precipitation gauge was discovered on December 17, 2007 during a scheduled maintenance of the station. Through investigating the data it was deduced that the problem occurred in early September resulting in the data from September to December 2007 being unusable. The wind sensor appears to have frozen on three occasions, resulting in no measurements during these time periods. The amount of time that the sensor was frozen ranged from 5 hours to 4 days.

2.2 Hydrology

2.2.1 Available Regional Data

In B.C., there have been a number of studies that have attempted to divide the province into regions of hydrological similarity. Coulson and Obedkoff (1998) analyzed data from over 400 hydrology stations throughout B.C. and identified 17 hydrological zones for the province. Obedkoff (2001) then completed a more detailed analysis of the Skeena region of B.C., with a further supplement in 2003. From Obedkoff (2003), the Davidson study area is located within hydrological Zone 8, the Nechako Plateau. However, it lies right along the border between Zone 8, and Zone 9 (the Southern Hazelton Mountains). Zone 9 is closer to the coast, and therefore generally receives higher precipitation, which is reflected in higher annual runoff totals. Obedkoff included the Bulkley River in Zone 9.

WSC data for unregulated (i.e., natural) streams are available for 12 hydrometric stations (9 active) in Zone 8 and for 8 stations (7 active) in Zone 9 (Table 2.2-1). Watershed areas for the stations range from 10.8 to $8,940 \mathrm{~km}^{2}$. Six of the watersheds in Zone 8 have areas $<200 \mathrm{~km}^{2}$ and may be similar to the small headwater watersheds in the study area. Data from these stations were used in the original baseline report (Rescan, 2006) to develop estimates of key hydrological parameters, including runoff, peak flows, and low flows.

Table 2.2-1
WSC Hydrometric Stations in Hydrological Zones 8 and 9

Station Name	Station ID	Period of Record	Drainage Area ($\mathbf{k m}^{2}$)	Median Elevation (m)	Average Annual Runoff (mm)
Zone 8 (Nechako Plateau)					
Babine River	08EC013	1972 to present	6,790	939	233
Buck Creek	08EE013	1973 to present	580	1,110	232
Driftwood River	08JD006	1979 to 1995	406	1,110	646
Goathorn Creek	08EE008	1960 to present	132	1,100	381
Maclvor Creek	08JA016	1976 to 1995	53.4	1,500	493
Nautley River	08JB003	1945 to present	6,030	955	155
Pinkut Creek	08EC004	1929 to present	862	1,130	194
Richfield Creek	08EE009	1964 to 1974	173	1,040	291
Simpson Creek	08EE012	1969 to present	13.2	1,340	677
Station Creek	08EE028	1985 to present	10.8	1,450	817
Stellako River	08JB002	1929 to present	3,600	949	171
Two Mile Creek	08EE025	1982 to present	20	696	199
Zone 9 (Southern Hazelton Mountains)					
Bulkley River at Quick	08EE004	1930 to present	7,360	1,050	566
Bulkley River near Smithers	08EE005	1915 to 1971	8,940		
Kiseguecia River	08EF004	1960 to 1971	728	1,080	671
Morice River	08ED002	1929 to present	1,910	1,200	1,217
Nadina River	08JB008	1964 to present	399	1,060	487
Nanika River	08EE020	1950 to present	741	1,340	1,126
Telkwa River	08EF005	1975 to present	368	1,230	1,275
Zymoetz River	08ED001	1963 to present	2,980	1,380	1,231

Two of the regional stations are especially important for the Davidson Project: Bulkley River at Quick (Station ID 08EE004) and Simpson Creek (Station ID 08EE012).

Historical flows have been monitored at a number of locations along the Bulkley River; however, the only currently active station is the Bulkley River at Quick. This station is located approximately 23 km upstream of the town of Smithers. Data is available from this station from 1931 to present, making it a very robust baseline dataset.

At Simpson Creek, flow data are available from 1970 to present, providing a second robust dataset.

2.2.2 On-Site Data Collection

Automated hydrometric stations were constructed at seven locations within the Project area (Table 2.2-2; see Figure 2.1-1). To characterize general flow conditions on Hudson Bay Mountain, stations were established at the base of the mountain on Kathlyn Creek (KC1), Glacier Gulch Creek (GG3), and Toboggan Creek (TC2) in April 2005. A station was constructed to monitor discharge from the $1,066 \mathrm{~m}$ exploration Adit (A1) in September 2005; to improve results at this location a V-notch weir was added in April 2006. Also in April 2006, an additional station was established on Glacier Gulch Creek (GG4a), upstream of the Club Creek diversion, and two additional stations were established in the Kathlyn Creek drainage (KC4 and KC3/16) in order to monitor flows near residential water supply sources.

Table 2.2-2
 Davidson Baseline Study Hydrometric Stations

Hydrometric Station	Drainage Area (km^{2})	Median Elevation (m)	Monitoring Period	Comments
GG3	14.5	1,282	April 2005 to present	At base of Hudson Bay Mountain
GG4a	9.0	1,773	April 2005 to present	Upstream of Club Creek Diversion
TC2	24.9	1267	April 2005 to present	Reference stream; at base of Hudson Bay Mountain
KC1	7.5	814	April 2005 to present	At base of Hudson Bay Mountain
KC3/16	1.3	n/a	April 2006 to present	Downstream of transmission line; upstream of wetland
KC4	1.1	n/a	April 2006 to present	Upstream of GGWG well
Adit	n/a	n/a	September 2005 to present	Station monitors discharge from the existing 1066 m Adit; V-notch weir installed on April 12, 2006
Simpson Creek	13.2	1,325	1970 to present	Monitored by Water Survey of Canada
Bulkley River at Quick	7,360	1,050	1930 to present	Monitored by Water Survey of Canada

Each hydrometric station consists of a staff gauge, INW Model PS9800 pressure transducer and Terrascience Elf2 datalogger. The staff gauge is a semi-permanent installation that provides a visual indication of water depths in the stream. The combination of pressure transducer and datalogger automatically collect a water depth reading at 10 minute intervals.

Water depth readings are subsequently converted to streamflow estimates by use of a stagedischarge curve. A stage-discharge curve is an empirical relationship between water depth (stage) and discharge. In general, a minimum of five to seven manual flow measurements over a range of discharges are required to develop a reliable stage-discharge curve.

Manual streamflow monitoring involves measuring the velocity and depth of the water across a cross-section at regular intervals. The cross-sectional area of the stream $\left(\mathrm{m}^{2}\right)$ and the velocity of the water (m / s) are used to calculate discharge ($\mathrm{m}^{3} / \mathrm{s}$). Measurements were taken using a handheld Swoffer flow meter. A minimum of ten velocity and depth measurements were taken across the cross-section at each site; in most cases the number of measurements taken at each cross
section exceeded ten. The accuracy of manual flow measurements is affected by flow and channel conditions at each site, but error is typically less than 15%.

The stage-discharge curve equations are calculated using standard methods outlined by the United States Geological Survey (USGS; Rantz et al., 1982). The natural logarithm of both stage and discharge is calculated, and a line is fitted through the logged data with least squares linear regression. The regression coefficients are then back transformed to produce a power function.

3. Results and Discussion

3.1 Meteorology

3.1.1 Temperature

Daily temperatures recorded at the Davidson meteorology station over the monitoring period January 1, 2006 to November 16, 2008 are summarized in Figure 3.1-1 (and in Appendix 3.1-1). The minimum temperature recorded over that period was $-28.0^{\circ} \mathrm{C}$, on January 28, 2008; the maximum temperature recorded was $30.7^{\circ} \mathrm{C}$ on July 12 , 2007. A similar record from the Smithers Airport from January 1, 2006 through December 31, 2008 is summarized in Figure 3.1-2.

Mean monthly temperatures for the monitoring period are compared with climate normals for Smithers Airport in Table 3.1-1. The observed values are well within historical values.

Table 3.1-1
Comparison of Mean Monthly Temperatures (${ }^{\circ} \mathrm{C}$) with Climate Normals (1971 to 2000)

	2006		2007		2008		Smithers Climate Normals (1971 - 2000)
	Davidson	Smithers	Davidson	Smithers	Davidson	Smithers	-8.9
Jan	-2.6	-2.9	-5.3	-5.8	-7.7	-8.9	-4.9
Feb	-4.9	-4.8	-3.4	-3.1	-4.3	-4.2	0.0
Mar	-1.8	-1.4	-0.5	0.6	-0.5	0.3	4.8
Apr	3.9	5.1	2.1	3.6	1.8	3.1	9.3
May	8.3	9.4	7.2	8.4	8.8	10.7	12.6
Jun	13.2	13.9	10.7	12.3	9.9	11.3	15.0
Jul	14.5	15.9	13.8	15.4	11.9	13.5	14.6
Aug	12.1	13.7	12.0	13.7	12.9	14.9	9.9
Sep	9.3	10.9	8.4	10.1	8.5	10	4.5
Oct	2.7	3.7	3.5	5.3	2.8	4.2	-2.3
Nov	-6.8	-6.1	-2.6	-1.9	0.6^{1}	0.0	-7.5
Dec	-3.0	-3.5	-8.5	-9.8	$\mathrm{n} / \mathrm{a}^{2}$	-13.0	3.9
Mean Annual	3.7	4.5	3.1	4.1	n / a	3.5	

1. Average from Nov 1 to 16
2. $n / a=n o t ~ a v a i l a b l e$

3.1.2 Wind

Wind roses were generated for the Davidson station (Figure 3.1-3 to 3.1-5). Results were very similar between years, and were consistent between winter and summer, with winds typically from the SSW, flowing down the side of Hudson Bay mountain along the axis of the Kathlyn Creek valley.

Davidson Station Daily Temperature January 1, 2006 to November 16, 2008

Smithers Airport Daily Temperature
January 1, 2006 to December 31, 2008
FIGURE 3.1-2

BLUE PEARL MINING

Calms included at center.
Rings drawn at 5% intervals.
Wind flow is FROM the directions shown.
No observations were missing.

Calms included at center.
Rings drawn at 5% intervals.
Wind flow is FROM the directions shown.
No observations were missing.

Calms included at center.
Rings drawn at 5% intervals.
Wind flow is FROM the directions shown.
No observations were missing.

The wind speeds at the Davidson station are low, and there is consistently a high percentage of calm conditions ($\sim 67 \%$). It is likely that the wind speeds at the Davidson station are dampened by trees in the area; due to the heavy forest cover on the mountainside, it was not possible to find a location that met all of the MSC siting guidelines. However, the station is in a location that is likely representative of the wind conditions that would be experienced at the proposed loadout facility, which will also be surrounded by forest cover.

3.1.3 Precipitation

Table 3.1-2 and Figure 3.1-6 summarize the total precipitation values for the Davidson and Smithers Airport meteorology stations. Data are presented based on water year, assumed to be November 1 to October 31. A problem was encountered with the precipitation gauge at the Davidson station such that data from the start of the 2007-2008 water year (November 1 to December 12, 2007) were unreliable. For this period, it is assumed that precipitation at the Davidson station was equivalent to observations at the Smithers airport. This is expected to be an under-estimation. Precipitation generally occurs simultaneously at the two stations, though more is recorded at the Davidson station, especially during the winter months.

Figure 3.1-7 summarizes historical annual precipitation observed at the Smithers Airport. The years 2005-2006, 2006-2007 and 2007-2008 fit well within the range of historical observations, and rank 54/64, 8/64, and 50/64, respectively (ranked highest to lowest).

> Table 3.1-2
> Comparison of Monthly Total Precipitation (mm) with Climate Normals $(1971$ to 2000$)$

	2005-2006						
	Davidson	Smithers	2006 - 2007				
Davidson	2007 - 2008		Smithers Climate Smithers	Davidson	Smithers	Normals (1971 - 2000)	
Nov	51.6	31.7	86.1	45.0	$\mathrm{n} / \mathrm{a}^{1}$	36.1	55.6
Dec	48.8	33.8	68.3	41.2	n / a	33.8	50.1
Jan	51.1	28.8	93.7	56.4	32.8	26.4	50.1
Feb	22.9	5.4	51.8	35.2	56.9	39.0	26.8
Mar	17.5	14.4	50.8	18.2	35.6	24.8	20.4
Apr	26.4	5.2	31.2	24.6	12.2	2.3	21.3
May	44.4	41.8	52.8	44.0	33.0	27.0	36.0
Jun	39.4	50.4	87.4	81.0	30.0	33.7	48.8
Jul	44.7	44.0	41.4	61.8	43.2	39.3	45.2
Aug	19.3	18.2	27.9	80.6	72.4	73.8	42.9
Sep	59.7	52.0	n/a	29.0	43.7	49.6	51.2
Oct	63.0	89.5	n/a	90.4	65.5	49.7	64.4
Annual 2	488.8	415.2	710.8	607.4	495.2	435.5	512.8

1. $\mathrm{n} / \mathrm{a}=$ not available
2. Where data are not available for the Davidson station, annual total was calculated by assuming that month was equivalent to Smithers Airport total. This is likely an underestimate.

The high rank of the 2006-2007 year was driven by a large winter snowpack. At the Hudson Bay Mountain snow course, maximum snowpack was recorded as 822 mm snow-water-equivalent on May 15. This was the second highest snowpack on record, and 186% above the expected normal $(441 \mathrm{~mm})$ for the station.

November 1, 2007 to October 31, 2008

Historical Annual Precipitation

Figure 3.1-8 shows snow depth accumulation at the site for the 2007-2008 winter at the Davidson meteorology station. Due to a malfunction of the snow depth sensor, a similar graph could not be produced for the 2006-2007 winter. For 2007-2008, maximum snow depth was 0.95 m on March 3. Snowpack melt began around April 1, and was complete by May 5.

To assess precipitation gradients on Hudson Bay Mountain, data from the Smithers Airport, Davidson Station, and the Hudson Bay Mountain snow course were plotted against elevation (Figure 3.1-9). Data are presented for 2005-2006, 2006-2007, and 2007-2008. Maximum snow-water-equivalent (SWE) for each year was used from the Hudson Bay Mountain snow course. The date of maximum snow pack ranged from April 1 to May 15. To provide an equivalent measure from the two meteorology stations, total precipitation from October 1 to the date of maximum snowpack was calculated. This is based on an assumption that snow begins to accumulate on the mountain at the beginning of October (though it may be observed as rain at lower elevations). A trend line was fit through the data points for each year. The slopes of the trend lines are similar between years, with an average slope of $0.367 \mathrm{~mm} / \mathrm{m}$. This corresponds to a 36.7 mm increase in precipitation for every 100 m increase in elevation. Based on 513 mm average annual precipitation at the Smithers Airport, this represents a 7% increase in precipitation per 100 m .

The maximum hourly precipitation recorded at the Davidson meteorology station over the monitoring period was 15.2 mm on April 24, 2006; the maximum daily precipitation was 33.5 mm on June 2, 2006. While storms in June are not unusual, based on the Smithers Airport climate normals, the most extreme rainfall events generally occur between November and January.

The maximum precipitation results from the Davidson station were compared to an intensity-duration-frequency (idf) analysis from the Smithers Airport (1971 to 1990) as derived by Environment Canada (Table 3.1-3). The maximum hourly event was approximately a 1 in 10 year event, while the maximum daily event corresponds with between a 1 in 2 (average) and 1 in 5 year event.

Table 3.1-3
 Intensity-Duration-Frequency Precipitation Analysis (1971 to 1990) for Smithers Airport

	Return Period Rainfall Amounts (mm)					
Duration	$\mathbf{2 ~ y r}$	$\mathbf{5} \mathbf{~ y r}$	$\mathbf{1 0} \mathbf{~ y r}$	$\mathbf{2 5} \mathbf{~ y r}$	$\mathbf{5 0} \mathbf{~ y r}$	$\mathbf{1 0 0} \mathbf{~ r r}$
$5 \mathbf{~ m i n}$	2.6	4.0	4.9	6.1	6.9	7.8
$\mathbf{1 0 ~ m i n}$	3.8	6.0	7.6	9.5	10.9	12.3
$\mathbf{1 5 ~ m i n}$	4.5	6.9	8.4	10.4	11.9	13.3
$\mathbf{3 0 ~ m i n}$	6.4	9.0	10.7	12.9	14.5	16.1
$\mathbf{1} \mathbf{~ h r}$	8.6	12.2	14.5	17.5	19.7	21.9
2 hr	11.3	15.6	18.5	22.1	24.8	27.4
6 hr	18.6	24.4	28.2	33.1	36.7	40.2
$\mathbf{1 2 ~ h r ~}$	23.7	31.2	36.2	42.5	47.2	51.8
$\mathbf{2 4 ~ h r}$	29.9	39.0	45.1	52.8	58.5	64.2

Precipitation Gradient Based on Data from Smithers Airport, Davidson Meteorology Station, and Hudson Bay Mountain Snow Course

3.2 Hydrology

3.2.1 Stage-Discharge Curves

Using results from manual flow measurements collected at each station, stage-discharge curves were generated for each monitoring station (Figures 3.2-1 to 3.2-6).

The stage discharge curves are well defined at low and moderate flows; however, due to a lack of flow measurements during high flow periods, the curves are less defined for these levels. For KC3/16 and GG4a the flow measurements do a reasonable job of covering the observed range in flow. For KC4, GG3 and TC2, substantial extrapolation is required to estimate high flows, resulting in a high level of uncertainty during high flow periods. Attempts were made in 2007 and 2008 to collect flow measurements during the high flow period; unfortunately the timing of field visits were ahead of the main period of melt.

The stage-discharge equation for A1 is defined by the weir equation. For a 60° weir, this equation is: $\mathrm{Q}=0.787 \mathrm{~h}^{2.5}$; where h is in meters, and Q in $\mathrm{m}^{3} / \mathrm{s}$.

3.2.2 Hydrographs

Figures 3.2-7 to 3.2-14 summarize the observed hydrographs for the years 2006, 2007, and 2008 (daily flows are also tabulated in Appendices 3.2-1 to 3.2-6). Table 3.2-1 summarizes key data from these graphs. Results for A1 are presented separately in Section 3.2.3.

3.2.2.1 Runoff

Runoff is expressed as a depth of water in mm . It is calculated by dividing the total flow volume $\left(\mathrm{m}^{3}\right)$ observed at a monitoring station with the drainage area $\left(\mathrm{m}^{2}\right)$ flowing into the site. Since it is normalized by watershed area, runoff is a useful measure for comparing the hydrological response of different watersheds. May to October runoff is summarized in Table 3.2-1 to allow comparison of all stations over a consistent monitoring period. Table 3.2-2 summarizes observed monthly runoff for each station.

The 2006, 2007 and 2008 water years resulted in wide ranging runoff conditions for all watersheds. For both the Bulkley River and Simpson Creek, 2006 observed runoff represents approximately 1 -in-100 year dry conditions (Table 3.2-3); while 2007 observed runoff represents the opposite extreme, with approximately $1-i n-100$ year wet conditions. The 2008 water year was near average.

KC3/16 consistently experienced the lowest runoff. This is a very small stream with little contributing area, and relatively low elevation. Snow melts out of this basin early in the spring, and there is little source area to supply baseflow. Flow is near zero by the end of June, with minor response to individual rain storms through the summer.
$\mathrm{KC1}$ and KC 4 exhibit runoff conditions that are similar in both timing and magnitude to Simpson Creek. This is to be expected given that they are neighbouring watersheds with similar contributing area and elevation characteristics. These streams exhibit strong freshet response with highest runoff occurring in May or June, typical of a snow melt dominated regime.

view downstream

view downstream

view downstream

view downstream

view upstream

view downstream

Table 3.2-1
Summary Statistics of Hydrological Parameters for 2006, 2007 and 2008

Station	Monitoring Period	Runoff		Peak Daily Average			Peak Instantaneous Flow			June-Sept 7-day Low Flow		
		Annual (mm)	May - Oct (mm)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Yield (L/s/km ${ }^{2}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Yield (L/s/km ${ }^{2}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Yield (L/s/km ${ }^{2}$)
Bulkley River at Quick												
2006	all year	392	316	3-Jun-06	450	61	3-Jun-06	460	63	23-Sep-06	54	7.4
2007	all year	826	696	8-Jun-07	1020	139	8-Jun-07	1060	144	27-Sep-07	83	11.3
2008	all year	510	410	30-May-08	577	79	n/a	n/a	n/a	30-Sep-08	77	10.5
Simpson Creek												
2006	all year	385	355	2-Jun-06	2.52	191	3-Jun-06	3.42	456	17-Sep-06	0.043	3.2
2007	all year	936	855	4-Jun-07	5.59	423	7-Jun-07	6.19	825	20-Sep-07	0.084	6.4
2008	all year	622	547	19-May-08	2.01	152	n/a	n/a	n/a	26-Sep-08	0.18	13.3
KC1												
2006	12 Apr-13 Nov	n/a	265	3-Jun-06	0.64	86	3-Jun-06	0.77	103	29-Aug-06	0.007	1.0
2007	26 Apr-20 Nov	n/a	645	4-Jun-07	0.87	116	4-Jun-07	0.88	117	22-Sep-07	0.13	17.9
2008	16 Apr-30 Nov	n/a	359	17-May-08	0.61	81	16-May-08	0.67	89	9-Sep-08	0.065	8.6
KC4												
2006	11 Apr - 17 Nov	n/a	313	3-Jun-06	0.08	72	3-Jun-06	0.16	22	19-Sep-06	0.006	5.3
2007	26 Apr-1 Dec	n/a	1095	5-Jun-07	0.26	239	5-Jun-07	1.28	171	26-Sep-07	0.032	29.4
2008	16 Apr-30 Nov	n/a	426	16-May-08	0.09	84	16-May-08	0.26	34	26-Sep-08	0.014	12.4
KC3/16												
2006	17 Apr-17 Nov	n/a	48	3-Jun-06	0.05	39	3-Jun-06	0.07	9	21-Jul-06	0.001	0.8
2007	26 Apr - 31 Oct	n/a	250	3-May-07	0.10	79	3-May-07	0.11	14	1-Aug-07	0.007	5.0
2008	20 Apr-30 Nov	n/a	108	16-May-08	0.05	35	16-Apr-08	0.11	14	9-Sep-08	0.002	1.8
GG3												
2006	13 Apr-18 Nov	n/a	906	6-Jul-06	2.90	196	2-Jun-06	4.72	629	19-Sep-06	0.31	21.1
2007	9 May-31 Oct	n/a	863	4-Jun-07	5.93	401	16-Aug-07	8.30	1107	30-Sep-07	0.097	6.6
2008	16 Apr-30 Nov	n/a	226	20-Aug-08	2.00	135	20-Aug-08	3.96	527	28-Sep-08	0.065	4.4
GG4a												
2006	12 Apr-16 Nov	n/a	733	22-May-06	1.79	199	2-Jun-06	4.09	545	18-Sep-06	0.14	15.2
2007	9 May - 29 Nov	n/a	885	16-Jul-07	1.73	192	15-Jul-07	3.31	441	30-Sep-07	0.15	17.2
2008	16 Apr-30 Nov	n/a	557	23-Aug-08	0.95	106	20-Aug-08	1.62	216	25-Sep-08	0.15	16.4
TC2												
2006	13 Apr-17 Nov	n/a	424	3-Jun-06	3.24	130	3-Jun-06	5.24	699	19-Sep-06	0.098	4.0
2007	9 May-31 Oct	n/a	871	6-Jun-07	9.70	390	6-Jun-07	12.3	1645	24-Sep-07	0.25	9.9
2008	16 Apr - 30 Nov	n/a	229	2-Jul-08	2.11	85	20-Aug-08	3.43	457	25-Sep-08	0.027	1.1

Table 3.2-2
Summary of Calculated Monthly Runoff (mm)

Station	Year	Calculated Monthly Runoff (mm)											
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
KC3/16	2005	--	--	--	--	--	--	--	--	--	--	--	--
KC4	2005	--	--	--	--	--	--	--	--	--	--	--	--
KC1	2005	--	--	--	--	50	78	64	47	29	33	27	--
GG4a	2005	--	--	--	--	--	--	--	--	--	--	--	--
GG3	2005	--	--	--	--	58	107	184	219	80	51	37	25
TC2	2005	--	--	--	--	106	122	111	114	28	20	16	4
Simpson	2005	--	--	--	57	137	125	96	72	25	24	--	--
Bulkley	2005	--	--	--	71	131	94	57	39	26	44	45	25
KC3/16	2006	--	--	--	5	21	18	2	2	2	3	10	--
KC4	2006	--	--	--	19	68	103	65	33	26	18	6	--
KC1	2006	--	--	--	11	67	96	49	12	19	21	8	--
GG4a	2006	--	--	--	17	148	211	149	110	83	32	8	--
GG3	2006	--	--	--	13	79	183	291	179	121	54	24	--
TC2	2006	--	--	--	4	72	121	113	62	45	11	2	--
Simpson	2006	4	3	4	6	91	151	59	18	23	14	7	5
Bulkley	2006	15	9	7	17	73	111	58	37	21	16	15	14
KC3/16	2007	--	--	--	--	103	43	17	20	15	51	38	--
KC4	2007	--	--	--	14	111	311	267	166	107	134	100	--
KC1	2007	--	--	--	20	125	161	126	86	58	89	46	--
GG4a	2007	--	--	--	--	42	178	318	241	78	28	10	--
GG3	2007	--	--	--	--	88	260	318	152	29	16	5	--
TC2	2007	--	--	--	--	95	311	235	136	52	41	23	--
Simpson	2007	5	3	10	35	96	374	210	96	34	46	22	5
Bulkley	2007	14	12	11	37	151	238	152	76	40	39	39	17
KC3/16	2008	--	--	--	23	58	12	7	9	7	15	--	--
KC4	2008	--	--	--	4	120	85	80	68	41	32	35	--
KC1	2008	--	--	--	14	106	69	64	51	33	36	30	--
GG4a	2008	--	--	--	3	61	66	123	177	93	37	14	--
GG3	2008	--	--	--	2	28	16	39	108	29	7	2	--
TC2	2008	--	--	--	0.4	64	36	60	56	10	3	2	--
Simpson	2008	3	4	8	14	151	116	123	77	49	32	25	20
Bulkley	2008	13	10	10	13	123	106	73	49	35	25	27	26

Note: values in italics indicate months with partial data (due to mobilization/demobilization of station)

GG3 and GG4a exhibit a distinct pattern, with highest runoff occurring in July or August, typical of glacierized watersheds. Glacier cover represents 32% and 20% of the GG4a and GG3 watersheds respectively. Observed runoff patterns for these stations are much different than the neighbouring non-glaciated stations. While Simpson Creek and Bulkley River recorded extreme dry conditions in 2006, Glacier Gulch runoff remained relatively high. Average summer temperatures 2006 were 1.0 to $1.5^{\circ} \mathrm{C}$ higher than 2007 and 2008, resulting in greater glacial ablation.

It is important to note that the Club Creek diversion is located between the GG3 and GG4a stations. Flow is not regularly monitored through the diversion; however a monitoring station was operated on Club Creek downstream of the diversion in 2005. Licensed diversion is 0.34 $\mathrm{m}^{3} / \mathrm{s}$, while monitoring results indicate average diversion of approximately $0.12 \mathrm{~m}^{3} / \mathrm{s}$. This equates to approximately 130 mm of runoff that is removed from the GG3 watershed. However, comparison of runoff between GG4a and GG3 does not show a clear signal of the Club Creek diversion. In 2008 runoff was 344 mm lower at GG3 than GG4a, which does suggest influence from Club Creek. In 2007 runoff was only 26 mm lower at GG3, and in 2006, runoff was calculated to be 186 mm higher at GG3. It is not clear what the source of this variability is. It may be related to variation in operation of the diversion from one year to the next. It may also be related to uncertainty in the stage-discharge curves - especially for GG3 - which are not well constrained for high flows.

TC2, which has 7\% glacier cover in the watershed above the station, showed a mixed runoff response, with peak runoff interchanging between freshet as well as later in the summer.

> Table 3.2-3
> Annual Runoff Return Period Estimates for the Bulkley River and Simpson Creek

	Annual Runoff (mm)	
	Bulkley River	Simpson Creek
2006	392	385
2007	826	936
2008	510	622
Return Period		
1 in 100 Dry	378	364
1 in 50	401	396
1 in 25	426	430
1 in 10	466	485
Average	574	633
1 in 10 Wet	683	780
1 in 25	723	835
1 in 50	748	870
1 in 100	771	901

3.2.2.2 Low Flows

Corresponding with the dry runoff conditions in 2006, annual and June-Sept low flows were generally the lowest of the three years for the non-glaciated watersheds. For the Bulkley River, the annual 7 -day low flow was well within the range of historical observations (ranked 20 out of 61 years of record), however June-Sept 7-day low flow conditions were the lowest on record. A similar trend is evident for Simpson Creek. For KC1 and KC4, 2006 summer low flows were substantially lower than those observed in 2007 and 2008, and also appear to follow this trend. Conversely, for glaciated streams (GG4a, GG3, and TC2), summer low flows were higher in 2006 than in 2008. For these streams, the warmer summer temperatures in 2006 likely resulted in greater glacial ablation, supporting summer base flows.

3.2.2.3 Peak Flows

The most notable feature of the hydrographs is the 2007 freshet period, which produced record flood flows for many rivers in BC , including the highest observed flow in the 78 year record of the Bulkley River at Quick $-1060 \mathrm{~m}^{3} / \mathrm{s}$. The flood flows were generated by large snowpacks (162% of normal for the North West Region of BC on May 1; 186\% of normal at the Hudson Bay Mountain snow course), and delayed onset of melt. In most years, the first two weeks of May see substantial reductions in higher elevation snowpacks as the freshet melt begins. However, in 2007, high elevation snowmelt was subdued, and some snow courses continued to accumulate snow to the middle of May. As a result, rapid snow melt due to warmer temperatures at the end of May resulted in flooding.

The high 2007 freshet peaks were observed at the Project hydrometric stations as well. Observed peaks occurred June 4 at Simpson and Kathlyn Creeks, June 5 on Glacier Gulch Creek, June 6 on Toboggan Creek, and June 8 on the Bulkley River.

While the 2007 freshet was a dominant hydrograph feature, on Glacier Gulch Creek, the highest instantaneous flows of the year at both the GG4a and GG3 stations were observed later in the summer. Flow peaked on July 15 at GG4a, as a result of warm temperatures driving glacier melt (up to $35^{\circ} \mathrm{C}$ at the Smithers Airport on July 12, 2007), followed by 21 mm of precipitation the morning of July 15. Peak flow was observed on August 16 at GG3 following similar weather conditions $\left(28^{\circ} \mathrm{C}, 15 \mathrm{~mm}\right.$ precipitation). This illustrates the importance of the glacier, which covers 32% and 20% of the GG4a and GG3 watersheds respectively, to the hydrology of the watershed. While Toboggan Creek (7% glacier cover) also responded to these two events, instantaneous flows were observed during freshet.

The 2007 peak flow at KC3/16 occurred in May - much earlier than the other stations. The watershed above this gauge is small $\left(1.3 \mathrm{~km}^{2}\right)$ and at a relatively low elevation.

3.2.3 Flow Monitoring at A1 (1066 Adit)

Figure 3.2-15 (and Appendix 3.2-7) summarizes flow monitored at the portal of the 1066 Adit (station A1). A V-notch weir was installed at the station in April 2006. While the station continued to produce results, data from June 10, 2007 through January 5, 2008 appear anomalous, with rapid changes in observed water levels. There was no underground activity during these times to produce such changes. It is unclear what the cause of this anomaly was;
with no intervention, the water level sensor began producing reliable results again on January 5, 2008. This suggests that there was some type of blockage around the gauge that worked itself free. To ensure data quality for future monitoring, the sensor was replaced in July 2008.

Based on results from other years, and a general understanding of the hydrologic cycle, it is expected that groundwater levels would increase through the summer, peaking in September or October, then decrease through the winter, reaching a minimum level in late April or early May, just before snow melt begins. Using this understanding, flow rates were estimated for the period June 10, 2007 to January 5, 2008 by adding an offset to the observed water levels. There is limited data available to calibrate the estimates against; however, the results give an indication of the expected flow rates for this period.

4. Summary

This meteorology and hydrology baseline report summarizes results from 2006, 2007, and 2008. Data are presented for the Davidson meteorology station and for 6 hydrometric stations established for the Davidson Project, as well as available data from government operated stations at the Smithers Airport, Hudson Bay Mountain, Bulkley River and Simpson Creek. This report is a supplement to previous baseline reports that were completed for 2005 and the first half of 2006. The previous reports also included detailed regional analysis of long-term meteorology and hydrology data from stations monitored by Environment Canada and the WSC.

Results observed in 2006 to 2008 cover a wide range of hydro-climatic conditions. In 2006, 1-in-100 year dry conditions were experienced (based on observed runoff for Bulkley River and Simpson Creek). This resulted in record summer low flows for the Bulkley River, Simpson Creek, and other non-glaciated streams in the area ($\mathrm{KC1}$ and KC 4). For Glacier Gulch and Toboggan Creeks, watersheds with glaciers in their headwaters, warmer average summer temperatures resulted in more glacial ablation, which helped maintain higher base flows in these streams.

In 2007, 1-in-100 year wet conditions were experienced (based on runoff for Bulkley River and Simpson Creek). Near-record snowpack and delayed on-set of melt resulted in a large freshet response, which produced the highest observed flood flows in the 78 year record for the Bulkley River station at Quick. Similarly, large freshet flows were observed at Project specific gauges. Secondary peak flows were also observed in July and August, especially for the Glacier Gulch Creek stations (GG4a and GG3), due to a combination of warm temperatures followed by rain storms.

In contrast, 2008 produced near average runoff conditions, as well as relatively moderate peak and low flows.

REFERENCES

Rescan ${ }^{\prime \prime}$

References

Coulson, C.H. and W. Obedkoff. 1998. British Columbia Streamflow Inventory. Report for Province of British Columbia Ministry of Environment Lands and Parks, March 1998.

Environment Canada. 2006. Canadian Climate Normals or Averages 1971-2000. National Climate Data and Information Archive. http://www.climate.weatheroffice.ec.gc.ca/ climate_normals/index_e.html (accessed September, 2006).

Meteorological Services of Canada (MSC). 2004. MSC Guidelines for Co-operative Climatological Autostations, Version 3.0. Environment Canada, Surface Weather, Climate and Marine Division, Atmospheric Monitoring Water Survey Branch.

Obedkoff, W. 2001. Streamflow in the Skeena Region. Water Inventory Section, Resources Inventory Branch, British Columbia Ministry of Environment, Lands, and Parks.

Obedkoff, W. 2000 (supplemented 2003). Streamflow in the Omineca-Peace Region. Report for British Columbia Ministry of Environment Lands and Parks, September 2000.

Rantz, S.E. et al. (other authors not named). 1982. Measurement and Computation of Streamflow. Geological Survey Water-Supply Paper 2175, 1982.

Rescan, 2008 Davidson Project Application for Environmental Assessment Certificate. Prepared for Blue Pearl Mining Inc. by Rescan Environmental Services, September 2008.

Rescan, 2006 Davidson Project Meteorology, Air Quality and Noise Baseline Study. Prepared for Blue Pearl Mining Inc. by Rescan Environmental Services, August 2006.

Rescan, 2006 Davidson Project Hydrology Baseline Study. Prepared for Blue Pearl Mining Inc. by Rescan Environmental Services, September 2006.

World Meteorological Organization (WMO). 1983. Guide to Meteorological Instruments and Methods of Observation, No. 8, Fifth Ed. Geneva, Switzerland.

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station

Date	Daily Air Temperature			Total Precipitation (mm)	Daily Average Wind Speed (m / s)
	$\begin{gathered} \text { Maximum } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	Average (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \hline \text { Minimum } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$		
18-Oct-05	3.5		1.4	3.8	0.31
19-Oct-05	4.5	1.8	-0.8	0.0	0.58
20-Oct-05	5.1	1.0	-2.6	0.0	0.93
21-Oct-05	6.0	4.1	1.7	0.0	1.49
22-Oct-05	8.9	6.0	4.0	0.0	1.15
23-Oct-05	8.3	5.0	1.8	0.0	0.90
24-Oct-05	10.2	6.5	1.9	0.0	0.92
25-Oct-05	13.1	10.5	4.2	0.0	1.38
26-Oct-05	6.3	2.4	-0.4	0.0	1.02
27-Oct-05	6.2	2.4	-0.7	0.0	0.99
28-Oct-05	5.9	4.3	2.2	0.0	1.53
29-Oct-05	5.6	3.3	-0.8	0.0	0.98
30-Oct-05	6.2	2.4	-0.7	0.0	0.79
31-Oct-05	5.5	3.2	0.2	0.3	1.26
1-Nov-05	3.9	1.6	-0.5	0.0	0.66
2-Nov-05	3.3	1.1	-1.2	0.0	0.73
3-Nov-05	2.4	1.0	-0.5	3.3	0.88
4-Nov-05	0.2	-1.3	-3.6	0.5	0.00
5-Nov-05	0.2	-2.9	-5.0	0.0	0.00
6-Nov-05	-0.2	-2.5	-5.5	3.6	0.00
7-Nov-05	-1.5	-4.9	-8.1	0.0	0.00
8-Nov-05	2.4	-1.1	-3.5	2.3	0.43
9-Nov-05	4.3	2.6	1.5	22.4	0.85
10-Nov-05	3.4	0.6	-1.6	2.3	1.04
11-Nov-05	0.9	-1.8	-3.5	0.8	0.59
12-Nov-05	1.6	-1.5	-3.7	0.0	0.64
13-Nov-05	-0.5	-2.4	-4.1	0.0	0.36
14-Nov-05	-1.4	-2.9	-4.7	2.3	0.32
15-Nov-05	-0.7	-1.7	-2.8	7.6	0.45
16-Nov-05	3.7	0.4	-2.2	0.0	1.02
17-Nov-05	4.4	0.8	-2.3	4.8	1.09
18-Nov-05	7.4	4.4	2.4	0.8	1.02
19-Nov-05	10.1	5.6	3.0	1.0	1.32
20-Nov-05	4.7	2.8	0.9	0.0	0.98
21-Nov-05	7.7	4.2	2.0	0.0	1.25
22-Nov-05	7.5	4.7	2.9	0.0	1.11
23-Nov-05	4.2	2.4	-0.4	0.0	0.69
24-Nov-05	5.0	1.4	-1.2	0.0	0.80
25-Nov-05	5.4	1.4	-1.8	0.0	0.85
26-Nov-05	-1.3	-4.5	-6.5	0.0	0.67
27-Nov-05	-2.3	-3.9	-6.4	0.0	0.68
28-Nov-05	-4.3	-5.2	-7.1	0.0	0.87
29-Nov-05	-6.0	-7.4	-9.8	0.0	0.50
30-Nov-05	-7.7	-8.9	-10.5	0.0	0.71
1-Dec-05	-9.4	-9.9	-11.3	0.0	1.15
2-Dec-05	-8.6	-9.9	-11.8	0.0	0.62
3-Dec-05	-8.5	-11.2	-14.0	0.0	0.53
4-Dec-05	0.5	-4.4	-8.5	3.6	0.93
5-Dec-05	-3.2	-7.5	-10.2	0.0	0.66
6-Dec-05	-4.3	-6.3	-8.2	0.0	0.35
7-Dec-05	-3.8	-5.6	-7.3	1.5	0.70
8-Dec-05	3.4	-2.0	-6.8	3.0	0.74
9-Dec-05	6.0	2.9	1.1	1.0	1.21
10-Dec-05	9.1	4.0	0.8	1.5	1.47
11-Dec-05	7.2	3.1	1.4	0.0	0.97
12-Dec-05	3.3	0.5	-1.1	0.0	0.79
13-Dec-05	-1.1	-3.0	-5.5	0.0	0.75
14-Dec-05	-4.6	-5.6	-7.0	0.0	0.36
15-Dec-05	-4.9	-6.6	-8.3	0.0	0.39
16-Dec-05	-6.0	-7.1	-8.8	0.0	0.53
17-Dec-05	-6.3	-8.2	-9.6	0.0	0.69
18-Dec-05	-8.2	-9.5	-10.9	0.0	0.49
19-Dec-05	-4.6	-9.6	-13.5	0.0	0.44
20-Dec-05	0.6	-4.1	-8.0	2.8	0.76
21-Dec-05	2.9	-0.4	-2.5	2.3	0.58

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			Total Precipitation (mm)	Daily Average Wind Speed (m/s)
	Maximum $\left({ }^{\circ} \mathrm{C}\right)$	Average (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \hline \text { Minimum } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$		
22-Dec-05	3.6	1.8	-0.5	1.8	0.71
23-Dec-05	3.1	1.4	0.1	6.6	0.77
24-Dec-05	2.8	1.0	-0.3	16.0	0.64
25-Dec-05	1.5	0.5	-0.3	0.3	0.31
26-Dec-05	2.9	0.9	-0.3	2.5	0.58
27-Dec-05	2.9	1.2	-1.0	2.0	1.01
28-Dec-05	2.7	-0.2	-3.8	1.5	0.91
29-Dec-05	0.9	-1.6	-3.4	0.0	0.75
30-Dec-05	0.6	-0.8	-2.5	2.0	0.79
31-Dec-05	1.6	-0.4	-2.9	0.3	1.00
1-Jan-06	1.0	-0.8	-3.5	0.0	0.64
2-Jan-06	2.5	0.7	-1.4	0.8	0.85
3-Jan-06	-0.4	-2.5	-4.9	0.0	0.51
4-Jan-06	-0.4	-4.0	-6.8	2.0	0.59
5-Jan-06	2.9	0.3	-2.5	7.6	1.63
6-Jan-06	-1.2	-2.9	-4.3	0.0	0.55
7-Jan-06	-3.6	-6.1	-8.7	0.0	0.33
8-Jan-06	1.5	-2.8	-4.5	1.3	0.69
9-Jan-06	1.7	-3.0	-5.2	0.0	0.83
10-Jan-06	-2.3	-5.0	-7.7	0.0	0.48
11-Jan-06	-4.8	-6.5	-8.2	0.0	0.11
12-Jan-06	-2.3	-4.3	-5.5	0.0	0.60
13-Jan-06	0.0	-3.2	-4.7	3.3	0.35
14-Jan-06	-1.6	-2.8	-4.0	1.0	0.62
15-Jan-06	-2.8	-4.9	-7.2	0.0	0.77
16-Jan-06	-1.4	-2.9	-4.5	4.6	0.89
17-Jan-06	2.6	0.4	-1.4	6.6	1.28
18-Jan-06	0.9	-1.6	-3.4	0.0	0.99
19-Jan-06	-2.7	-3.9	-6.0	3.6	0.50
20-Jan-06	-1.9	-4.0	-7.0	0.8	0.00
21-Jan-06	0.2	-3.6	-5.7	0.8	0.33
22-Jan-06	2.0	0.5	-0.7	3.3	1.08
23-Jan-06	3.1	-0.2	-2.2	3.8	1.05
24-Jan-06	5.5	1.6	-0.9	2.0	1.15
25-Jan-06	3.4	0.9	-1.4	1.3	0.77
26-Jan-06	-0.9	-2.3	-4.5	3.8	0.39
27-Jan-06	-1.9	-3.8	-6.9	0.0	0.56
28-Jan-06	-0.6	-2.3	-5.0	2.0	0.95
29-Jan-06	-3.8	-5.9	-9.4	0.0	1.18
30-Jan-06	-3.0	-4.8	-6.7	0.8	0.70
31-Jan-06	1.7	-1.7	-5.5	1.8	1.10
1-Feb-06	1.3	-0.9	-2.0	2.8	0.71
2-Feb-06	1.8	-0.9	-3.1	2.0	0.75
3-Feb-06	1.9	-1.6	-4.4	0.3	0.87
4-Feb-06	-0.6	-2.0	-4.4	3.6	0.47
5-Feb-06	-2.8	-4.5	-6.2	0.5	0.41
6-Feb-06	-2.8	-5.3	-9.2	0.0	0.77
7-Feb-06	5.1	0.5	-4.7	1.0	1.30
8-Feb-06	4.2	-0.3	-5.5	1.5	0.97
9-Feb-06	-1.2	-5.6	-9.3	0.0	0.63
10-Feb-06	0.9	-3.1	-6.6	0.3	0.84
11-Feb-06	-0.1	-3.1	-8.2	0.0	0.69
12-Feb-06	2.0	-1.4	-3.6	0.0	0.67
13-Feb-06	1.0	-1.6	-4.3	0.3	1.23
14-Feb-06	0.6	-4.3	-7.3	0.0	1.01
15-Feb-06	-0.8	-6.9	-10.8	0.0	0.71
16-Feb-06	-0.7	-5.9	-9.0	0.0	0.80
17-Feb-06	-4.5	-9.8	-14.4	0.0	0.51
18-Feb-06	-1.1	-7.0	-10.8	0.0	0.68
19-Feb-06	0.2	-5.2	-9.1	0.0	0.55
20-Feb-06	3.1	-0.9	-3.1	0.3	0.74
21-Feb-06	5.5	1.3	-2.2	0.0	1.43
22-Feb-06	-0.4	-3.3	-8.0	0.0	0.84
23-Feb-06	-5.5	-8.1	-10.9	10.4	0.90
24-Feb-06	-7.7	-12.1	-15.8	0.0	0.98

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			TotalPrecipitation(mm)	Daily Average Wind Speed (m / s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \hline \text { Minimum } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$		
25-Feb-06	-8.8	-14.2	-18.7	0.0	0.54
26-Feb-06	-7.3	-11.9	-17.3	0.0	0.49
27-Feb-06	-4.9	-10.2	-14.2	0.0	0.73
28-Feb-06	-1.7	-8.6	-14.4	0.0	0.68
1-Mar-06	-2.7	-5.1	-9.1	0.0	1.21
2-Mar-06	1.9	-2.6	-5.7	0.0	0.49
3-Mar-06	-0.2	-1.9	-3.5	0.0	0.51
4-Mar-06	1.6	-2.3	-4.7	0.0	0.61
5-Mar-06	2.4	-3.3	-7.7	0.0	0.62
6-Mar-06	-0.1	-3.0	-6.0	0.0	0.58
7-Mar-06	4.8	-0.8	-4.3	0.0	0.62
8-Mar-06	3.5	-0.2	-3.0	0.5	1.14
9-Mar-06	0.0	-4.5	-8.8	0.3	1.07
10-Mar-06	-0.6	-5.9	-11.3	0.0	0.72
11-Mar-06	-2.8	-5.3	-9.7	0.0	0.85
12-Mar-06	-0.6	-7.9	-14.8	0.0	0.82
13-Mar-06	0.0	-3.6	-6.5	0.0	0.84
14-Mar-06	1.5	-2.8	-9.6	6.1	0.98
15-Mar-06	-3.0	-8.9	-15.1	0.0	0.58
16-Mar-06	1.4	-2.9	-8.6	0.0	0.93
17-Mar-06	1.8	-3.1	-9.6	0.3	0.98
18-Mar-06	-2.6	-8.3	-13.6	0.3	1.13
19-Mar-06	2.8	-3.3	-9.3	0.3	1.00
20-Mar-06	6.7	-0.7	-4.6	0.8	1.05
21-Mar-06	6.7	0.4	-6.0	0.0	0.76
22-Mar-06	6.5	2.9	-1.3	1.5	1.20
23-Mar-06	9.7	3.2	-2.1	1.3	1.50
24-Mar-06	9.5	3.8	0.2	3.6	0.71
25-Mar-06	4.4	1.3	-1.0	1.8	0.51
26-Mar-06	5.5	0.6	-3.9	0.3	0.99
27-Mar-06	5.5	0.5	-4.8	0.5	0.96
28-Mar-06	7.4	0.7	-5.2	0.0	1.09
29-Mar-06	9.3	2.8	-3.1	0.3	1.03
30-Mar-06	6.7	2.2	-1.3	0.0	1.07
31-Mar-06	7.3	1.3	-4.2	0.0	0.82
1-Apr-06	9.8	3.4	-0.3	0.0	0.85
2-Apr-06	9.9	2.8	-1.4	0.8	1.07
3-Apr-06	11.5	3.8	-0.6	0.0	0.96
4-Apr-06	13.6	4.5	-1.3	0.3	1.13
5-Apr-06	13.8	5.1	-0.9	0.3	1.15
6-Apr-06	12.4	6.1	0.9	0.0	1.12
7-Apr-06	12.4	6.1	1.4	0.0	0.98
8-Apr-06	11.1	5.4	-0.2	0.0	1.22
9-Apr-06	8.8	3.4	-1.0	0.0	0.95
10-Apr-06	8.9	3.4	-1.3	0.0	0.91
11-Apr-06	5.9	2.1	-0.5	1.5	0.75
12-Apr-06	4.9	1.4	-1.7	0.8	0.70
13-Apr-06	6.0	2.1	-0.8	0.0	0.99
14-Apr-06	4.5	0.2	-3.6	0.5	1.05
15-Apr-06	6.6	-0.4	-6.3	0.3	0.97
16-Apr-06	7.6	1.5	-3.8	0.5	0.98
17-Apr-06	8.5	2.8	-3.0	0.0	1.19
18-Apr-06	9.0	5.2	2.4	0.3	1.52
19-Apr-06	9.2	5.7	-0.4	0.0	1.55
20-Apr-06	7.3	2.6	-1.6	0.0	0.89
21-Apr-06	7.6	2.2	-2.3	0.3	1.17
22-Apr-06	11.4	3.3	-2.8	0.0	1.22
23-Apr-06	16.5	7.3	-0.4	0.3	1.27
24-Apr-06	18.7	9.2	2.0	15.5	1.23
25-Apr-06	12.0	6.6	1.3	0.0	1.22
26-Apr-06	8.7	4.0	0.6	1.3	0.78
27-Apr-06	7.4	3.9	-0.4	2.3	1.09
28-Apr-06	12.7	7.1	0.3	1.8	1.41
29-Apr-06	8.7	3.0	-2.2	0.0	1.15
30-Apr-06	7.1	2.4	-2.0	0.0	0.96

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

		Daily Air Temperature		Total	Daily Average Wind Speed
Daximum	Average	Minimum	Precipitation	(mm)	$\left({ }^{\circ} \mathrm{C}\right)$

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			TotalPrecipitation(mm)	Daily Average Wind Speed (m / s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \hline \text { Minimum } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$		
5-Jul-06	24.3	17.6	12.0	10.4	0.85
6-Jul-06	16.0	12.6	10.1	6.1	0.65
7-Jul-06	17.5	12.1	7.1	0.3	1.04
8-Jul-06	19.7	13.7	8.6	1.0	0.78
9-Jul-06	19.2	13.9	10.2	2.8	0.86
10-Jul-06	18.7	12.9	8.7	0.0	0.84
11-Jul-06	17.3	12.2	6.7	0.0	0.90
12-Jul-06	16.1	11.2	8.1	3.8	0.47
13-Jul-06	14.3	10.2	6.3	2.0	0.81
14-Jul-06	15.6	9.7	5.0	3.0	0.95
15-Jul-06	17.2	10.9	7.8	7.4	0.60
16-Jul-06	18.9	12.5	5.8	0.0	0.89
17-Jul-06	17.7	13.0	9.2	0.0	0.81
18-Jul-06	18.3	12.7	7.4	0.0	0.82
19-Jul-06	19.3	12.7	6.9	0.0	0.95
20-Jul-06	20.8	15.0	10.1	0.0	0.74
21-Jul-06	27.6	18.4	11.4	0.0	1.01
22-Jul-06	29.6	21.0	15.7	0.0	1.08
23-Jul-06	26.8	19.5	14.6	0.0	1.07
24-Jul-06	24.4	18.3	11.9	0.0	0.93
25-Jul-06	19.9	15.7	12.7	1.5	0.80
26-Jul-06	19.8	14.5	10.1	0.8	0.67
27-Jul-06	16.4	12.2	7.6	0.0	0.96
28-Jul-06	19.8	12.3	5.2	0.0	0.96
29-Jul-06	16.7	12.9	10.4	5.1	1.33
30-Jul-06	19.4	13.2	9.7	0.5	0.63
31-Jul-06	18.0	12.7	9.4	0.0	0.60
1-Aug-06	15.7	10.6	7.7	1.0	0.65
2-Aug-06	15.7	10.6	6.5	0.0	0.63
3-Aug-06	16.3	10.1	5.0	2.3	0.78
4-Aug-06	18.7	9.7	3.1	0.0	0.95
5-Aug-06	18.6	12.7	9.2	2.0	0.73
6-Aug-06	16.2	11.7	8.6	0.3	0.86
7-Aug-06	13.5	10.7	8.7	3.6	0.58
8-Aug-06	17.4	12.2	7.9	0.0	0.83
9-Aug-06	17.0	11.5	7.2	0.0	0.66
10-Aug-06	19.4	12.5	7.0	0.0	1.00
11-Aug-06	19.8	13.0	6.8	0.0	1.00
12-Aug-06	18.4	13.9	10.6	0.0	0.71
13-Aug-06	19.1	13.0	8.9	0.0	0.58
14-Aug-06	15.3	10.8	8.1	2.5	0.64
15-Aug-06	19.5	11.9	5.3	0.0	1.11
16-Aug-06	21.8	13.7	6.5	0.0	1.06
17-Aug-06	24.2	16.3	9.6	0.0	1.03
18-Aug-06	18.5	14.2	8.7	0.0	0.88
19-Aug-06	19.4	12.0	5.5	0.0	1.12
20-Aug-06	22.4	13.6	6.4	0.0	1.21
21-Aug-06	19.2	13.5	9.0	0.0	0.76
22-Aug-06	18.6	12.4	6.4	0.0	0.92
23-Aug-06	19.7	12.8	6.1	0.0	0.94
24-Aug-06	19.3	13.3	9.3	0.0	0.97
25-Aug-06	22.6	14.4	8.0	0.0	0.94
26-Aug-06	20.1	13.4	7.4	0.0	1.11
27-Aug-06	19.0	13.1	7.7	0.0	0.75
28-Aug-06	16.1	11.5	5.7	2.0	0.72
29-Aug-06	14.0	8.5	4.0	0.3	0.73
30-Aug-06	11.8	8.0	5.4	3.3	0.64
31-Aug-06	11.1	8.0	5.1	2.0	0.79
1-Sep-06	18.4	11.2	6.2	0.0	1.24
2-Sep-06	20.8	13.0	7.2	0.0	0.90
3-Sep-06	22.3	13.3	7.3	0.0	1.11
4-Sep-06	24.5	15.2	8.9	0.0	0.88
5-Sep-06	20.1	13.7	9.3	0.0	1.04
6-Sep-06	19.9	12.0	5.6	0.0	0.86
7-Sep-06	15.1	10.7	7.6	0.0	0.52

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			Total Precipitation (mm)	Daily Average Wind Speed (m / s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \hline \text { Minimum } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$		
8-Sep-06	14.7	10.6	8.2	4.8	0.46
9-Sep-06	15.6	10.9	7.3	0.8	0.39
10-Sep-06	14.9	9.4	6.0	1.3	0.74
11-Sep-06	14.7	9.0	4.8	0.0	0.76
12-Sep-06	14.0	8.7	4.4	0.0	0.82
13-Sep-06	12.0	8.1	4.9	2.0	0.94
14-Sep-06	8.5	5.7	2.1	1.3	1.06
15-Sep-06	7.2	4.0	1.3	0.0	0.60
16-Sep-06	11.5	6.5	3.0	0.0	0.88
17-Sep-06	8.2	5.9	4.3	8.6	0.94
18-Sep-06	10.4	6.3	3.3	0.0	0.54
19-Sep-06	11.5	6.4	2.9	1.0	0.53
20-Sep-06	8.1	6.6	5.6	18.3	0.34
21-Sep-06	10.8	6.5	4.0	0.0	0.97
22-Sep-06	9.1	6.0	4.0	2.3	0.39
23-Sep-06	17.0	10.8	6.8	0.0	0.75
24-Sep-06	15.3	11.1	8.3	4.1	1.02
25-Sep-06	12.2	10.2	7.9	8.4	0.70
26-Sep-06	14.6	10.6	8.2	0.3	0.62
27-Sep-06	15.8	11.2	9.2	2.0	0.78
28-Sep-06	16.6	11.3	7.9	0.0	0.82
29-Sep-06	11.6	9.2	7.7	3.8	0.62
30-Sep-06	9.6	6.4	1.3	0.8	0.85
1-Oct-06	6.6	2.8	0.4	0.0	0.87
2-Oct-06	6.4	0.9	-1.8	0.0	0.78
3-Oct-06	5.9	0.6	-3.2	0.3	0.74
4-Oct-06	10.2	3.1	-2.0	4.3	0.69
5-Oct-06	7.9	4.9	1.4	0.0	0.78
6-Oct-06	7.1	3.1	0.5	0.0	0.92
7-Oct-06	8.0	2.4	-1.4	0.0	0.87
8-Oct-06	8.6	2.2	-1.7	0.0	0.85
9-Oct-06	9.1	4.1	0.4	0.0	0.48
10-Oct-06	11.5	5.9	2.1	0.0	0.70
11-Oct-06	12.2	6.6	2.2	0.0	0.50
12-Oct-06	12.2	7.7	5.2	0.0	0.65
13-Oct-06	13.5	8.1	3.6	0.0	0.47
14-Oct-06	8.5	7.2	6.4	2.3	0.27
15-Oct-06	7.3	6.3	4.4	4.6	0.52
16-Oct-06	6.1	3.0	-1.4	0.0	1.04
17-Oct-06	3.7	0.2	-2.7	0.0	0.55
18-Oct-06	9.4	4.8	1.2	1.3	0.60
19-Oct-06	9.4	6.2	3.3	1.5	0.85
20-Oct-06	7.3	4.3	1.4	0.0	0.87
21-Oct-06	9.8	5.3	2.6	0.0	0.62
22-Oct-06	8.8	4.9	1.2	0.0	0.82
23-Oct-06	8.6	3.9	0.3	4.6	1.09
24-Oct-06	5.3	2.5	-0.3	3.6	0.89
25-Oct-06	3.9	1.5	-0.3	6.4	0.99
26-Oct-06	4.2	0.9	-1.3	0.0	0.99
27-Oct-06	0.3	-0.2	-0.8	19.6	0.22
28-Oct-06	0.4	-0.7	-2.3	14.5	0.00
29-Oct-06	-1.0	-3.7	-8.8	0.3	0.00
30-Oct-06	-5.8	-8.4	-10.3	0.0	0.00
31-Oct-06	-4.4	-7.6	-9.9	0.0	0.27
1-Nov-06	-1.8	-4.9	-7.4	0.3	0.36
2-Nov-06	-1.3	-2.7	-3.4	0.0	0.91
3-Nov-06	-2.0	-2.7	-3.5	0.0	0.68
4-Nov-06	-1.7	-2.9	-3.8	5.8	0.62
5-Nov-06	-1.7	-3.6	-5.0	5.1	0.33
6-Nov-06	1.9	-1.0	-2.7	8.4	0.97
7-Nov-06	3.0	0.7	-4.2	5.6	0.87
8-Nov-06	-0.8	-3.7	-5.3	0.0	0.73
9-Nov-06	-1.0	-4.5	-7.7	0.0	0.79
10-Nov-06	-1.2	-3.0	-4.2	2.5	0.90
11-Nov-06	-0.1	-2.4	-6.3	1.0	0.68

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			TotalPrecipitation(mm)	Daily Average Wind Speed (m/s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average $\left({ }^{\circ} \mathrm{C}\right)$	Minimum (${ }^{\circ} \mathrm{C}$)		
12-Nov-06	-4.0	-5.4	-6.8	0.0	0.40
13-Nov-06	-2.9	-5.1	-6.9	0.0	0.50
14-Nov-06	0.0	-2.2	-5.2	21.8	0.75
15-Nov-06	-0.7	-2.9	-8.8	2.8	0.00
16-Nov-06	-2.1	-4.9	-9.8	1.0	0.00
17-Nov-06	0.0	-2.2	-3.7	9.9	0.00
18-Nov-06	2.7	-0.7	-4.7	0.8	0.61
19-Nov-06	4.3	2.1	-1.6	4.3	1.78
20-Nov-06	-0.5	-2.0	-3.6	2.3	0.43
21-Nov-06	-3.5	-4.8	-7.6	0.0	0.81
22-Nov-06	-7.4	-9.3	-10.8	1.5	0.86
23-Nov-06	-10.4	-12.0	-15.2	0.0	0.54
24-Nov-06	-10.7	-12.6	-15.2	2.8	1.10
25-Nov-06	-15.1	-17.4	-19.9	0.0	1.51
26-Nov-06	-18.8	-20.4	-23.2	0.0	1.06
27-Nov-06	-15.9	-18.3	-23.1	0.0	1.12
28-Nov-06	-17.0	-22.3	-27.0	0.0	0.51
29-Nov-06	-15.4	-16.6	-18.2	10.2	1.07
30-Nov-06	-14.4	-17.0	-19.9	0.0	0.50
1-Dec-06	-7.8	-12.5	-14.9	0.0	0.27
2-Dec-06	-1.3	-5.6	-10.1	0.0	0.54
3-Dec-06	1.3	-0.4	-3.0	1.0	0.43
4-Dec-06	0.6	-0.3	-2.2	3.0	0.30
5-Dec-06	-0.3	-2.0	-4.5	7.1	0.50
6-Dec-06	2.1	0.5	-0.6	3.0	0.54
7-Dec-06	4.6	2.6	0.4	1.8	1.08
8-Dec-06	2.0	-1.3	-3.6	0.0	0.79
9-Dec-06	2.5	0.4	-1.6	4.8	0.68
10-Dec-06	1.6	-0.3	-2.5	1.0	0.62
11-Dec-06	4.2	0.4	-2.4	0.3	0.87
12-Dec-06	0.3	-2.1	-4.1	0.0	0.65
13-Dec-06	1.6	-0.1	-1.8	7.4	1.50
14-Dec-06	1.2	-1.8	-4.8	0.3	0.79
15-Dec-06	-2.0	-4.7	-8.1	0.3	0.67
16-Dec-06	-7.5	-10.4	-13.0	0.0	0.56
17-Dec-06	-4.3	-10.1	-13.9	1.3	0.45
18-Dec-06	4.6	-0.3	-4.5	21.1	0.80
19-Dec-06	0.3	-1.1	-2.6	0.5	0.00
20-Dec-06	4.0	1.4	-1.0	1.5	1.47
21-Dec-06	4.0	1.0	-3.4	1.8	1.65
22-Dec-06	-1.2	-4.1	-7.4	0.3	1.15
23-Dec-06	-1.9	-5.0	-10.3	7.4	0.56
24-Dec-06	-2.5	-6.1	-12.0	0.0	1.16
25-Dec-06	-0.5	-2.6	-5.1	0.0	0.79
26-Dec-06	-2.0	-3.8	-5.2	1.0	0.42
27-Dec-06	-3.6	-7.4	-10.6	0.0	0.88
28-Dec-06	-3.4	-7.4	-12.3	0.3	0.81
29-Dec-06	-2.7	-4.5	-6.5	0.0	0.88
30-Dec-06	-0.7	-3.0	-5.4	3.3	0.76
31-Dec-06	1.7	-2.9	-6.0	0.0	0.80
1-Jan-07	2.7	1.1	-0.2	6.4	0.99
2-Jan-07	2.9	0.7	-0.6	17.5	0.58
3-Jan-07	1.1	-1.2	-2.9	0.8	0.55
4-Jan-07	-2.1	-5.2	-7.9	0.0	0.96
5-Jan-07	0.0	-4.1	-6.9	3.6	0.95
6-Jan-07	-1.2	-4.0	-6.9	1.5	1.12
7-Jan-07	0.7	-2.0	-7.2	9.4	1.62
8-Jan-07	-3.4	-5.3	-8.0	4.3	0.73
9-Jan-07	-4.5	-5.8	-6.9	7.6	0.34
10-Jan-07	-6.6	-12.0	-18.0	0.0	0.78
11-Jan-07	-17.2	-18.9	-20.4	0.5	0.33
12-Jan-07	-14.8	-18.5	-20.8	0.0	0.25
13-Jan-07	-10.9	-13.9	-16.0	7.9	0.20
14-Jan-07	-3.2	-8.1	-11.6	0.0	0.40
15-Jan-07	2.2	-1.4	-4.5	0.0	0.98

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			Total Precipitation (mm) 0.0	Daily Average Wind Speed (m/s)
	Maximum $\left({ }^{\circ} \mathrm{C}\right)$	Average (${ }^{\circ} \mathrm{C}$)	Minimum (${ }^{\circ} \mathrm{C}$)		
16-Jan-07	-1.4	-4.0	-7.9	0.0	0.90
17-Jan-07	-4.8	-6.7	-9.2	0.0	0.51
18-Jan-07	-2.5	-4.6	-7.2	1.8	0.31
19-Jan-07	-3.9	-5.1	-6.8	0.3	0.29
20-Jan-07	-3.2	-5.8	-7.9	0.5	0.42
21-Jan-07	0.4	-1.7	-3.6	13.2	0.32
22-Jan-07	3.0	0.5	-0.9	5.3	0.86
23-Jan-07	3.4	1.1	-0.8	5.8	0.75
24-Jan-07	8.1	2.8	0.1	7.4	1.07
25-Jan-07	0.5	-4.0	-8.0	0.0	0.86
26-Jan-07	-4.6	-7.5	-10.0	0.0	0.55
27-Jan-07	-6.8	-8.4	-10.3	0.0	0.42
28-Jan-07	-4.3	-6.8	-9.3	0.0	0.46
29-Jan-07	-1.6	-4.5	-6.3	0.0	0.41
30-Jan-07	-3.6	-5.7	-8.5	0.0	0.37
31-Jan-07	-4.4	-6.5	-8.4	0.0	0.33
1-Feb-07	-4.7	-6.4	-8.2	0.0	0.37
2-Feb-07	-6.6	-8.3	-10.3	0.0	0.26
3-Feb-07	-3.6	-6.7	-9.4	0.0	0.31
4-Feb-07	0.6	-2.6	-7.2	8.4	0.46
5-Feb-07	1.9	0.6	-0.4	3.6	0.39
6-Feb-07	3.4	1.0	-0.1	4.1	0.46
7-Feb-07	1.5	-1.0	-4.4	0.0	1.22
8-Feb-07	-4.1	-5.6	-7.3	1.0	1.35
9-Feb-07	-7.1	-8.1	-9.0	0.0	0.93
10-Feb-07	-6.1	-8.5	-10.8	0.3	0.45
11-Feb-07	-3.1	-5.6	-7.8	0.0	1.08
12-Feb-07	-6.4	-7.8	-9.2	0.0	1.66
13-Feb-07	-5.6	-7.8	-9.4	0.3	1.03
14-Feb-07	1.9	-3.0	-7.3	6.1	0.87
15-Feb-07	1.5	0.1	-1.2	5.1	0.71
16-Feb-07	3.3	-0.1	-3.0	4.3	0.93
17-Feb-07	4.7	1.1	-1.0	3.3	0.76
18-Feb-07	3.3	0.1	-2.0	1.3	0.57
19-Feb-07	1.0	-1.2	-3.0	5.6	0.66
20-Feb-07	1.4	-2.2	-5.7	0.3	0.83
21-Feb-07	1.7	-2.0	-4.3	0.3	0.78
22-Feb-07	0.5	-4.1	-7.6	0.0	0.66
23-Feb-07	-0.1	-3.5	-6.8	0.0	0.83
24-Feb-07	1.7	-2.0	-4.5	0.3	1.04
25-Feb-07	0.5	-1.5	-3.4	0.5	0.95
26-Feb-07	0.4	-1.6	-2.9	0.3	0.52
27-Feb-07	0.9	-1.9	-5.5	0.3	0.64
28-Feb-07	-2.1	-5.8	-10.8	6.9	0.74
1-Mar-07	-6.7	-9.9	-13.3	0.0	0.51
2-Mar-07	-1.2	-4.9	-8.3	0.3	0.75
3-Mar-07	9.2	4.5	-2.4	3.0	1.97
4-Mar-07	6.0	3.1	0.5	1.3	1.06
5-Mar-07	7.5	4.7	2.0	1.0	0.89
6-Mar-07	9.9	5.9	1.4	1.3	1.01
7-Mar-07	6.1	1.7	-2.8	0.3	1.25
8-Mar-07	3.3	-0.3	-2.8	0.5	0.81
9-Mar-07	2.8	-0.8	-3.5	2.3	1.15
10-Mar-07	0.5	-1.5	-3.0	3.0	0.63
11-Mar-07	3.3	-1.4	-4.8	0.8	0.87
12-Mar-07	3.0	-2.3	-5.8	4.6	0.93
13-Mar-07	1.9	-2.8	-6.5	0.0	0.81
14-Mar-07	1.5	-2.9	-8.1	0.0	0.94
15-Mar-07	1.8	-1.4	-4.0	0.8	0.65
16-Mar-07	2.2	0.0	-2.1	5.8	0.73
17-Mar-07	4.8	0.4	-6.4	1.5	1.18
18-Mar-07	1.3	-3.2	-8.6	0.0	0.83
19-Mar-07	0.7	-1.8	-3.8	2.5	0.90
20-Mar-07	1.4	-2.2	-5.8	0.8	1.09
21-Mar-07	5.1	-1.1	-5.7	2.8	1.21

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			Total Precipitation (mm)	Daily Average Wind Speed (m / s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \hline \text { Minimum } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$		
22-Mar-07	8.7	3.0	-0.5	0.5	1.03
23-Mar-07	7.0	2.9	-0.6	1.5	0.86
24-Mar-07	3.6	0.7	-3.0	1.3	0.74
25-Mar-07	5.6	1.1	-2.8	0.8	0.91
26-Mar-07	3.5	-0.4	-3.0	0.3	0.63
27-Mar-07	4.0	-1.5	-7.8	0.8	1.21
28-Mar-07	5.0	1.6	-1.9	0.0	1.56
29-Mar-07	3.0	-0.1	-3.6	10.2	1.01
30-Mar-07	3.2	-3.3	-8.1	0.8	1.10
31-Mar-07	0.8	-3.2	-6.2	2.3	0.84
1-Apr-07	-1.4	-5.3	-7.4	0.3	1.08
2-Apr-07	-3.2	-7.5	-12.1	0.0	1.25
3-Apr-07	-3.1	-8.3	-13.6	0.3	1.34
4-Apr-07	2.4	-3.5	-10.5	0.0	1.22
5-Apr-07	1.9	-0.4	-2.3	0.8	1.33
6-Apr-07	7.0	3.6	1.2	3.0	0.68
7-Apr-07	14.3	5.8	1.7	0.8	0.64
8-Apr-07	10.5	5.0	2.1	1.8	0.66
9-Apr-07	7.7	3.5	0.4	5.1	0.61
10-Apr-07	8.5	2.9	-1.8	0.8	1.00
11-Apr-07	8.2	1.8	-2.9	0.0	1.01
12-Apr-07	9.3	4.0	-0.6	0.3	0.93
13-Apr-07	5.3	2.7	0.6	1.8	0.81
14-Apr-07	6.2	2.2	-1.0	2.0	0.90
15-Apr-07	4.3	1.1	-1.1	0.8	0.89
16-Apr-07	6.0	1.9	-0.5	1.5	0.65
17-Apr-07	7.2	1.9	-1.6	0.5	0.98
18-Apr-07	10.5	3.4	-2.7	1.0	1.11
19-Apr-07	10.8	4.4	0.1	0.5	1.14
20-Apr-07	8.0	3.7	0.4	0.8	0.73
21-Apr-07	10.5	5.4	1.3	0.5	1.12
22-Apr-07	10.8	5.6	2.2	0.0	1.06
23-Apr-07	7.2	4.8	2.0	1.8	0.96
24-Apr-07	9.6	4.6	0.4	1.3	1.04
25-Apr-07	7.7	3.7	0.5	0.8	0.87
26-Apr-07	10.3	4.4	-0.2	2.8	1.12
27-Apr-07	8.6	3.0	-1.4	1.0	1.00
28-Apr-07	8.2	2.9	-0.8	0.8	1.00
29-Apr-07	9.6	3.5	-1.0	0.5	1.11
30-Apr-07	8.1	3.4	-1.5	0.0	0.94
1-May-07	11.0	5.2	-1.2	0.0	0.99
2-May-07	8.7	5.7	0.1	19.8	1.03
3-May-07	9.5	3.4	-0.2	3.8	0.86
4-May-07	10.3	4.7	-0.5	0.3	1.37
5-May-07	7.7	4.2	-0.1	0.0	1.02
6-May-07	13.2	7.1	2.5	0.5	1.53
7-May-07	5.6	2.9	0.5	8.4	0.51
8-May-07	9.3	3.7	-0.6	1.0	1.10
9-May-07	8.5	3.8	-1.4	0.0	1.15
10-May-07	10.3	4.1	-1.0	0.0	0.87
11-May-07	9.3	4.2	0.2	1.0	0.98
12-May-07	10.4	4.3	-1.3	0.3	1.23
13-May-07	12.5	5.9	-0.8	0.3	1.13
14-May-07	13.6	6.3	0.9	0.0	1.16
15-May-07	19.9	11.2	2.4	0.5	1.46
16-May-07	15.0	9.0	2.5	0.0	1.07
17-May-07	9.6	5.5	1.5	0.0	0.83
18-May-07	11.6	6.2	1.1	1.0	1.04
19-May-07	9.0	5.3	1.7	8.9	1.01
20-May-07	14.3	7.3	0.2	0.8	1.29
21-May-07	16.2	9.1	1.6	0.3	1.32
22-May-07	18.0	10.4	2.8	0.0	1.40
23-May-07	18.9	11.0	4.0	0.3	1.46
24-May-07	21.3	12.4	4.1	0.3	1.33
25-May-07	20.9	13.2	7.7	0.0	1.07

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			TotalPrecipitation(mm)	Daily Average Wind Speed (m/s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average (${ }^{\circ} \mathrm{C}$)	Minimum (${ }^{\circ} \mathrm{C}$)		
26-May-07	13.4	9.1	5.2	1.8	0.74
27-May-07	11.8	8.1	4.0	0.3	1.21
28-May-07	18.3	9.7	1.6	0.8	1.11
29-May-07	15.1	10.0	6.0	1.0	0.79
30-May-07	18.0	9.2	4.9	1.3	0.86
31-May-07	19.0	10.9	3.7	0.5	0.98
1-Jun-07	22.2	14.4	7.4	0.5	1.10
2-Jun-07	24.0	16.0	7.9	0.3	1.24
3-Jun-07	30.0	19.3	9.5	0.0	1.08
4-Jun-07	17.2	13.5	10.4	7.9	0.51
5-Jun-07	16.1	12.3	9.6	0.8	0.66
6-Jun-07	10.4	9.6	8.9	23.1	0.27
7-Jun-07	15.1	9.8	4.7	1.8	1.01
8-Jun-07	16.9	9.5	3.4	0.3	1.16
9-Jun-07	14.6	9.2	4.3	5.3	0.78
10-Jun-07	14.9	8.5	3.6	0.5	0.83
11-Jun-07	14.9	8.3	2.1	0.0	0.76
12-Jun-07	13.5	8.5	3.7	0.5	0.82
13-Jun-07	16.9	9.8	3.8	0.3	0.81
14-Jun-07	19.3	12.4	4.8	0.5	0.94
15-Jun-07	20.2	12.9	7.9	0.5	0.95
16-Jun-07	20.7	13.2	8.0	2.8	0.79
17-Jun-07	13.0	10.5	7.1	3.8	0.41
18-Jun-07	14.0	8.3	3.5	1.0	0.72
19-Jun-07	12.4	7.0	2.7	2.3	0.72
20-Jun-07	13.5	9.5	7.0	5.8	0.59
21-Jun-07	15.8	9.7	4.6	3.8	0.78
22-Jun-07	14.8	8.7	3.8	4.8	0.73
23-Jun-07	14.0	8.6	4.1	0.5	0.78
24-Jun-07	15.8	9.6	3.0	0.3	1.13
25-Jun-07	16.0	10.1	4.7	0.3	0.97
26-Jun-07	17.9	10.8	5.0	0.5	0.75
27-Jun-07	17.7	10.8	7.4	8.4	1.06
28-Jun-07	13.2	9.2	6.7	7.1	0.57
29-Jun-07	14.9	10.5	7.8	3.8	0.39
30-Jun-07	16.8	11.0	5.9	0.0	0.68
1-Jul-07	17.2	11.1	4.4	0.0	1.02
2-Jul-07	17.7	11.9	6.2	0.3	0.82
3-Jul-07	19.3	12.9	9.7	0.0	0.69
4-Jul-07	20.2	14.2	8.6	0.0	0.96
5-Jul-07	19.3	12.5	6.9	0.0	0.92
6-Jul-07	16.9	10.9	5.1	0.3	0.98
7-Jul-07	18.1	11.8	4.2	0.0	0.92
8-Jul-07	15.9	12.2	8.6	0.3	0.63
9-Jul-07	17.2	11.6	6.6	0.5	0.70
10-Jul-07	22.9	15.9	10.3	0.0	0.75
11-Jul-07	27.3	18.9	12.5	0.0	1.10
12-Jul-07	30.7	20.8	12.5	0.0	1.12
13-Jul-07	28.1	21.6	16.2	0.0	0.97
14-Jul-07	24.7	18.2	14.5	0.3	0.82
15-Jul-07	18.8	15.5	10.8	20.1	0.57
16-Jul-07	21.1	14.4	8.7	0.0	0.93
17-Jul-07	20.4	15.0	9.2	0.0	0.65
18-Jul-07	21.4	16.0	12.6	1.0	0.74
19-Jul-07	17.4	14.5	10.6	0.5	0.42
20-Jul-07	18.2	12.7	9.3	5.1	0.85
21-Jul-07	19.8	14.0	8.8	1.3	0.66
22-Jul-07	19.5	12.8	9.2	2.8	0.87
23-Jul-07	15.7	11.1	8.1	2.8	0.64
24-Jul-07	16.4	11.3	7.6	0.0	0.53
25-Jul-07	20.2	12.8	5.9	0.0	1.09
26-Jul-07	22.7	15.9	11.4	0.0	0.78
27-Jul-07	19.5	14.5	11.4	0.0	0.59
28-Jul-07	17.2	13.2	10.3	1.8	0.54
29-Jul-07	16.6	10.8	7.1	3.6	0.80

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			Total Precipitation (mm) 0.8	Daily Average Wind Speed (m / s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \hline \text { Minimum } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$		
30-Jul-07	14.7	9.3	5.1	0.8	0.55
31-Jul-07	14.6	10.9	7.4	0.3	0.61
1-Aug-07	20.3	13.4	6.8	0.0	0.92
2-Aug-07	21.4	14.0	9.4	0.3	0.94
3-Aug-07	23.1	15.4	8.9	0.0	0.97
4-Aug-07	22.2	15.1	8.3	0.0	1.09
5-Aug-07	22.4	15.4	9.3	0.0	1.07
6-Aug-07	22.4	16.1	9.9	0.0	1.13
7-Aug-07	18.2	13.5	9.3	0.0	0.97
8-Aug-07	15.6	10.9	8.3	7.1	0.53
9-Aug-07	17.9	11.1	7.5	0.5	1.06
10-Aug-07	17.8	12.0	7.3	0.0	0.81
11-Aug-07	15.2	10.4	7.9	7.4	0.66
12-Aug-07	11.7	9.6	7.4	3.0	1.47
13-Aug-07	16.7	10.6	6.2	0.0	1.01
14-Aug-07	20.2	11.7	4.6	0.0	1.05
15-Aug-07	23.7	15.2	8.4	0.0	1.13
16-Aug-07	26.0	16.7	10.3	5.1	0.84
17-Aug-07	13.0	11.6	9.8	1.0	0.22
18-Aug-07	14.0	10.2	7.1	0.5	0.74
19-Aug-07	15.3	9.8	6.7	0.5	0.68
20-Aug-07	16.0	11.4	8.0	0.5	0.69
21-Aug-07	16.5	11.8	7.9	0.3	0.81
22-Aug-07	17.7	12.0	6.6	0.3	0.92
23-Aug-07	18.7	12.4	7.4	0.3	0.89
24-Aug-07	12.8	10.8	9.2	0.3	0.42
25-Aug-07	14.4	10.1	7.2	0.3	0.56
26-Aug-07	13.9	8.7	5.6	0.3	0.90
27-Aug-07	15.0	8.8	5.2	0.0	1.03
28-Aug-07	16.0	9.7	5.0	0.0	0.65
29-Aug-07	15.6	12.1	10.0	0.3	0.70
30-Aug-07	14.6	11.2	8.5	0.3	0.65
31-Aug-07	13.7	9.9	5.8	0.0	0.77
1-Sep-07	14.4	9.9	6.3	0.0	0.75
2-Sep-07	15.8	9.6	5.4	0.0	0.64
3-Sep-07	16.2	11.6	8.3	0.3	0.71
4-Sep-07	14.0	10.3	7.7	0.0	0.54
5-Sep-07	12.8	8.7	6.1	0.3	0.65
6-Sep-07	13.4	9.3	5.6	0.0	0.57
7-Sep-07	13.1	9.0	5.5	0.0	0.79
8-Sep-07	14.6	8.6	3.6	0.0	1.03
9-Sep-07	18.3	12.3	6.7	0.0	1.02
10-Sep-07	19.6	13.5	9.1	0.3	1.10
11-Sep-07	19.2	13.9	10.1	0.0	1.15
12-Sep-07	17.6	12.0	7.5	0.0	1.18
13-Sep-07	17.8	9.8	3.8	0.0	1.07
14-Sep-07	17.7	10.4	4.8	0.3	0.96
15-Sep-07	13.0	9.4	7.5	0.0	0.63
16-Sep-07	12.2	8.3	3.6	0.0	0.90
17-Sep-07	12.3	6.9	3.2	0.0	0.72
18-Sep-07	11.4	6.5	3.1	0.0	1.03
19-Sep-07	8.6	4.7	0.5	0.0	0.50
20-Sep-07	11.8	7.8	4.6	0.3	0.74
21-Sep-07	11.6	7.4	5.0	0.0	0.89
22-Sep-07	10.0	6.0	3.7	0.0	0.69
23-Sep-07	10.7	6.2	3.0	0.0	0.72
24-Sep-07	11.7	7.5	4.9	0.0	0.78
25-Sep-07	12.0	7.9	5.0	0.0	0.90
26-Sep-07	12.7	7.3	2.2	0.3	0.85
27-Sep-07	9.9	6.1	1.0	0.0	0.80
28-Sep-07	7.5	3.0	0.2	0.0	0.67
29-Sep-07	5.0	2.4	-0.1	0.0	0.71
30-Sep-07	7.8	4.9	3.2	0.0	0.61
1-Oct-07	8.6	4.7	1.8	0.0	0.70
2-Oct-07	7.7	3.6	0.9	0.0	0.58

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			TotalPrecipitation(mm)	Daily Average Wind Speed (m/s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average (${ }^{\circ} \mathrm{C}$)	Minimum (${ }^{\circ} \mathrm{C}$)		
3-Oct-07	6.8	2.9	0.6	0.0	0.62
4-Oct-07	4.6	1.9	-0.2	0.0	0.59
5-Oct-07	3.8	1.1	-1.0	0.0	0.63
6-Oct-07	7.0	3.5	1.0	0.0	0.91
7-Oct-07	7.9	3.8	0.1	0.0	0.85
8-Oct-07	7.6	2.8	-0.4	0.0	0.87
9-Oct-07	5.8	3.7	1.7	0.0	1.03
10-Oct-07	10.4	6.1	0.4	0.0	1.00
11-Oct-07	9.0	5.4	1.9	0.3	0.71
12-Oct-07	9.4	4.7	1.2	0.0	0.59
13-Oct-07	8.7	6.8	4.9	0.0	1.35
14-Oct-07	9.2	7.2	5.1	0.0	0.94
15-Oct-07	9.1	6.1	3.9	0.0	0.77
16-Oct-07	10.2	5.9	3.3	0.0	0.53
17-Oct-07	6.2	4.4	2.3	0.0	0.88
18-Oct-07	6.6	3.1	0.0	0.0	0.75
19-Oct-07	3.2	1.5	0.1	0.0	0.29
20-Oct-07	5.3	2.2	-0.2	0.0	0.72
21-Oct-07	9.2	4.2	-0.4	0.0	1.37
22-Oct-07	3.8	1.5	-0.1	0.0	0.34
23-Oct-07	7.6	2.7	-0.3	0.0	0.64
24-Oct-07	8.6	4.0	0.0	0.0	2.20
25-Oct-07	6.6	2.3	-0.2	0.3	1.06
26-Oct-07	4.3	1.6	-0.4	0.3	0.65
27-Oct-07	4.9	2.2	0.4	0.0	0.92
28-Oct-07	3.7	2.8	2.1	5.3	0.43
29-Oct-07	3.6	1.3	-1.0	0.0	0.80
30-Oct-07	5.1	1.6	-0.7	2.5	0.77
31-Oct-07	6.6	2.8	-0.8	0.0	1.24
1-Nov-07	4.2	0.9	-1.2	0.0	0.76
2-Nov-07	1.3	-0.1	-0.9	0.3	0.91
3-Nov-07	0.0	-0.7	-1.7	0.0	0.44
4-Nov-07	1.0	-1.1	-2.5	0.0	0.12
5-Nov-07	0.8	-0.7	-1.8	0.0	0.71
6-Nov-07	1.2	0.2	-0.4	0.0	0.37
7-Nov-07	5.7	1.8	0.1	0.3	0.71
8-Nov-07	2.0	0.1	-0.9	0.0	0.63
9-Nov-07	3.2	0.1	-0.8	0.3	0.63
10-Nov-07	4.2	1.7	-2.0	0.0	1.31
11-Nov-07	1.5	-0.5	-3.4	0.0	1.09
12-Nov-07	0.7	-0.8	-2.2	0.0	0.30
13-Nov-07	1.0	-1.2	-3.0	0.0	0.64
14-Nov-07	0.4	-2.2	-4.8	0.0	1.07
15-Nov-07	3.5	-0.1	-3.2	0.3	0.85
16-Nov-07	4.0	1.6	-0.8	0.0	0.93
17-Nov-07	1.2	-0.5	-2.7	0.0	0.60
18-Nov-07	0.5	-2.8	-4.2	0.0	0.42
19-Nov-07	-2.5	-3.8	-5.2	0.0	0.32
20-Nov-07	-4.4	-6.0	-7.8	0.0	0.45
21-Nov-07	-6.0	-7.8	-10.3	0.3	0.54
22-Nov-07	-8.2	-9.7	-11.0	0.0	0.60
23-Nov-07	-5.9	-7.6	-9.1	0.0	0.37
24-Nov-07	-2.5	-4.9	-6.6	0.0	0.51
25-Nov-07	-1.2	-3.1	-4.0	0.0	0.62
26-Nov-07	-0.3	-2.1	-3.6	0.0	0.39
27-Nov-07	-1.5	-3.2	-5.5	0.0	0.42
28-Nov-07	-4.0	-5.5	-7.0	0.0	0.23
29-Nov-07	-4.5	-8.0	-12.3	0.0	0.55
30-Nov-07	-10.5	-12.8	-15.3	0.0	0.44
1-Dec-07	-12.0	-13.8	-16.7	0.0	1.00
2-Dec-07	-14.5	-16.5	-18.0	0.0	2.22
3-Dec-07	-14.4	-17.0	-18.3	0.0	2.24
4-Dec-07	-12.6	-14.9	-16.5	0.0	0.47
5-Dec-07	-12.7	-14.2	-16.8	0.0	0.18
6-Dec-07	-13.6	-15.5	-18.5	0.0	0.39

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)
$\begin{array}{lccccc}\hline & & \text { Daily Air Temperature } & & \begin{array}{c}\text { Total }\end{array} & \begin{array}{c}\text { Daily Average } \\ \text { Wind Speed }\end{array} \\$\cline { 2 - 4 } (maximum \& Average \& Minimum
 (\& Precipitation\end{array}$)$
(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			Total Precipitation (mm)	Daily Average Wind Speed (m / s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \hline \text { Minimum } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$		
10-Feb-08	-10.6	-16.0	-20.3	1.5	0.67
11-Feb-08	0.9	-5.5	-11.6	3.8	0.62
12-Feb-08	4.5	1.1	-1.6	4.6	0.91
13-Feb-08	4.2	-0.4	-2.0	0.0	0.88
14-Feb-08	3.5	0.0	-1.6	7.9	0.33
15-Feb-08	3.3	0.5	-2.1	4.3	0.86
16-Feb-08	1.0	-2.1	-4.9	0.0	1.00
17-Feb-08	-1.4	-4.6	-7.4	0.0	0.60
18-Feb-08	2.0	-3.8	-8.0	0.0	0.71
19-Feb-08	3.1	-2.4	-5.9	0.0	0.66
20-Feb-08	4.2	-0.1	-3.1	0.0	0.79
21-Feb-08	5.2	0.4	-2.2	0.0	0.55
22-Feb-08	3.3	0.3	-1.4	0.0	0.44
23-Feb-08	5.2	0.7	-2.2	0.3	0.71
24-Feb-08	3.2	-0.4	-2.8	0.0	0.61
25-Feb-08	6.9	0.8	-3.8	0.0	0.78
26-Feb-08	2.0	0.8	-0.6	4.8	0.73
27-Feb-08	3.8	0.6	-2.6	2.8	1.02
28-Feb-08	3.3	-0.3	-2.0	3.0	0.53
29-Feb-08	2.6	-0.1	-1.4	10.7	0.72
1-Mar-08	4.4	-0.4	-3.6	1.5	1.11
2-Mar-08	1.7	-1.4	-4.3	4.8	0.46
3-Mar-08	2.0	0.2	-1.0	9.1	0.34
4-Mar-08	3.4	-1.1	-4.4	0.8	1.04
5-Mar-08	4.2	-1.1	-5.6	0.3	0.76
6-Mar-08	4.7	-0.4	-3.8	0.0	0.80
7-Mar-08	4.2	0.0	-4.0	0.0	0.75
8-Mar-08	6.6	1.9	-0.5	0.8	0.79
9-Mar-08	5.1	1.9	-0.1	0.0	0.93
10-Mar-08	4.5	1.9	-0.4	2.8	0.82
11-Mar-08	6.5	2.4	-0.7	2.3	0.81
12-Mar-08	3.5	-0.7	-4.0	0.3	1.04
13-Mar-08	5.0	-1.3	-6.1	0.0	0.77
14-Mar-08	3.8	0.0	-2.7	0.0	0.35
15-Mar-08	1.8	-1.3	-6.0	1.0	0.80
16-Mar-08	-0.9	-3.9	-7.0	0.5	0.85
17-Mar-08	4.6	0.2	-2.2	2.0	0.99
18-Mar-08	6.2	1.5	-3.2	0.8	1.38
19-Mar-08	3.3	-0.6	-4.7	0.0	0.88
20-Mar-08	4.9	-0.1	-5.9	0.0	0.89
21-Mar-08	4.6	0.4	-2.9	0.0	0.88
22-Mar-08	6.7	2.4	-0.9	0.0	1.45
23-Mar-08	4.3	1.1	-4.0	0.3	1.13
24-Mar-08	2.4	-2.1	-6.6	0.0	0.77
25-Mar-08	4.6	-0.8	-5.9	0.0	0.94
26-Mar-08	4.7	0.2	-4.2	0.3	0.66
27-Mar-08	3.9	-1.4	-6.2	7.9	0.70
28-Mar-08	4.0	-3.1	-8.2	0.3	0.90
29-Mar-08	2.8	-2.4	-6.9	0.0	1.12
30-Mar-08	2.9	-3.5	-9.5	0.0	0.87
31-Mar-08	3.6	-3.5	-9.6	0.0	1.15
1-Apr-08	5.1	-0.1	-5.2	0.0	1.06
2-Apr-08	6.0	1.1	-2.4	0.0	1.01
3-Apr-08	5.0	1.2	-1.6	0.0	0.85
4-Apr-08	7.2	2.1	-3.5	0.5	1.05
5-Apr-08	7.2	2.4	-2.3	0.0	0.99
6-Apr-08	7.4	2.0	-1.7	0.0	0.86
7-Apr-08	7.6	2.2	-1.7	0.0	0.79
8-Apr-08	4.3	-0.4	-3.5	0.0	0.83
9-Apr-08	4.1	-0.3	-5.2	0.0	0.87
10-Apr-08	7.0	2.1	-2.4	0.0	0.81
11-Apr-08	5.4	1.8	-0.9	1.3	0.77
12-Apr-08	13.1	5.4	-0.2	1.3	1.16
13-Apr-08	7.3	3.0	-1.7	0.0	1.31
14-Apr-08	6.0	0.6	-3.7	0.0	0.88

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			Total Precipitation (mm)	Daily Average Wind Speed (m / s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \hline \text { Minimum } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$		
15-Apr-08	8.2	2.5	-2.3	0.5	0.87
16-Apr-08	10.4	5.1	1.0	0.0	1.25
17-Apr-08	3.7	0.8	-3.8	0.5	1.15
18-Apr-08	2.2	-1.8	-5.0	0.0	1.12
19-Apr-08	1.2	-3.7	-7.8	0.5	1.36
20-Apr-08	1.6	-3.0	-8.5	0.0	1.18
21-Apr-08	6.2	-0.3	-7.2	0.8	1.19
22-Apr-08	8.4	2.3	-3.6	0.3	1.07
23-Apr-08	8.4	2.9	-1.7	0.0	1.14
24-Apr-08	3.4	0.2	-3.5	0.0	1.02
25-Apr-08	9.5	1.1	-5.7	1.0	1.10
26-Apr-08	13.0	4.9	-2.7	0.0	1.10
27-Apr-08	12.8	6.7	2.3	3.0	1.14
28-Apr-08	8.2	4.3	0.5	1.3	0.89
29-Apr-08	9.0	3.6	-1.7	0.8	1.40
30-Apr-08	11.3	4.9	-0.4	0.5	1.57
1-May-08	12.3	5.3	-2.0	0.0	1.30
2-May-08	10.8	6.5	2.6	0.0	1.06
3-May-08	10.9	5.1	0.2	1.0	1.25
4-May-08	13.5	5.5	-0.5	0.0	0.97
5-May-08	12.1	6.4	2.1	0.0	0.95
6-May-08	11.4	5.6	1.4	0.0	0.99
7-May-08	9.4	4.0	-1.7	0.0	1.35
8-May-08	13.5	6.0	0.0	0.0	1.18
9-May-08	14.6	8.4	1.9	0.5	1.11
10-May-08	12.7	8.2	2.9	0.0	1.02
11-May-08	11.7	5.8	1.4	0.0	0.75
12-May-08	10.2	4.0	-1.1	2.0	1.13
13-May-08	11.9	5.4	2.1	2.3	0.98
14-May-08	10.6	6.9	3.3	2.3	1.15
15-May-08	11.4	8.6	5.6	9.9	0.81
16-May-08	22.1	11.4	4.2	2.3	1.17
17-May-08	22.7	13.8	7.5	0.0	1.02
18-May-08	18.7	11.7	5.8	0.0	1.28
19-May-08	11.8	8.0	5.8	0.8	0.88
20-May-08	13.5	7.7	4.7	2.0	0.76
21-May-08	14.8	9.1	4.7	0.5	1.21
22-May-08	14.7	9.0	5.2	0.0	1.04
23-May-08	18.1	11.3	4.2	0.5	1.01
24-May-08	18.5	13.5	9.3	0.0	1.06
25-May-08	22.5	15.4	10.8	0.8	1.33
26-May-08	23.1	16.3	10.1	0.3	1.27
27-May-08	19.8	14.6	9.5	0.0	1.14
28-May-08	11.4	9.8	8.6	1.5	0.46
29-May-08	12.0	9.1	7.3	4.1	0.47
30-May-08	15.7	9.3	5.0	0.8	0.87
31-May-08	19.6	11.2	3.3	1.5	1.10
1-Jun-08	20.7	12.2	4.7	0.0	1.15
2-Jun-08	16.4	10.9	5.5	0.0	0.76
3-Jun-08	13.4	8.7	5.2	0.0	0.81
4-Jun-08	14.0	9.0	3.0	0.0	0.81
5-Jun-08	12.9	8.6	4.2	0.0	0.88
6-Jun-08	17.1	9.7	2.8	0.3	1.00
7-Jun-08	13.3	7.6	1.7	0.0	0.87
8-Jun-08	10.6	5.8	0.8	0.0	0.77
9-Jun-08	14.4	7.9	1.9	0.0	0.86
10-Jun-08	17.9	10.8	4.3	0.0	0.95
11-Jun-08	20.1	12.3	4.2	1.0	1.06
12-Jun-08	11.7	8.3	4.3	4.6	0.66
13-Jun-08	11.6	7.5	4.3	0.8	0.67
14-Jun-08	14.8	8.9	3.2	0.3	0.90
15-Jun-08	14.8	9.3	4.8	0.0	0.70
16-Jun-08	14.8	8.2	3.1	0.8	0.82
17-Jun-08	12.2	7.9	3.8	3.3	0.71
18-Jun-08	14.2	8.0	3.6	1.3	0.88

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

	Daily Air Temperature			TotalPrecipitation(mm)	Daily Average Wind Speed (m/s)
Date	Maximum (${ }^{\circ} \mathrm{C}$)	Average (${ }^{\circ} \mathrm{C}$)	Minimum (${ }^{\circ} \mathrm{C}$)		
19-Jun-08	16.5	9.8	1.4	0.8	0.90
20-Jun-08	16.6	11.4	4.7	0.0	0.65
21-Jun-08	18.4	11.8	8.3	4.6	0.83
22-Jun-08	13.5	9.0	3.7	3.0	0.83
23-Jun-08	16.4	10.0	2.6	0.0	0.80
24-Jun-08	13.7	9.3	3.3	1.0	0.72
25-Jun-08	12.0	7.3	1.6	2.8	0.60
26-Jun-08	14.8	8.7	3.3	2.0	0.48
27-Jun-08	18.0	11.9	5.8	1.0	0.75
28-Jun-08	19.1	13.7	9.0	1.0	0.87
29-Jun-08	23.1	14.0	6.5	1.0	1.01
30-Jun-08	26.3	17.5	8.9	0.5	1.10
1-Jul-08	29.6	18.7	11.9	2.0	1.21
2-Jul-08	26.7	18.1	10.4	2.0	0.91
3-Jul-08	20.0	16.0	12.5	0.0	0.67
4-Jul-08	20.5	14.8	10.7	0.0	0.63
5-Jul-08	17.6	12.9	9.6	8.6	0.70
6-Jul-08	16.9	11.4	6.2	1.3	0.77
7-Jul-08	12.0	9.0	5.3	0.5	0.43
8-Jul-08	16.1	10.9	7.0	0.8	0.55
9-Jul-08	11.7	8.4	4.7	0.0	0.60
10-Jul-08	15.5	8.9	3.5	0.5	1.02
11-Jul-08	17.7	11.1	4.2	0.5	0.78
12-Jul-08	16.8	12.3	8.5	0.0	0.57
13-Jul-08	14.8	10.7	8.2	0.0	0.58
14-Jul-08	17.8	11.9	5.6	0.8	0.96
15-Jul-08	21.3	12.5	6.6	2.8	1.01
16-Jul-08	16.9	12.2	7.8	0.0	0.87
17-Jul-08	15.3	10.8	7.6	0.5	0.49
18-Jul-08	15.1	10.6	7.0	0.0	0.78
19-Jul-08	13.1	10.0	7.5	4.6	0.38
20-Jul-08	15.1	11.1	8.5	2.8	0.60
21-Jul-08	15.4	9.8	5.0	0.3	0.83
22-Jul-08	20.0	10.6	3.2	0.0	1.07
23-Jul-08	20.3	13.2	5.7	0.0	1.11
24-Jul-08	21.8	13.6	6.4	0.0	1.08
25-Jul-08	24.5	16.6	7.2	0.0	0.93
26-Jul-08	17.0	13.2	10.4	4.6	0.58
27-Jul-08	17.6	12.2	5.6	2.0	0.82
28-Jul-08	11.7	8.0	4.5	5.8	0.73
29-Jul-08	16.3	11.6	6.5	2.5	0.68
30-Jul-08	14.2	9.1	5.3	0.3	0.59
31-Jul-08	14.5	9.0	3.8	0.0	0.92
1-Aug-08	18.4	11.3	3.7	0.0	0.89
2-Aug-08	19.8	11.9	5.8	0.0	1.08
3-Aug-08	20.9	13.6	6.7	0.0	1.07
4-Aug-08	23.2	15.5	7.7	0.0	1.15
5-Aug-08	26.1	17.4	9.9	0.0	1.15
6-Aug-08	29.4	19.2	11.3	0.0	1.07
7-Aug-08	25.8	18.3	11.6	0.0	1.13
8-Aug-08	23.2	17.6	12.0	0.0	0.73
9-Aug-08	18.7	14.7	11.5	2.0	0.63
10-Aug-08	13.8	11.2	8.5	7.6	0.51
11-Aug-08	19.5	12.7	6.7	0.0	0.87
12-Aug-08	16.8	12.8	8.6	2.5	0.73
13-Aug-08	17.2	12.9	8.7	0.0	0.46
14-Aug-08	24.7	17.4	11.2	0.0	0.91
15-Aug-08	26.9	17.8	12.2	0.0	1.06
16-Aug-08	25.3	18.0	12.7	0.0	1.19
17-Aug-08	25.8	17.7	11.6	0.0	1.07
18-Aug-08	18.8	13.5	8.9	1.3	1.23
19-Aug-08	18.3	13.6	9.5	0.5	0.83
20-Aug-08	14.9	10.7	8.4	32.8	0.43
21-Aug-08	16.1	11.0	8.4	0.3	0.57
22-Aug-08	14.9	11.0	8.7	3.8	0.62

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (continued)

Date	Daily Air Temperature			Total Precipitation (mm)	Daily Average Wind Speed (m/s)
	Maximum (${ }^{\circ} \mathrm{C}$)	Average (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \hline \text { Minimum } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$		
23-Aug-08	15.5	12.3	9.7	8.6	0.63
24-Aug-08	17.0	12.9	6.8	3.8	0.88
25-Aug-08	13.5	9.0	5.3	0.0	0.71
26-Aug-08	12.7	7.9	4.7	2.8	0.77
27-Aug-08	12.2	8.4	5.5	3.0	0.50
28-Aug-08	13.7	9.4	6.5	0.8	0.76
29-Aug-08	9.4	6.9	5.0	2.3	0.49
30-Aug-08	12.0	7.3	4.9	0.3	0.60
31-Aug-08	12.7	7.6	4.6	0.0	0.88
1-Sep-08	13.3	7.9	3.4	0.0	0.63
2-Sep-08	12.4	7.8	4.2	2.3	0.82
3-Sep-08	12.2	7.2	2.7	0.0	0.75
4-Sep-08	12.1	8.9	5.9	0.0	0.53
5-Sep-08	14.4	10.1	6.6	0.0	0.70
6-Sep-08	15.4	9.0	4.7	0.0	0.96
7-Sep-08	16.6	10.1	4.5	0.0	0.89
8-Sep-08	16.4	11.6	4.6	0.0	0.91
9 -Sep-08	13.9	7.6	2.2	0.0	1.03
10-Sep-08	11.9	8.8	5.9	4.1	0.53
11-Sep-08	10.0	8.3	5.1	16.3	0.66
12-Sep-08	11.0	6.4	3.3	0.3	1.06
13-Sep-08	12.9	6.6	2.5	0.0	0.98
14-Sep-08	15.5	8.6	3.5	0.0	0.98
15-Sep-08	18.7	12.3	8.0	0.0	0.84
16-Sep-08	17.6	13.0	9.0	0.0	0.66
17-Sep-08	18.0	12.1	9.2	0.0	0.96
18-Sep-08	18.0	11.6	7.1	0.0	0.85
19-Sep-08	16.3	11.5	7.9	0.0	0.54
20-Sep-08	14.4	10.2	6.2	1.3	0.79
21-Sep-08	9.4	6.6	1.8	4.6	0.59
22-Sep-08	8.7	3.8	0.5	0.0	0.83
23-Sep-08	9.1	3.2	-0.8	0.3	0.94
24-Sep-08	6.8	4.7	1.6	0.3	0.56
25-Sep-08	9.2	4.3	-0.4	0.0	0.65
26-Sep-08	10.7	6.6	3.3	11.9	0.64
27-Sep-08	10.6	6.2	3.0	0.3	0.73
28-Sep-08	7.8	5.5	2.5	2.0	0.61
29-Sep-08	16.9	11.9	7.7	0.3	1.03
30-Sep-08	18.9	13.6	9.7	0.0	0.83
1-Oct-08	18.6	12.8	8.6	0.0	0.67
2-Oct-08	18.8	13.6	7.6	0.0	0.85
3-Oct-08	12.3	8.1	4.9	0.0	0.75
4-Oct-08	6.4	5.4	4.2	3.0	0.28
5-Oct-08	7.6	4.7	0.8	2.3	0.60
6-Oct-08	6.8	3.4	1.1	1.3	0.55
7-Oct-08	6.2	3.1	0.4	2.3	0.65
8-Oct-08	5.6	1.7	-1.0	0.5	0.78
9-Oct-08	3.4	0.7	-2.5	0.0	0.76
10-Oct-08	2.9	-0.8	-3.7	0.0	0.73
11-Oct-08	6.9	3.6	1.2	1.5	0.50
12-Oct-08	7.6	4.7	2.7	0.3	0.60
13-Oct-08	7.7	3.3	-0.7	1.0	0.86
14-Oct-08	6.3	1.6	-0.7	0.0	0.77
15-Oct-08	5.1	0.7	-2.0	0.0	0.81
16-Oct-08	3.1	-0.1	-2.5	2.8	0.52
17-Oct-08	6.6	2.0	-0.1	3.6	0.98
18-Oct-08	5.3	0.8	-1.4	0.3	0.92
19-Oct-08	4.8	2.1	-0.4	0.0	0.68
20-Oct-08	5.3	2.2	-0.2	6.6	0.76
21-Oct-08	4.6	1.1	-1.2	9.1	0.91
22-Oct-08	5.2	3.4	0.4	18.5	1.09
23-Oct-08	5.0	2.1	-0.4	2.3	0.89
24-Oct-08	4.9	2.6	0.9	3.6	1.43
25-Oct-08	2.6	0.0	-4.0	0.0	1.48
26-Oct-08	1.6	-1.2	-4.8	0.0	0.71

(continued)

Appendix 3.1-1
Daily Meteorological Data from Davidson Met Station (completed)

Date	Daily Air Temperature			Total Precipitation (mm) 0	Daily Average Wind Speed (m / s)
	$\begin{aligned} & \text { Maximum } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	Average (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { Minimum } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$		
27-Oct-08	5.0	0.8	-2.4	0.3	0.99
28-Oct-08	10.0	4.2	0.5	1.8	0.85
29-Oct-08	3.6	1.1	-2.7	0.8	0.89
30-Oct-08	2.9	-0.9	-4.6	0.3	0.67
31-Oct-08	3.2	1.1	-0.7	3.6	0.41
1-Nov-08	5.7	3.1	1.7	5.6	0.46
2-Nov-08	8.5	6.2	2.5	1.0	0.99
3-Nov-08	5.4	2.2	-1.9	0.0	0.90
4-Nov-08	0.5	-0.9	-2.5	0.0	0.23
5-Nov-08	-0.5	-2.1	-3.8	0.0	0.00
6-Nov-08	1.3	-0.1	-1.9	0.0	1.20
7-Nov-08	3.3	1.0	-0.6	12.2	0.35
8-Nov-08	4.5	3.2	0.9	6.6	0.59
9-Nov-08	2.8	0.3	-2.7	1.0	0.68
10-Nov-08	2.1	-1.2	-2.9	0.0	0.35
11-Nov-08	2.4	1.2	0.3	22.6	1.15
12-Nov-08	4.0	1.8	0.1	6.4	0.98
13-Nov-08	3.2	0.6	-2.1	0.0	1.47
14-Nov-08	0.6	-1.6	-2.3	0.0	0.71
15-Nov-08	0.2	-1.9	-4.4	0.0	0.61
16-Nov-08	-0.7	-2.9	-5.1	0.0	0.42
17-Nov-08					
18-Nov-08					
19-Nov-08					
20-Nov-08					
21-Nov-08					
22-Nov-08					
23-Nov-08					
24-Nov-08					
25-Nov-08					
26-Nov-08					
27-Nov-08					
28-Nov-08					
29-Nov-08					
30-Nov-08					

Appendix 3.2-1
Summary of Daily Flow: KC1

2006															
Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)
1-Apr		1-May	0.075	1-Jun	0.388	1-Jul	0.146	1-Aug	0.083	1-Sep	0.014	1-Oct	0.102	1-Nov	0.051
2-Apr		2-May	0.062	2-Jun	0.619	2-Jul	0.172	2-Aug	0.066	2-Sep	0.015	2-Oct	0.085	2 -Nov	0.046
$3-\mathrm{Apr}$		3-May	0.055	3-Jun	0.643	3 -Jul	0.189	3-Aug	0.055	3-Sep	0.016	3-Oct	0.069	$3-\mathrm{Nov}$	0.043
4-Apr		4-May	0.055	4-Jun	0.412	4-Jul	0.199	4-Aug	0.045	4-Sep	0.013	4 -Oct	0.056	4-Nov	0.041
5-Apr		5-May	0.063	5-Jun	0.327	5-Jul	0.202	5-Aug	0.043	5-Sep	0.010	5-Oct	0.048	5 -Nov	0.040
$6-\mathrm{Apr}$		6-May	0.082	6 -Jun	0.273	6-Jul	0.277	6-Aug	0.060	6-Sep	0.010	6 -Oct	0.044	6 -Nov	0.040
7-Apr		7-May	0.103	7-Jun	0.260	7-Jul	0.233	7-Aug	0.074	7-Sep	0.010	7-Oct	0.040	7-Nov	0.058
8 -Apr		8-May	0.099	8-Jun	0.295	8 -Jul	0.169	8-Aug	0.064	8 -Sep	0.014	8-Oct	0.032	8 -Nov	0.067
$9-\mathrm{Apr}$		9-May	0.087	9 -Jun	0.325	9 -Jul	0.177	9 -Aug	0.065	9-Sep	0.015	9-Oct	0.028	$9-\mathrm{Nov}$	0.091
10-Apr		10-May	0.077	10-Jun	0.359	10-Jul	0.168	10-Aug	0.058	10-Sep	0.019	10-Oct	0.027	10-Nov	0.062
11-Apr		11-May	0.070	11-Jun	0.393	11-Jul	0.135	11-Aug	0.045	11-Sep	0.021	11-Oct	0.027	11-Nov	0.042
12-Apr	0.068	12-May	0.065	12-Jun	0.392	12-Jul	0.116	12-Aug	0.040	12-Sep	0.022	12-Oct	0.029	12-Nov	0.050
13-Apr	0.049	13-May	0.061	13-Jun	0.377	13-Jul	0.120	13-Aug	0.038	13-Sep	0.020	13-Oct	0.027	13-Nov	0.089
14-Apr	0.067	14-May	0.056	14-Jun	0.349	14-Jul	0.149	14-Aug	0.037	14-Sep	0.021	14-Oct	0.034	14-Nov	
15-Apr	0.075	15-May	0.053	15-Jun	0.281	15-Jul	0.142	15-Aug	0.036	15-Sep	0.018	15-Oct	0.045	15-Nov	
16-Apr	0.051	16-May	0.057	16-Jun	0.250	16-Jul	0.135	16-Aug	0.033	16-Sep	0.017	16-Oct	0.077	16-Nov	
17-Apr	0.040	17-May	0.119	17-Jun	0.235	17-Jul	0.115	17-Aug	0.029	17-Sep	0.019	17-Oct	0.090	17-Nov	
18-Apr	0.026	18-May	0.193	18-Jun	0.210	18-Jul	0.103	18-Aug	0.027	18-Sep	0.021	18-Oct	0.077	18-Nov	
19-Apr	0.031	19-May	0.221	19-Jun	0.176	19-Jul	0.095	19-Aug	0.028	19-Sep	0.019	19-Oct	0.066	19-Nov	
20-Apr	0.027	20-May	0.292	20-Jun	0.168	20-Jul	0.087	20-Aug	0.025	20-Sep	0.045	20-Oct	0.064	20-Nov	
21-Apr	0.025	21-May	0.266	21-Jun	0.148	21-Jul	0.093	21-Aug	0.022	21-Sep	0.064	21-Oct	0.061	21-Nov	
22-Apr	0.028	22-May	0.221	22-Jun	0.136	22-Jul	0.123	22-Aug	0.017	22-Sep	0.089	22-Oct	0.055	22-Nov	
23-Apr	0.026	23-May	0.530	23-Jun	0.121	23-Jul	0.139	23-Aug	0.013	23-Sep	0.098	23-Oct	0.051	23-Nov	
24-Apr	0.032	24-May	0.506	24-Jun	0.120	24-Jul	0.143	24-Aug	0.010	24-Sep	0.189	24-Oct	0.065	24-Nov	
25-Apr	0.041	25-May	0.401	25-Jun	0.163	25-Jul	0.127	25-Aug	0.008	25-Sep	0.160	25-Oct	0.071	25-Nov	
26-Apr	0.052	26-May	0.343	26-Jun	0.224	26-Jul	0.116	26-Aug	0.006	26-Sep	0.182	26-Oct	0.074	26-Nov	
27-Apr	0.058	27-May	0.321	27-Jun	0.239	27-Jul	0.106	27-Aug	0.006	27-Sep	0.176	27-Oct	0.078	27-Nov	
28-Apr	0.071	28-May	0.315	28-Jun	0.198	28-Jul	0.088	28-Aug	0.008	28-Sep	0.135	28-Oct	0.139	28-Nov	
29-Apr	0.073	29-May	0.340	29-Jun	0.143	29-Jul	0.071	29-Aug	0.005	29-Sep	0.113	29-Oct	0.073	29-Nov	
30-Apr	0.082	30-May	0.288	30-Jun	0.118	30-Jul	0.067	30-Aug	0.009	30-Sep	0.099	30-Oct	0.065	30-Nov	
		31-May	0.300			31-Jul	0.090	31-Aug	0.012			31-Oct	0.057		
2007															
Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)
1-Apr		1-May	0.279	1-Jun	0.459	1-Jul	0.360	1-Aug	0.214	1-Sep	0.233	1-Oct	0.178	1-Nov	0.213
2-Apr		2-May	0.285	2-Jun	0.571	2-Jul	0.331	2-Aug	0.222	2-Sep	0.208	2-Oct	0.183	2-Nov	0.205
3-Apr		3-May	0.442	3-Jun	0.726	3 -Jul	0.345	3-Aug	0.231	3-Sep	0.199	$3-\mathrm{Oct}$	0.183	3 -Nov	0.197
4-Apr		4-May	0.419	4-Jun	0.871	4-Jul	0.395	4-Aug	0.234	4-Sep	0.214	4-Oct	0.199	4-Nov	0.187
5-Apr		5-May	0.380	5-Jun	0.798	5 -Jul	0.401	5-Aug	0.230	5-Sep	0.212	$5-\mathrm{Oct}$	0.188	$5-\mathrm{Nov}$	0.186
6 -Apr		6 -May	0.344	6 -Jun	0.778	6 -Jul	0.344	6-Aug	0.221	6-Sep	0.206	6-Oct	0.186	6 -Nov	0.196
7-Apr		7-May	0.354	7-Jun	0.756	7-Jul	0.308	7-Aug	0.226	7-Sep	0.190	7-Oct	0.267	7-Nov	0.235
8 -Apr		8-May	0.354	8-Jun	0.556	8 -Jul	0.305	8-Aug	0.212	8 -Sep	0.174	8 -Oct	0.243	8 -Nov	0.238
9-Apr		9-May	0.319	9 -Jun	0.469	9 9-Jul	0.322	9-Aug	0.206	9-Sep	0.163	9-Oct	0.229	$9-\mathrm{Nov}$	0.234
10-Apr		10-May	0.292	10-Jun	0.492	10-Jul	0.419	10-Aug	0.219	10-Sep	0.164	10-Oct	0.215	10-Nov	0.248
11-Apr		11-May	0.272	11-Jun	0.420	11-Jul	0.500	11-Aug	0.209	11-Sep	0.174	11-Oct	0.208	11-Nov	0.239
12-Apr		12-May	0.255	12-Jun	0.367	12-Jul	0.498	12-Aug	0.212	12-Sep	0.172	12-Oct	0.209	12-Nov	0.218
13-Apr		13-May	0.241	13-Jun	0.339	13-Jul	0.508	13-Aug	0.230	13-Sep	0.163	13-Oct	0.208	13-Nov	0.200
14-Apr		14-May	0.237	14-Jun	0.338	14-Jul	0.473	14-Aug	0.207	14-Sep	0.152	14-Oct	0.271	14-Nov	0.186
15-Apr		15-May	0.244	15-Jun	0.402	15-Jul	0.563	15-Aug	0.187	15-Sep	0.142	15-Oct	0.312	15-Nov	0.181
16-Apr		16-May	0.278	16-Jun	0.447	16-Jul	0.436	16-Aug	0.233	16-Sep	0.138	16-Oct	0.285	16-Nov	0.187
17-Apr		17-May	0.332	17-Jun	0.496	17-Jul	0.348	17-Aug	0.421	17-Sep	0.134	17-Oct	0.262	17-Nov	0.176
18-Apr		18-May	0.314	18-Jun	0.441	18-Jul	0.345	18-Aug	0.493	18-Sep	0.136	18-Oct	0.237	18-Nov	0.163
19-Apr		19-May	0.313	19-Jun	0.366	19-Jul	0.360	19-Aug	0.312	19-Sep	0.132	19-Oct	0.242	19-Nov	0.153
20-Apr		20-May	0.321	20-Jun	0.334	20-Jul	0.341	20-Aug	0.248	20-Sep	0.136	20-Oct	0.225	20-Nov	0.152
21-Apr		21-May	0.314	21-Jun	0.374	21-Jul	0.325	21-Aug	0.219	21-Sep	0.132	21-Oct	0.210	21-Nov	
22-Apr		22-May	0.328	22-Jun	0.362	22-Jul	0.332	22-Aug	0.204	22-Sep	0.130	22-Oct	0.233	22-Nov	
23-Apr		23-May	0.369	23-Jun	0.344	23-Jul	0.310	23-Aug	0.193	23-Sep	0.136	23-Oct	0.332	23-Nov	
24-Apr		24-May	0.402	24-Jun	0.316	24-Jul	0.266	24-Aug	0.187	24-Sep	0.137	24-Oct	0.444	24-Nov	
25-Apr		25-May	0.451	25-Jun	0.307	25-Jul	0.236	25-Aug	0.215	25-Sep	0.135	25-Oct	0.386	25-Nov	
26-Apr	0.395	26-May	0.550	26-Jun	0.295	26-Jul	0.249	26-Aug	0.217	26-Sep	0.141	26-Oct	0.323	26-Nov	
27-Apr	0.372	27-May	0.491	27-Jun	0.343	27-Jul	0.268	27-Aug	0.195	27-Sep	0.161	27-Oct	0.294	27-Nov	
28-Apr	0.348	28-May	0.407	28-Jun	0.394	28-Jul	0.272	28-Aug	0.177	28-Sep	0.210	28-Oct	0.273	28-Nov	
29-Apr	0.322	29-May	0.396	29-Jun	0.395	29-Jul	0.276	29-Aug	0.296	29-Sep	0.205	29-Oct	0.257	29-Nov	
30-Apr	0.299	30-May	0.441	30-Jun	0.385	30-Jul	0.259	30-Aug	0.320	30-Sep	0.188	30-Oct	0.238	30-Nov	
		31-May	0.460			31-Jul	0.229	31-Aug	0.269			31-Oct	0.230		
2008															
Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)
1-Apr		1-May	0.113	1-Jun	0.329	1-Jul	0.346	1-Aug	0.093	1-Sep	0.096	1-Oct	0.158	1 -Nov	0.077
2-Apr		2-May	0.121	2-Jun	0.319	2-Jul	0.427	2-Aug	0.082	2-Sep	0.087	2-Oct	0.140	2-Nov	0.096
$3-\mathrm{Apr}$		3-May	0.145	3-Jun	0.291	3 -Jul	0.376	3-Aug	0.078	3-Sep	0.083	3-Oct	0.134	3 -Nov	0.120
4-Apr		4-May	0.148	4-Jun	0.249	4-Jul	0.307	4-Aug	0.087	4-Sep	0.077	4-Oct	0.124	4-Nov	0.118
5-Apr		5-May	0.150	5 -Jun	0.218	5-Jul	0.309	5-Aug	0.106	5-Sep	0.069	$5-\mathrm{Oct}$	0.114	5 -Nov	0.104
6-Apr		6-May	0.151	6 -Jun	0.188	6 -Jul	0.305	6 -Aug	0.128	6-Sep	0.065	6-Oct	0.110	6-Nov	0.088
7-Apr		7-May	0.150	7-Jun	0.174	7-Jul	0.216	7-Aug	0.149	7-Sep	0.063	7-Oct	0.108	7-Nov	0.081
8 -Apr		8-May	0.144	8-Jun	0.155	8-Jul	0.161	8-Aug	0.133	8-Sep	0.060	8 -Oct	0.098	8 -Nov	0.098
9-Apr		9-May	0.138	9 -Jun	0.136	$9-\mathrm{Jul}$	0.147	9-Aug	0.137	9-Sep	0.058	9-Oct	0.087	$9-\mathrm{Nov}$	0.126
10-Apr		10-May	0.156	10-Jun	0.120	10-Jul	0.128	10-Aug	0.161	10-Sep	0.061	10-Oct	0.078	10-Nov	0.113
11-Apr		11-May	0.183	11-Jun	0.130	11-Jul	0.116	11-Aug	0.149	11-Sep	0.120	11-Oct	0.075	11-Nov	0.110
12-Apr		12-May	0.177	12-Jun	0.182	12-Jul	0.146	12-Aug	0.129	12-Sep	0.185	12-Oct	0.071	12-Nov	0.186
13-Apr		13-May	0.167	13-Jun	0.176	13-Jul	0.157	13-Aug	0.126	13-Sep	0.147	13-Oct	0.088	13-Nov	0.164
14-Apr		14-May	0.151	14-Jun	0.156	14-Jul	0.138	14-Aug	0.111	14-Sep	0.110	14-Oct	0.100	14-Nov	0.133
15-Apr		15-May	0.312	15-Jun	0.151	15-Jul	0.132	15-Aug	0.127	15-Sep	0.089	15-Oct	0.089	15-Nov	0.110
16-Apr	0.103	16-May	0.586	16-Jun	0.145	16-Jul	0.139	16-Aug	0.127	16-Sep	0.088	16-Oct	0.078	16-Nov	0.093
17-Apr	0.114	17-May	0.608	17-Jun	0.146	17-Jul	0.139	17-Aug	0.120	17-Sep	0.098	17-Oct	0.087	17-Nov	0.085
18-Apr	0.078	18-May	0.592	18-Jun	0.148	18-Jul	0.128	18-Aug	0.112	18-Sep	0.096	18-Oct	0.073	18-Nov	0.076
19-Apr	0.098	19-May	0.454	19-Jun	0.143	19-Jul	0.114	19-Aug	0.088	19-Sep	0.086	19-Oct	0.068	19-Nov	0.104
20-Apr	0.084	20-May	0.382	20-Jun	0.156	20-Jul	0.131	20-Aug	0.305	20-Sep	0.079	20-Oct	0.085	20-Nov	0.063
21-Apr	0.063	21-May	0.330	21-Jun	0.234	21-Jul	0.154	21-Aug	0.274	21-Sep	0.087	21-Oct	0.079	21-Nov	0.061
22-Apr	0.059	22-May	0.303	22-Jun	0.306	22-Jul	0.130	22-Aug	0.160	22-Sep	0.098	22-Oct	0.148	22-Nov	0.052
23-Apr	0.052	23-May	0.303	23-Jun	0.234	23-Jul	0.115	23-Aug	0.217	23-Sep	0.101	23-Oct	0.163	23-Nov	0.054
24-Apr	0.035	24-May	0.347	24-Jun	0.212	24-Jul	0.115	24-Aug	0.238	24-Sep	0.088	24-Oct	0.157	24-Nov	0.045
25-Apr	0.043	25-May	0.411	25-Jun	0.188	25-Jul	0.117	25-Aug	0.176	25-Sep	0.079	25-Oct	0.128	25-Nov	0.044
26-Apr	0.040	26-May	0.505	26-Jun	0.167	26-Jul	0.137	26-Aug	0.128	26-Sep	0.080	26-Oct	0.107	26-Nov	0.044
27-Apr	0.082	27-May	0.471	27-Jun	0.168	27-Jul	0.156	27-Aug	0.133	27-Sep	0.106	27-Oct	0.092	27-Nov	0.038
28-Apr	0.109	28-May	0.431	28-Jun	0.255	28-Jul	0.143	28-Aug	0.150	28 -Sep	0.113	28-Oct	0.084	28-Nov	0.034
29-Apr	0.118	29-May	0.391	29-Jun	0.275	29-Jul	0.163	29-Aug	0.140	29-Sep	0.124	29-Oct	0.078	29-Nov	0.033
30-Apr	0.116	30-May	0.342	30-Jun	0.274	30-Jul	0.159	30-Aug	0.128	30-Sep	0.168	30-Oct	0.067	30-Nov	0.049
		31-May	0.312			31-Jul	0.125	31-Aug	0.110			31-Oct	0.070		

Appendix 3.2-2
Summary of Daily Flow: KC4

APPENDIX 3.2-3 SUMMARY OF DAILY FLOW: KC3/16

Appendix 3.2-4
Summary of Daily Flow: GG3

2006															
Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3 / \mathrm{s}}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3 / \mathrm{s}}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3 / \mathrm{s}}$)	Date	Flow ($\mathrm{m}^{3 / \mathrm{s}}$)
1-Apr		1-May	0.144	1-Jun	0.905	1-Jul	1.032	1-Aug	1.162	1-Sep	0.934	1-Oct	0.437	1-Nov	0.249
2-Apr		2-May	0.146	2-Jun	2.355	2-Jul	1.190	2-Aug	1.010	2-Sep	0.855	2-Oct	0.374	2-Nov	0.250
3-Apr		3-May	0.152	3-Jun	1.884	3-Jul	1.386	3-Aug	0.894	3-Sep	0.882	3-Oct	0.333	3-Nov	0.249
4-Apr		4-May	0.163	4-Jun	0.949	4-Jul	1.473	4-Aug	0.945	4-Sep	1.043	4-Oct	0.305	4-Nov	0.248
$5-\mathrm{Apr}$		5-May	0.179	5-Jun	0.867	5-Jul	1.596	5-Aug	1.368	5-Sep	0.891	$5-\mathrm{Oct}$	0.298	$5-\mathrm{Nov}$	0.243
$6-\mathrm{Apr}$		6-May	0.188	6-Jun	0.703	6-Jul	2.901	6-Aug	0.976	6-Sep	0.694	6-Oct	0.264	6-Nov	0.242
7-Apr		7-May	0.188	7-Jun	0.682	7-Jul	1.961	7-Aug	0.998	7-Sep	0.666	7-Oct	0.240	7-Nov	0.252
8-Apr		8-May	0.183	8-Jun	0.825	8-Jul	1.996	8-Aug	1.171	8-Sep	1.029	8-Oct	0.224	8-Nov	0.244
$9-\mathrm{Apr}$		9-May	0.187	9-Jun	0.954	$9-\mathrm{Jul}$	1.973	9-Aug	0.996	9-Sep	0.764	$9-\mathrm{Oct}$	0.257	$9-\mathrm{Nov}$	0.232
10-Apr		10-May	0.194	10-Jun	1.159	10-Jul	1.800	10-Aug	0.943	10-Sep	0.783	10-Oct	0.390	10-Nov	0.248
11-Apr		11-May	0.198	11-Jun	1.390	11-Jul	1.344	11-Aug	0.952	11-Sep	0.539	11-Oct	0.289	11-Nov	0.243
12-Apr		12-May	0.197	12-Jun	1.476	12-Jul	1.325	12-Aug	1.080	12-Sep	0.468	12-Oct	0.295	12-Nov	0.231
13-Apr	0.107	13-May	0.194	13-Jun	1.451	13-Jul	1.667	13-Aug	0.955	13-Sep	0.430	13-Oct	0.295	13-Nov	0.228
14-Apr	0.105	14-May	0.194	14-Jun	1.546	14-Jul	1.202	14-Aug	1.021	14-Sep	0.360	14-Oct	0.440	14-Nov	0.232
15-Apr	0.101	15-May	0.195	15-Jun	1.449	15-Jul	1.407	15-Aug	0.968	15-Sep	0.301	15-Oct	0.362	15-Nov	0.233
16-Apr	0.103	16-May	0.328	16-Jun	1.240	16-Jul	1.188	16-Aug	1.020	16-Sep	0.280	16-Oct	0.294	16-Nov	0.220
17-Apr	0.106	17-May	0.439	17-Jun	1.046	17-Jul	1.285	17-Aug	1.317	17-Sep	0.286	17-Oct	0.223	17-Nov	0.219
18-Apr	0.113	18-May	0.390	18-Jun	0.878	18-Jul	1.237	18-Aug	1.227	18-Sep	0.295	18-Oct	0.241	18-Nov	0.099
19-Apr	0.121	19-May	0.638	19-Jun	0.780	19-Jul	1.094	19-Aug	0.938	19-Sep	0.265	19-Oct	0.283	19-Nov	
20-Apr	0.117	20-May	0.672	20-Jun	0.770	20-Jul	1.244	20-Aug	0.978	20-Sep	0.446	20-Oct	0.283	20-Nov	
21-Apr	0.116	21-May	0.523	21-Jun	0.672	21-Jul	1.700	21-Aug	0.899	21-Sep	0.319	21-Oct	0.269	21-Nov	
22-Apr	0.117	22-May	0.420	22-Jun	0.563	22-Jul	1.914	22-Aug	0.902	22-Sep	0.296	22-Oct	0.263	22-Nov	
23-Apr	0.121	23-May	1.537	23-Jun	0.541	23-Jul	2.066	23-Aug	0.991	23-Sep	0.831	23-Oct	0.266	23-Nov	
24-Apr	0.128	24-May	1.131	24-Jun	0.600	24-Jul	1.928	24-Aug	1.063	24-Sep	0.877	24-Oct	0.290	24-Nov	
25-Apr	0.131	25-May	0.796	25-Jun	0.870	25-Jul	1.821	25-Aug	1.078	25-Sep	1.464	25-Oct	0.305	25-Nov	
26-Apr	0.134	26-May	0.658	26-Jun	1.145	26-Jul	2.001	26-Aug	1.113	26-Sep	1.058	26-Oct	0.304	26-Nov	
27-Apr	0.134	27-May	0.716	27-Jun	1.200	27-Jul	1.864	27-Aug	0.839	27-Sep	1.106	27-Oct	0.301	27-Nov	
28-Apr	0.149	28-May	0.717	28-Jun	0.807	28-Jul	1.349	28-Aug	0.899	28-Sep	1.002	28-Oct	0.284	28-Nov	
29-Apr	0.145	29-May	0.665	29-Jun	0.700	29-Jul	1.498	29-Aug	0.643	29-Sep	0.922	29-Oct	0.271	29-Nov	
30-Apr	0.142	30-May	0.593	30-Jun	0.854	30-Jul	1.777	30-Aug	0.622	30-Sep	0.652	30-Oct	0.257	30-Nov	
		31-May	0.633			31-Jul	1.545	31-Aug	0.636			31-Oct	0.253		
2007															
Date	Flow (m³/s)	Date	Flow ($\mathrm{m}^{3 / \mathrm{s}}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3 / \mathrm{s}}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)
1-Apr		1-May		1-Jun	0.922	1-Jul	0.909	1-Aug	0.973	1-Sep	0.283	1-Oct	0.083	1-Nov	
2-Apr		2-May		2-Jun	1.279	2-Jul	0.844	2-Aug	0.945	2-Sep	0.267	2-Oct	0.083	2-Nov	
3-Apr		3-May		3-Jun	3.048	3-Jul	0.969	3-Aug	1.073	3-Sep	0.404	3-Oct	0.080	3-Nov	
4-Apr		4-May		4-Jun	5.930	4-Jul	1.180	4-Aug	1.112	4-Sep	0.312	4-Oct	0.085	4-Nov	
5-Apr		5-May		5-Jun	3.726	5-Jul	1.115	5-Aug	1.025	5-Sep	0.206	5-Oct	0.076	$5-\mathrm{Nov}$	
6-Apr		6-May		6-Jun	3.476	6-Jul	0.947	6-Aug	1.284	6-Sep	0.163	6-Oct	0.077	6-Nov	
7-Apr		7-May		7-Jun	3.212	7-Jul	0.880	7-Aug	1.421	7-Sep	0.154	7-Oct	0.097	7-Nov	
8-Apr		8-May		8-Jun	2.097	8-Jul	0.903	8-Aug	1.089	8-Sep	0.146	8-Oct	0.078	8-Nov	
9-Apr		9-May	0.560	9 -Jun	1.662	$9-\mathrm{Jul}$	1.055	9-Aug	1.017	9-Sep	0.251	9-Oct	0.075	$9-\mathrm{Nov}$	
10-Apr		10-May	0.517	10-Jun	1.569	10-Jul	1.983	10-Aug	0.904	10-Sep	0.266	10-Oct	0.076	10-Nov	
11-Apr		11-May	0.493	11-Jun	1.026	11-Jul	2.204	11-Aug	0.865	11-Sep	0.266	11-Oct	0.073	11-Nov	
12-Apr		12-May	0.466	12-Jun	0.842	12-Jul	2.551	12-Aug	1.041	12-Sep	0.204	12-Oct	0.071	12-Nov	
13-Apr		13-May	0.442	13-Jun	0.781	13-Jul	3.083	13-Aug	0.872	13-Sep	0.170	13-Oct	0.075	13-Nov	
14-Apr		14-May	0.433	14-Jun	0.808	14-Jul	2.942	14-Aug	0.858	14-Sep	0.159	14-Oct	0.093	14-Nov	
15-Apr		15-May	0.455	15-Jun	0.935	15-Jul	4.411	15-Aug	1.008	15-Sep	0.148	15-Oct	0.100	15-Nov	
16-Apr		16-May	0.604	16-Jun	0.996	16-Jul	3.072	16-Aug	1.518	16-Sep	0.148	16-Oct	0.081	16-Nov	
17-Apr		17-May	0.561	17-Jun	1.329	17-Jul	2.408	17-Aug	1.323	17-Sep	0.118	17-Oct	0.080	17-Nov	
18-Apr		18-May	0.494	18-Jun	1.076	18-Jul	2.334	18-Aug	1.180	18-Sep	0.109	18-Oct	0.071	18-Nov	
19-Apr		19-May	0.586	19-Jun	0.883	19-Jul	2.456	19-Aug	0.593	19-Sep	0.103	19-Oct	0.076	19-Nov	
20-Apr		20-May	0.565	20-Jun	0.921	20-Jul	2.158	20-Aug	0.607	20-Sep	0.110	20-Oct	0.072	20-Nov	
21-Apr		21-May	0.595	21-Jun	0.954	21-Jul	1.998	21-Aug	0.547	21-Sep	0.101	21-Oct	0.071	21-Nov	
22-Apr		22-May	0.689	22-Jun	0.819	22-Jul	2.360	22-Aug	0.394	22-Sep	0.094	22-Oct	0.077	22-Nov	
23-Apr		23-May	0.760	23-Jun	0.731	23-Jul	1.898	23-Aug	0.370	23-Sep	0.090	23-Oct	0.113	23-Nov	
24-Apr		24-May	0.818	24-Jun	0.672	24-Jul	1.693	24-Aug	0.412	24-Sep	0.097	24-Oct	0.186	24-Nov	
25-Apr		25-May	0.900	25-Jun	0.627	25-Jul	1.338	25-Aug	0.506	25-Sep	0.098	25-Oct	0.110	25-Nov	
26-Apr		26-May	1.050	26-Jun	0.599	26-Jul	1.192	26-Aug	0.320	26-Sep	0.088	26-Oct	0.101	26-Nov	
27-Apr		27-May	0.862	27-Jun	0.777	27-Jul	1.288	27-Aug	0.241	27-Sep	0.142	27-Oct	0.095	27-Nov	
28-Apr		28-May	0.739	28-Jun	0.932	28-Jul	1.321	28-Aug	0.246	28-Sep	0.089	28-Oct	0.090	28-Nov	
29-Apr		29-May	0.742	29-Jun	0.908	29-Jul	1.172	29-Aug	1.320	29-Sep	0.086	29-Oct	0.085	29-Nov	
30-Apr		30-May	0.905	30-Jun	0.937	30-Jul	0.925	30-Aug	0.639	30-Sep	0.085	30-Oct	0.078	30-Nov	
		31-May	0.831			31-Jul	0.935	31-Aug	0.356			31-Oct	0.076		

Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)
1-Apr		1-May	0.031	1-Jun	0.137	1-Jul	0.322	1-Aug	0.169	1-Sep	0.146	1-Oct	0.064	1-Nov	0.023
2-Apr		2-May	0.035	2-Jun	0.130	2-Jul	0.459	2-Aug	0.220	2-Sep	0.140	2-Oct	0.076	2-Nov	0.035
3-Apr		3-May	0.039	3-Jun	0.109	3-Jul	0.372	3-Aug	0.200	3-Sep	0.106	3-Oct	0.061	3-Nov	0.027
4-Apr		4-May	0.040	4-Jun	0.086	4-Jul	0.289	4-Aug	0.246	4-Sep	0.095	4-Oct	0.058	4-Nov	0.024
5-Apr		5-May	0.044	5-Jun	0.079	5-Jul	0.381	5-Aug	0.332	5-Sep	0.106	$5-O c t$	0.057	5-Nov	0.025
6-Apr		6-May	0.048	6-Jun	0.077	6-Jul	0.345	6-Aug	0.484	6-Sep	0.098	6-Oct	0.051	6-Nov	0.024
7-Apr		7-May	0.049	7-Jun	0.075	7-Jul	0.207	7-Aug	0.467	7-Sep	0.092	7-Oct	0.049	7-Nov	0.025
8-Apr		8-May	0.052	8-Jun	0.066	8-Jul	0.173	8-Aug	0.441	8-Sep	0.146	8-Oct	0.045	8-Nov	0.027
9-Apr		9-May	0.056	9 -Jun	0.063	9-Jul	0.149	9-Aug	0.534	9-Sep	0.093	$9-\mathrm{Oct}$	0.042	$9-\mathrm{Nov}$	0.026
10-Apr		10-May	0.063	10-Jun	0.062	10-Jul	0.122	10-Aug	0.764	10-Sep	0.122	10-Oct	0.039	10-Nov	0.022
11-Apr		11-May	0.068	11-Jun	0.073	11-Jul	0.137	11-Aug	0.562	11-Sep	0.663	11-Oct	0.037	11-Nov	0.025
12-Apr		12-May	0.064	12-Jun	0.084	12-Jul	0.167	12-Aug	0.760	12-Sep	0.156	12-Oct	0.036	12-Nov	0.036
13-Apr		13-May	0.067	13-Jun	0.067	13-Jul	0.156	13-Aug	0.485	13-Sep	0.111	13-Oct	0.034	13-Nov	0.025
14-Apr		14-May	0.066	14-Jun	0.061	14-Jul	0.144	14-Aug	0.702	14-Sep	0.133	14-Oct	0.032	14-Nov	0.024
15-Apr		15-May	0.568	15-Jun	0.064	15-Jul	0.145	15-Aug	0.740	15-Sep	0.458	15-Oct	0.030	15-Nov	0.021
16-Apr	0.027	16-May	0.465	16-Jun	0.064	16-Jul	0.154	16-Aug	0.687	16-Sep	0.439	16-Oct	0.029	16-Nov	0.019
17-Apr	0.027	17-May	0.433	17-Jun	0.067	17-Jul	0.158	17-Aug	0.606	17-Sep	0.351	17-Oct	0.030	17-Nov	0.018
18-Apr	0.023	18-May	0.359	18-Jun	0.065	18-Jul	0.133	18-Aug	0.403	18-Sep	0.253	18-Oct	0.026	18-Nov	0.017
19-Apr	0.020	19-May	0.223	19-Jun	0.065	19-Jul	0.108	19-Aug	0.364	19-Sep	0.252	19-Oct	0.025	19-Nov	0.016
20-Apr	0.019	20-May	0.173	20-Jun	0.067	20-Jul	0.232	20-Aug	2.000	20-Sep	0.197	20-Oct	0.028	20-Nov	0.015
21-Apr	0.019	21-May	0.137	21-Jun	0.126	21-Jul	0.200	21-Aug	0.790	21-Sep	0.161	21-Oct	0.025	21-Nov	0.014
22-Apr	0.020	22-May	0.128	22-Jun	0.163	22-Jul	0.145	22-Aug	0.642	22-Sep	0.105	22-Oct	0.036	22-Nov	0.013
23-Apr	0.022	23-May	0.139	23-Jun	0.094	23-Jul	0.159	23-Aug	1.740	23-Sep	0.091	23-Oct	0.028	23-Nov	0.013
24-Apr	0.021	24-May	0.144	24-Jun	0.100	24-Jul	0.169	24-Aug	1.428	24-Sep	0.078	24-Oct	0.027	24-Nov	0.013
25-Apr	0.021	25-May	0.270	25-Jun	0.084	25-Jul	0.195	25-Aug	0.616	25-Sep	0.067	25-Oct	0.025	25-Nov	0.012
26-Apr	0.023	26-May	0.302	26-Jun	0.077	26-Jul	0.242	26-Aug	0.410	26-Sep	0.073	26-Oct	0.025	26-Nov	0.011
27-Apr	0.029	27-May	0.154	27-Jun	0.099	27-Jul	0.223	27-Aug	0.441	27-Sep	0.081	27-Oct	0.024	27-Nov	0.011
28-Apr	0.035	28-May	0.143	28-Jun	0.164	28-Jul	0.216	28-Aug	0.514	28-Sep	0.059	28-Oct	0.024	28-Nov	0.011
29-Apr	0.031	29-May	0.129	29-Jun	0.152	29-Jul	0.368	29-Aug	0.294	29-Sep	0.063	29-Oct	0.023	29-Nov	0.011
30-Apr	0.030	30-May	0.130	30-Jun	0.186	30-Jul	0.192	30-Aug	0.233	30-Sep	0.062	30-Oct	0.020	30-Nov	0.013
		31-May	0.129			31-Jul	0.132	31-Aug	0.191			31-Oct	0.022		

Appendix 3.2-5
Summary of Daily Flow: GG4a

Appendix 3.2-6
Summary of Daily Flow: TC2

2006															
Date	Flow (m3/s)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow (m3/s)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow (m3/s)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow (m3/s)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)
1-Apr		1-May	0.087	1-Jun	1.535	1-Jul	0.757	1-Aug	0.697	1-Sep	0.528	1-Oct	0.252	1-Nov	0.038
2-Apr		2-May	0.079	2-Jun	2.906	2-Jul	0.887	2-Aug	0.576	2-Sep	0.478	2-Oct	0.177	2-Nov	0.038
3-Apr		3-May	0.075	3-Jun	3.200	3-Jul	1.036	3-Aug	0.493	3-Sep	0.485	3 -Oct	0.139	3-Nov	0.037
4-Apr		4-May	0.082	4-Jun	1.442	4 -Jul	1.159	4-Aug	0.455	4-Sep	0.570	4-Oct	0.120	4-Nov	0.035
5-Apr		5-May	0.112	5 -Jun	1.168	5 -Jul	1.380	5-Aug	0.681	5-Sep	0.498	5-Oct	0.119	$5-\mathrm{Nov}$	0.032
6-Apr		6 -May	0.166	6 -Jun	0.937	6 -Jul	1.752	6 -Aug	0.557	6-Sep	0.352	6 -Oct	0.098	6 -Nov	0.032
7-Apr		7-May	0.170	7-Jun	0.837	7-Jul	1.200	7-Aug	0.604	7-Sep	0.373	7-Oct	0.082	7-Nov	0.033
8 -Apr		8-May	0.126	8-Jun	0.974	8 -Jul	1.005	8-Aug	0.667	8 -Sep	0.547	8-Oct	0.069	8 -Nov	0.035
$9-\mathrm{Apr}$		9-May	0.112	$9-J u n$	1.141	9 9-Jul	1.015	9-Aug	0.587	9-Sep	0.416	9-Oct	0.082	$9-\mathrm{Nov}$	0.032
10-Apr		10-May	0.105	10-Jun	1.330	10-Jul	0.891	10-Aug	0.543	10-Sep	0.371	10-Oct	0.155	10-Nov	0.032
11-Apr		11-May	0.101	11-Jun	1.595	11-Jul	0.696	11-Aug	0.545	11-Sep	0.249	11-Oct	0.111	11-Nov	0.028
12-Apr		12-May	0.096	12-Jun	1.686	12-Jul	0.699	12-Aug	0.790	12-Sep	0.202	12-Oct	0.126	12-Nov	0.026
13-Apr	0.047	13-May	0.089	13-Jun	1.507	13-Jul	0.980	13-Aug	0.737	13-Sep	0.163	13-Oct	0.114	13-Nov	0.025
14-Apr	0.047	14-May	0.085	14-Jun	1.634	14-Jul	0.731	14-Aug	0.706	14-Sep	0.131	14-Oct	0.188	14-Nov	0.026
15-Apr	0.058	15-May	0.089	15-Jun	1.419	15-Jul	0.873	15-Aug	0.579	15-Sep	0.091	15-Oct	0.180	15-Nov	0.028
16-Apr	0.045	16-May	0.210	16-Jun	1.182	16-Jul	0.708	16-Aug	0.526	16-Sep	0.072	16-Oct	0.149	16-Nov	0.024
17-Apr	0.039	17-May	0.656	17-Jun	1.023	17-Jul	0.755	17-Aug	0.740	17-Sep	0.071	17-Oct	0.100	17-Nov	0.022
18-Apr	0.041	18-May	0.619	18-Jun	0.849	18-Jul	0.744	18-Aug	0.748	18-Sep	0.085	18-Oct	0.085	18-Nov	
19-Apr	0.050	19-May	1.042	19-Jun	0.717	19-Jul	0.652	19-Aug	0.535	19-Sep	0.070	19-Oct	0.099	19-Nov	
20-Apr	0.048	20-May	1.259	20-Jun	0.714	20-Jul	0.695	20-Aug	0.489	20-Sep	0.297	20-Oct	0.081	20-Nov	
21-Apr	0.046	21-May	1.036	21-Jun	0.615	21-Jul	1.114	21-Aug	0.525	21-Sep	0.238	21-Oct	0.068	21-Nov	
22-Apr	0.045	22-May	0.823	22-Jun	0.503	22-Jul	1.669	22-Aug	0.457	22-Sep	0.242	22-Oct	0.063	22-Nov	
23-Apr	0.046	23-May	2.938	23-Jun	0.443	23-Jul	1.783	23-Aug	0.449	23-Sep	1.100	23-Oct	0.059	23-Nov	
24-Apr	0.053	24-May	2.142	24-Jun	0.491	24-Jul	1.630	24-Aug	0.568	24-Sep	0.854	$24-\mathrm{Oct}$	0.083	24-Nov	
25-Apr	0.059	25-May	1.558	25-Jun	0.680	25-Jul	1.448	25-Aug	0.629	25-Sep	0.872	25-Oct	0.081	25-Nov	
26-Apr	0.063	26-May	1.229	26-Jun	0.984	26-Jul	1.337	26-Aug	0.658	26-Sep	0.772	26-Oct	0.082	26-Nov	
27-Apr	0.068	27-May	1.181	27-Jun	1.059	27-Jul	1.059	27-Aug	0.499	27-Sep	0.843	27-Oct	0.064	27-Nov	
28-Apr	0.083	28-May	1.204	28-Jun	0.766	28-Jul	0.738	28-Aug	0.527	28-Sep	0.796	28-Oct	0.056	28-Nov	
29-Apr	0.096	29-May	1.107	29-Jun	0.556	29-Jul	0.851	29-Aug	0.333	29-Sep	0.651	29-Oct	0.054	29-Nov	
30-Apr	0.093	30-May	0.960	30-Jun	0.596	30-Jul	0.965	30-Aug	0.377	30-Sep	0.439	30-Oct	0.050	30-Nov	
		31-May	1.049			31-Jul	0.875	31-Aug	0.353			31-Oct	0.041		
2007															
Date	Flow (m3/s)	Date	Flow (m3/s)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} \mathrm{~s}$)
1-Apr		1-May		1-Jun	2.161	1-Jul	1.844	1-Aug	1.022	1-Sep	0.865	1-Oct	0.244	1-Nov	
2-Apr		2-May		2-Jun	2.928	2-Jul	1.563	2-Aug	1.137	2-Sep	0.721	2-Oct	0.241	2-Nov	
3-Apr		3-May		3-Jun	4.029	3-Jul	1.576	3-Aug	1.391	3-Sep	0.814	3-Oct	0.232	$3-\mathrm{Nov}$	
4-Apr		4-May		4-Jun	7.783	4-Jul	1.816	4-Aug	1.468	4-Sep	0.973	4-Oct	0.246	4-Nov	
5-Apr		5 -May		5-Jun	7.501	5 -Jul	1.751	5-Aug	1.383	5-Sep	0.867	$5-\mathrm{Oct}$	0.235	$5-\mathrm{Nov}$	
6-Apr		6 -May		6 -Jun	9.558	6 -Jul	1.492	6-Aug	1.560	6-Sep	0.693	6 -Oct	0.237	6 -Nov	
7-Apr		7-May		7-Jun	7.251	7-Jul	1.269	7-Aug	1.929	7-Sep	0.572	7-Oct	0.390	7-Nov	
8-Apr		8 -May		8 -Jun	3.885	8 -Jul	1.249	8-Aug	1.280	8-Sep	0.478	8 -Oct	0.369	8 -Nov	
$9-\mathrm{Apr}$		9-May	0.611	9 -Jun	2.918	9 9-Jul	1.525	9-Aug	1.164	9-Sep	0.667	9-Oct	0.320	$9-\mathrm{Nov}$	
10-Apr		10-May	0.550	10-Jun	3.024	10-Jul	3.655	10-Aug	1.048	10-Sep	0.918	10-Oct	0.295	10-Nov	
11-Apr		11-May	0.519	11-Jun	2.199	11-Jul	3.869	11-Aug	0.935	11-Sep	0.995	11-Oct	0.296	11-Nov	
12-Apr		12-May	0.496	12-Jun	1.679	12-Jul	3.426	12-Aug	1.488	12-Sep	0.712	12-Oct	0.283	12-Nov	
13-Apr		13-May	0.488	13-Jun	1.515	13-Jul	3.950	13-Aug	1.151	13-Sep	0.516	13-Oct	0.268	13-Nov	
14-Apr		14-May	0.516	14-Jun	1.667	14-Jul	4.125	14-Aug	0.885	14-Sep	0.428	14-Oct	0.311	14-Nov	
15-Apr		15-May	0.586	15-Jun	2.159	15-Jul	5.504	15-Aug	0.960	15-Sep	0.390	15-Oct	0.414	15-Nov	
16-Apr		16-May	0.957	16-Jun	2.480	16-Jul	3.191	16-Aug	1.461	16-Sep	0.403	16-Oct	0.423	16-Nov	
17-Apr		17-May	0.955	17-Jun	2.941	17-Jul	2.107	17-Aug	2.372	17-Sep	0.329	17-Oct	0.420	17-Nov	
18-Apr		18-May	0.832	18-Jun	2.541	18-Jul	2.100	18-Aug	2.623	18-Sep	0.280	18-Oct	0.371	18-Nov	
19-Apr		19-May	0.937	19-Jun	1.651	19-Jul	2.498	19-Aug	1.274	19-Sep	0.246	19-Oct	0.357	19-Nov	
20-Apr		20-May	0.963	20-Jun	1.663	20-Jul	2.013	20-Aug	1.142	20-Sep	0.247	20-Oct	0.324	20-Nov	
21-Apr		21-May	0.992	21-Jun	2.085	21-Jul	1.888	21-Aug	1.056	21-Sep	0.259	21-Oct	0.291	21-Nov	
22-Apr		22-May	1.150	22-Jun	1.653	22-Jul	2.165	22-Aug	0.892	22-Sep	0.249	22-Oct	0.309	22-Nov	
23-Apr		23-May	1.448	23-Jun	1.466	23-Jul	1.766	23-Aug	0.812	23-Sep	0.234	23-Oct	0.471	23-Nov	
24-Apr		24-May	1.679	24-Jun	1.320	24-Jul	1.380	24-Aug	0.847	24-Sep	0.220	24-Oct	0.936	24-Nov	
25-Apr		25-May	1.957	25-Jun	1.246	25-Jul	1.178	25-Aug	1.022	25-Sep	0.246	25-Oct	0.779	25-Nov	
26-Apr		26-May	2.491	26-Jun	1.213	26-Jul	1.272	26-Aug	0.729	26-Sep	0.246	26-Oct	0.604	26-Nov	
27-Apr		27-May	2.082	27-Jun	1.572	27-Jul	1.444	27-Aug	0.594	27-Sep	0.338	27-Oct	0.518	27-Nov	
28-Apr		28-May	1.484	28-Jun	1.951	28-Jul	1.501	28-Aug	0.528	28-Sep	0.322	28-Oct	0.465	28-Nov	
29-Apr		29-May	1.497	29-Jun	2.150	29-Jul	1.508	29-Aug	1.778	29-Sep	0.285	29-Oct	0.427	29-Nov	
30-Apr		30-May	1.974	30-Jun	2.289	30-Jul	1.217	30-Aug	1.577	30-Sep	0.259	30-Oct	0.376	30-Nov	
		31-May	1.981			31-Jul	1.114	31-Aug	1.069			31-Oct	0.352		
2008															
Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} / \mathrm{s}$)	Date	Flow ($\mathrm{m}^{3} \mathrm{~s}$)
1-Apr		1-May	0.025	1-Jun	0.907	1-Jul	1.106	1-Aug	0.132	1-Sep	0.092	1-Oct	0.140	1-Nov	0.010
2-Apr		2-May	0.034	2-Jun	0.890	2-Jul	2.080	2-Aug	0.140	2-Sep	0.079	2-Oct	0.151	2-Nov	0.030
3-Apr		3-May	0.046	3-Jun	0.706	3 -Jul	1.851	3-Aug	0.138	3-Sep	0.065	3-Oct	0.097	$3-\mathrm{Nov}$	0.056
4-Apr		4-May	0.057	4-Jun	0.509	4-Jul	1.351	4-Aug	0.181	4-Sep	0.052	4-Oct	0.069	4-Nov	0.047
5-Apr		5-May	0.069	5 -Jun	0.354	5 -Jul	1.411	5-Aug	0.248	5-Sep	0.061	5 -Oct	0.057	5-Nov	0.034
6-Apr		6 -May	0.089	6 -Jun	0.254	6 -Jul	1.497	6-Aug	0.413	6-Sep	0.056	6-Oct	0.036	6-Nov	0.025
7-Apr		7-May	0.089	7-Jun	0.234	7-Jul	0.703	7-Aug	0.490	7-Sep	0.051	7-Oct	0.030	7-Nov	0.021
8-Apr		8 -May	0.083	8 -Jun	0.177	8 -Jul	0.404	8-Aug	0.400	8-Sep	0.100	8 -Oct	0.023	8 -Nov	0.025
$9-\mathrm{Apr}$		9-May	0.097	9 -Jun	0.136	9 -Jul	0.318	9-Aug	0.577	9-Sep	0.057	9-Oct	0.018	9-Nov	0.032
10-Apr		10-May	0.124	10-Jun	0.111	10-Jul	0.224	10-Aug	0.886	10-Sep	0.069	10-Oct	0.014	10-Nov	0.029
11-Apr		11-May	0.147	11-Jun	0.129	11-Jul	0.183	11-Aug	0.576	11-Sep	0.250	11-Oct	0.012	11-Nov	0.028
12-Apr		12-May	0.128	12-Jun	0.243	12-Jul	0.281	12-Aug	0.629	12-Sep	0.162	12-Oct	0.014	12-Nov	0.050
13-Apr		13-May	0.117	13-Jun	0.223	13-Jul	0.356	13-Aug	0.440	13-Sep	0.081	13-Oct	0.018	13-Nov	0.043
14-Apr		14-May	0.108	14-Jun	0.168	14-Jul	0.339	14-Aug	0.558	14-Sep	0.062	14-Oct	0.017	14-Nov	0.032
15-Apr		15-May	0.429	15-Jun	0.178	15-Jul	0.315	15-Aug	0.862	15-Sep	0.261	15-Oct	0.013	15-Nov	0.024
16-Apr	0.007	16-May	1.032	16-Jun	0.190	16-Jul	0.353	16-Aug	1.053	16-Sep	0.246	16-Oct	0.012	16-Nov	0.020
17-Apr	0.008	17-May	1.158	17-Jun	0.212	17-Jul	0.369	17-Aug	0.875	17-Sep	0.228	17-Oct	0.011	17-Nov	0.019
18-Apr	0.007	18-May	1.098	18-Jun	0.202	18-Jul	0.306	18-Aug	0.527	18-Sep	0.146	18-Oct	0.010	18-Nov	0.016
19-Apr	0.006	19-May	0.702	19-Jun	0.160	19-Jul	0.237	19-Aug	0.350	19-Sep	0.128	19-Oct	0.008	19-Nov	0.013
20-Apr	0.006	20-May	1.707	20-Jun	0.170	20-Jul	0.360	20-Aug	1.897	20-Sep	0.101	20-Oct	0.009	20-Nov	0.009
21-Apr	0.004	21-May	1.490	21-Jun	0.420	21-Jul	0.351	21-Aug	0.811	21-Sep	0.074	21-Oct	0.008	21-Nov	0.008
22-Apr	0.004	22-May	0.765	22-Jun	0.715	22-Jul	0.228	22-Aug	0.425	22-Sep	0.042	22-Oct	0.023	22-Nov	0.008
23-Apr	0.004	23-May	0.632	23-Jun	0.374	23-Jul	0.186	23-Aug	0.893	23-Sep	0.029	23-Oct	0.046	23-Nov	0.007
24-Apr	0.004	24-May	0.639	24-Jun	0.325	24-Jul	0.184	24-Aug	0.944	24-Sep	0.022	24-Oct	0.041	24-Nov	0.007
25-Apr	0.004	25-May	0.746	25-Jun	0.264	25-Jul	0.195	25-Aug	0.419	25-Sep	0.018	25-Oct	0.029	25-Nov	0.007
26-Apr	0.004	26-May	0.956	26-Jun	0.186	26-Jul	0.271	26-Aug	0.244	26-Sep	0.018	26-Oct	0.020	26-Nov	0.006
27-Apr	0.008	27-May	1.097	27-Jun	0.216	27-Jul	0.344	27-Aug	0.219	27-Sep	0.037	27-Oct	0.015	27-Nov	0.006
28-Apr	0.014	28-May	1.360	28-Jun	0.443	28-Jul	0.289	28-Aug	0.223	28-Sep	0.024	28-Oct	0.013	28-Nov	0.006
29-Apr	0.017	29-May	1.298	29-Jun	0.509	29-Jul	0.528	29-Aug	0.150	29-Sep	0.078	29-Oct	0.011	29-Nov	0.005
30-Apr	0.020	30-May	1.074	30-Jun	0.644	30-Jul	0.288	30-Aug	0.132	30-Sep	0.146	30-Oct	0.009	30-Nov	0.008
		31-May	0.878			31-Jul	0.180	31-Aug	0.129			31-Oct	0.009		

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
16-Jan-06	9.5			
18-Jan-06	12.1			
20-Jan-06	8.2			
22-Jan-06	8.2			
24-Jan-06	7.3			
26-Jan-06	8.2			
28-Jan-06	6.7			
1-Feb-06	7.7			
3-Feb-06	5.0			
5-Feb-06	4.5			
7-Feb-06	5.2			
13-Feb-06	5.7			
20-Feb-06	5.7			
7-Mar-06	7.0			
16-Mar-06	3.5			
22-Mar-06	5.6			
29-Mar-06	4.5			
20-Apr-06	1.2			
24-Apr-06	1.5			
3-May-06	4.2			
12-May-06	3.2			
19-May-06	3.2			
25-May-06	3.4			
29-May-06	2.0			
8-Jun-06	5.6			
27-Jun-06			8.2	
28-Jun-06			8.2	
29-Jun-06			8.3	
30-Jun-06			8.4	
1-Jul-06			8.5	
2-Jul-06			8.6	
3-Jul-06			8.7	
4-Jul-06			8.8	
5-Jul-06			9.0	
6-Jul-06			9.2	
7-Jul-06			9.2	
8-Jul-06			9.4	
9 9-Jul-06			9.6	
10-Jul-06			9.7	
11-Jul-06			9.8	
12-Jul-06			9.9	
13-Jul-06			9.9	
14-Jul-06			10.0	
15-Jul-06			10.1	
16-Jul-06			10.2	
17-Jul-06			10.4	
18-Jul-06			10.5	
19-Jul-06			10.6	
20-Jul-06			10.7	
21-Jul-06			10.8	
22-Jul-06			10.9	
23-Jul-06			11.0	
24-Jul-06			11.0	
25-Jul-06			11.1	
26-Jul-06			11.1	
27-Jul-06			11.1	
28-Jul-06			11.2	
29-Jul-06			11.2	
30-Jul-06			11.2	
31-Jul-06			11.2	
1-Aug-06			11.2	
2-Aug-06			11.2	
3-Aug-06			11.2	
4-Aug-06			11.2	
5-Aug-06			11.2	
6-Aug-06			11.3	
7-Aug-06			11.3	
8-Aug-06			11.4	
9-Aug-06			11.4	
Note: Italiciz	es indicate likley error	strument malfunction.		(contin

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
10-Aug-06			11.5	
11-Aug-06			11.2	
12-Aug-06			11.3	
13-Aug-06			11.5	
14-Aug-06			11.5	
15-Aug-06			11.5	
16-Aug-06			11.4	
17-Aug-06			11.6	
18-Aug-06			11.4	
19-Aug-06			11.5	
20-Aug-06			11.6	
21-Aug-06			11.4	
22-Aug-06			11.5	
23-Aug-06			10.9	
24-Aug-06			11.3	
25-Aug-06			11.2	
26-Aug-06			11.1	
27-Aug-06			11.1	
28-Aug-06			11.4	
29-Aug-06			11.5	
30-Aug-06			11.2	
31-Aug-06			11.0	
1-Sep-06			10.9	
2-Sep-06			10.8	
3-Sep-06			10.8	
4-Sep-06			10.5	
5-Sep-06			10.5	
6-Sep-06			10.4	
7-Sep-06			10.2	
8-Sep-06			10.2	
9-Sep-06			10.1	
10-Sep-06			10.1	
11-Sep-06			10.2	
12-Sep-06			10.1	
13-Sep-06			9.8	
14-Sep-06			9.8	
15-Sep-06			9.6	
16-Sep-06			9.5	
17-Sep-06			9.4	
18-Sep-06			9.3	
19-Sep-06			9.2	
20-Sep-06			9.1	
21-Sep-06			9.1	
22-Sep-06			9.1	
23-Sep-06			9.2	
24-Sep-06			9.2	
25-Sep-06			9.2	
26-Sep-06			9.4	
27-Sep-06			9.6	
28-Sep-06			9.6	
29-Sep-06			9.6	
30-Sep-06			9.8	
1-Oct-06			9.9	
2-Oct-06			9.9	
3-Oct-06			9.9	
4-Oct-06			9.8	
5-Oct-06			9.6	
6-Oct-06			9.2	
7-Oct-06			9.0	
8-Oct-06			8.9	
9-Oct-06			8.6	
10-Oct-06			8.5	
11-Oct-06			8.4	
12-Oct-06			8.3	
13-Oct-06			8.4	
14-Oct-06			8.5	
15-Oct-06			8.6	
16-Oct-06			8.8	
17-Oct-06			8.8	
Note: Italiciz	s indicate likley error	trument malfunction.		(conti

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
18-Oct-06			8.8	
19-Oct-06			8.8	
20-Oct-06			8.7	
21-Oct-06			8.3	
22-Oct-06			8.2	
23-Oct-06			8.2	
24-Oct-06			8.2	
25-Oct-06			8.2	
26-Oct-06			8.1	
27-Oct-06			8.0	
28-Oct-06			8.9	
29-Oct-06			9.0	
30-Oct-06			8.8	
31-Oct-06			8.8	
1-Nov-06			8.5	
2-Nov-06			8.3	
3-Nov-06			8.6	
4-Nov-06			8.6	
5-Nov-06			8.5	
6-Nov-06			8.5	
7-Nov-06			8.4	
8-Nov-06			8.1	
9-Nov-06			8.0	
10-Nov-06			7.0	
11-Nov-06			6.6	
12-Nov-06			6.6	
13-Nov-06			6.5	
14-Nov-06			6.8	
15-Nov-06			7.8	
16-Nov-06			7.7	
17-Nov-06			7.6	
18-Nov-06			7.4	
19-Nov-06			7.3	
20-Nov-06			7.2	
21-Nov-06			7.1	
22-Nov-06			7.0	
23-Nov-06			7.0	
24-Nov-06			6.8	
25-Nov-06			6.9	
26-Nov-06			6.8	
27-Nov-06			6.7	
28-Nov-06			6.7	
29-Nov-06			6.6	
30-Nov-06			6.7	
1-Dec-06			6.7	
2-Dec-06			6.7	
3-Dec-06			6.7	
4-Dec-06			6.8	
5-Dec-06			6.7	
6-Dec-06			6.6	
7-Dec-06			6.6	
8-Dec-06			6.5	
9-Dec-06			6.4	
10-Dec-06			6.4	
11-Dec-06			6.3	
12-Dec-06			6.3	
13-Dec-06			6.2	
14-Dec-06			6.1	
15-Dec-06			6.0	
16-Dec-06			5.9	
17-Dec-06			5.8	
18-Dec-06			5.9	
19-Dec-06			5.7	
20-Dec-06			5.7	
21-Dec-06			5.7	
22-Dec-06			5.6	
23-Dec-06			5.6	
24-Dec-06			5.6	

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Flow Calculated from Manual Stage Measurement (L/s) Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
25-Dec-06		5.5	
26-Dec-06		5.5	
27-Dec-06		5.4	
28-Dec-06		5.4	
29-Dec-06		5.4	
30-Dec-06		5.4	
31-Dec-06		5.4	
1-Jan-07		5.5	
2-Jan-07		5.5	
3-Jan-07		5.4	
4-Jan-07		5.4	
5-Jan-07		5.4	
6-Jan-07		5.4	
7-Jan-07		5.4	
8-Jan-07		5.4	
9-Jan-07		5.3	
10-Jan-07		5.1	
11-Jan-07		5.0	
12-Jan-07		5.0	
13-Jan-07		5.1	
14-Jan-07		5.0	
15-Jan-07		5.2	
16-Jan-07		5.1	
17-Jan-07		5.0	
18-Jan-07		5.0	
19-Jan-07		4.9	
20-Jan-07		4.9	
21-Jan-07		5.0	
22-Jan-07		5.0	
23-Jan-07		5.0	
24-Jan-07		5.1	
25-Jan-07		5.0	
26-Jan-07		5.0	
27-Jan-07		5.1	
28-Jan-07		5.1	
29-Jan-07		5.2	
30-Jan-07		5.0	
31-Jan-07		4.8	
1-Feb-07		4.7	
2-Feb-07		4.8	
3-Feb-07		4.7	
4-Feb-07		4.7	
5-Feb-07		4.7	
6-Feb-07		4.8	
7-Feb-07		4.8	
8-Feb-07		4.8	
9-Feb-07		4.7	
10-Feb-07		4.9	
11-Feb-07		4.8	
12-Feb-07		4.9	
13-Feb-07		5.0	
14-Feb-07		4.9	
15-Feb-07		4.9	
16-Feb-07		4.9	
17-Feb-07		4.8	
18-Feb-07		4.6	
19-Feb-07		4.6	
20-Feb-07		4.3	
21-Feb-07		4.4	
22-Feb-07		4.1	
23-Feb-07		3.8	
24-Feb-07		3.9	
25-Feb-07		3.9	
26-Feb-07		4.0	
27-Feb-07		4.0	
28-Feb-07		3.9	
1-Mar-07		3.8	
2-Mar-07		3.9	
3-Mar-07		3.8	

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
4-Mar-07			3.7	
5-Mar-07			3.8	
6-Mar-07			3.9	
7-Mar-07			3.8	
8-Mar-07			3.4	
9-Mar-07			2.9	
10-Mar-07			2.6	
11-Mar-07			2.8	
12-Mar-07			3.1	
13-Mar-07			3.0	
14-Mar-07			2.7	
15-Mar-07			2.3	
16-Mar-07			2.0	
17-Mar-07			2.1	
18-Mar-07			1.9	
19-Mar-07			1.7	
20-Mar-07			1.7	
21-Mar-07			1.9	
22-Mar-07			1.9	
23-Mar-07			2.1	
24-Mar-07			2.0	
25-Mar-07			1.7	
26-Mar-07			1.4	
27-Mar-07			1.4	
28-Mar-07			1.4	
29-Mar-07			1.4	
30-Mar-07			1.2	
31-Mar-07			1.2	
1-Apr-07			1.2	
2-Apr-07			1.1	
3-Apr-07			1.0	
4-Apr-07			1.1	
5-Apr-07			1.2	
6-Apr-07			1.2	
7-Apr-07			1.1	
8-Apr-07			0.8	
9-Apr-07			0.4	
10-Apr-07			0.4	
11-Apr-07			1.0	
12-Apr-07			1.1	
13-Apr-07			1.2	
14-Apr-07			1.2	
15-Apr-07			1.3	
16-Apr-07			1.1	
17-Apr-07			1.0	
18-Apr-07			1.0	
19-Apr-07			1.0	
20-Apr-07			1.0	
21-Apr-07			0.9	
22-Apr-07			0.8	
23-Apr-07			0.8	
24-Apr-07			0.9	
25-Apr-07			0.7	
26-Apr-07			0.7	
27-Apr-07			0.6	
28-Apr-07			0.7	
29-Apr-07			0.6	
30-Apr-07			0.6	
1-May-07			0.6	
2-May-07			0.5	
3-May-07			0.8	
4-May-07			1.0	
5-May-07			1.1	
6-May-07			1.6	
7-May-07			1.7	
8-May-07			1.4	
9-May-07			1.7	
10-May-07			1.7	
11-May-07			1.7	

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
12-May-07			1.7	
13-May-07			1.6	
14-May-07			1.5	
15-May-07			1.6	
16-May-07			1.9	
17-May-07			1.8	
18-May-07			1.5	
19-May-07			2.0	
20-May-07			2.1	
21-May-07			2.3	
22-May-07			2.4	
23-May-07			2.5	
24-May-07			2.6	
25-May-07			2.8	
26-May-07			2.8	
27-May-07			2.8	
28-May-07			2.8	
29-May-07			2.9	
30-May-07			3.2	
31-May-07			3.3	
1-Jun-07			3.4	
2-Jun-07			3.6	
3-Jun-07			3.9	
4-Jun-07			4.1	
5-Jun-07			3.9	
6-Jun-07			3.8	
7-Jun-07			3.9	
8-Jun-07			3.9	
9-Jun-07			3.8	
10-Jun-07			4.2	4.2
11-Jun-07			3.7	4.3
12-Jun-07			2.8	4.4
13-Jun-07			3.2	4.5
14-Jun-07			2.0	4.6
15-Jun-07			1.1	4.7
16-Jun-07			1.1	4.8
17-Jun-07			1.2	4.9
18-Jun-07			1.2	5.0
19-Jun-07			1.3	5.1
20-Jun-07			1.5	5.3
21-Jun-07			1.7	5.4
22-Jun-07			2.0	5.7
23-Jun-07			2.2	6.0
24-Jun-07			2.4	6.1
25-Jun-07			2.6	6.3
26-Jun-07			2.9	6.6
27-Jun-07			3.2	6.9
28-Jun-07			3.2	6.9
29-Jun-07			3.2	6.9
30-Jun-07			3.2	7.0
1-Jul-07			3.4	7.1
2-Jul-07			3.4	7.1
3-Jul-07			3.7	7.4
4-Jul-07			3.1	7.3
5-Jul-07			2.1	7.4
6-Jul-07			2.2	7.5
7-Jul-07			2.1	7.4
8-Jul-07			2.0	7.3
9-Jul-07			1.8	7.1
10-Jul-07			1.8	7.1
11-Jul-07			1.9	7.4
12-Jul-07			2.0	7.4
13-Jul-07			2.0	7.4
14-Jul-07			2.1	7.6
15-Jul-07			2.1	7.6
16-Jul-07			2.3	7.7
17-Jul-07			2.2	7.7
18-Jul-07			2.2	7.7
19-Jul-07			2.1	7.6
Note: Italiciz	es indicate likley error	strument malfunction.		(contin

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Flow Calculated from Manual Stage Measurement (L/s) Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
20-Jul-07		2.4	7.8
21-Jul-07		2.4	7.9
22-Jul-07		2.5	8.0
23-Jul-07		2.4	7.9
24-Jul-07		2.3	7.8
25-Jul-07		2.3	7.8
26-Jul-07		2.2	7.7
27-Jul-07		2.1	7.6
28-Jul-07		2.1	7.6
29-Jul-07		2.3	7.8
30-Jul-07		2.3	7.8
31-Jul-07		2.3	7.8
1-Aug-07		2.3	7.8
2-Aug-07		2.4	7.8
3-Aug-07		2.4	7.9
4-Aug-07		2.4	7.8
5-Aug-07		2.3	7.8
6-Aug-07		2.2	7.7
7-Aug-07		2.2	7.7
8-Aug-07		2.2	7.7
9-Aug-07		2.1	7.6
10-Aug-07		2.1	7.6
11-Aug-07		2.1	7.6
12-Aug-07		2.2	7.6
13-Aug-07		2.2	7.7
14-Aug-07		2.1	7.6
15-Aug-07		2.0	7.5
16-Aug-07		2.0	7.4
17-Aug-07		2.1	7.5
18-Aug-07		2.0	7.5
19-Aug-07		2.0	7.5
20-Aug-07		2.0	7.5
21-Aug-07		2.2	7.7
22-Aug-07		2.2	7.7
23-Aug-07		2.2	7.6
24-Aug-07		2.3	7.8
25-Aug-07		2.3	7.7
26-Aug-07		2.3	7.8
27-Aug-07		2.3	7.8
28-Aug-07		2.3	7.8
29-Aug-07		2.3	7.8
30-Aug-07		2.3	7.8
31-Aug-07		2.3	7.8
1-Sep-07		2.4	7.8
2-Sep-07		2.3	7.8
3-Sep-07		2.3	7.8
4-Sep-07		2.4	7.9
5-Sep-07		2.4	7.9
6-Sep-07		2.4	7.9
7-Sep-07		2.4	7.8
8-Sep-07		2.4	7.9
9-Sep-07		2.4	7.9
10-Sep-07		2.4	7.8
11-Sep-07		2.4	7.8
12-Sep-07		2.3	7.8
13-Sep-07		2.3	7.7
14-Sep-07		2.2	7.6
15-Sep-07		2.1	7.6
16-Sep-07		2.0	7.5
17-Sep-07		2.0	7.4
18-Sep-07		2.0	7.4
19-Sep-07		2.0	7.5
20-Sep-07		1.9	7.4
21-Sep-07		2.0	7.5
22-Sep-07		2.1	7.5
23-Sep-07		2.1	7.5
24-Sep-07		2.1	7.6
25-Sep-07		2.1	7.6

Note: Italicized values indicate likley error due to instrument malfunction.
(continued)

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
26-Sep-07			2.0	7.5
27-Sep-07			2.1	7.5
28-Sep-07			2.2	7.7
29-Sep-07			2.2	7.7
30-Sep-07			2.2	7.6
1-Oct-07			2.1	7.6
2-Oct-07			2.1	7.6
3-Oct-07			2.1	7.6
4-Oct-07			2.6	8.1
5-Oct-07			2.8	8.2
6-Oct-07			2.8	8.3
7-Oct-07			3.1	8.6
8-Oct-07			3.0	8.4
9-Oct-07			2.9	8.4
10-Oct-07			2.9	8.4
11-Oct-07			2.8	8.3
12-Oct-07			2.8	8.3
13-Oct-07			2.8	8.3
14-Oct-07			2.7	8.2
15-Oct-07			2.8	8.2
16-Oct-07			2.7	8.2
17-Oct-07			2.3	7.8
18-Oct-07			1.5	8.2
19-Oct-07			1.5	8.2
20-Oct-07			1.5	8.2
21-Oct-07			1.5	8.2
22-Oct-07			1.4	8.2
23-Oct-07			1.1	7.8
24-Oct-07			1.3	8.0
25-Oct-07			1.2	7.9
26-Oct-07			1.2	7.9
27-Oct-07			1.2	7.9
28-Oct-07			1.2	7.9
29-Oct-07			1.2	7.9
30-Oct-07			1.0	7.7
31-Oct-07			0.7	7.4
1-Nov-07			2.0	8.7
2-Nov-07			2.1	8.8
3-Nov-07			2.0	8.7
4-Nov-07			1.9	8.7
5-Nov-07			1.8	8.5
6-Nov-07			2.0	8.7
7-Nov-07			2.0	8.7
8-Nov-07			2.0	8.7
9-Nov-07			2.1	8.8
10-Nov-07			2.0	8.7
11-Nov-07			2.0	8.7
12-Nov-07			1.8	8.6
13-Nov-07			1.8	8.5
14-Nov-07			1.8	8.5
15-Nov-07			1.7	8.4
16-Nov-07			1.7	8.4
17-Nov-07			1.7	8.4
18-Nov-07			1.6	8.3
19-Nov-07			1.7	8.4
20-Nov-07			1.7	8.4
21-Nov-07		8.3	1.6	8.3
22-Nov-07			1.6	8.3
23-Nov-07			1.6	8.3
24-Nov-07			1.6	8.3
25-Nov-07			1.5	8.2
26-Nov-07			1.5	8.2
27-Nov-07			1.4	8.1
28-Nov-07			1.4	8.1
29-Nov-07			1.5	8.2
30-Nov-07			1.5	8.2
1-Dec-07			1.5	8.2
2-Dec-07			1.4	8.1
3-Dec-07			1.2	7.9
Note: Italiciz	es indicate likley error	trument malfunction.		(contin

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
4-Dec-07			1.0	7.7
5-Dec-07			1.1	7.8
6-Dec-07			1.2	7.9
7-Dec-07			1.1	7.8
8-Dec-07			1.1	7.6
9-Dec-07			1.2	7.4
10-Dec-07			1.1	7.2
11-Dec-07			1.3	7.0
12-Dec-07			1.5	6.8
13-Dec-07			1.7	6.6
14-Dec-07			1.7	6.4
15-Dec-07			1.8	6.2
16-Dec-07			1.6	6.0
17-Dec-07			1.1	6.0
18-Dec-07		6.0	1.0	5.9
19-Dec-07			1.0	5.9
20-Dec-07			0.9	5.8
21-Dec-07			0.9	5.8
22-Dec-07			0.9	5.9
23-Dec-07			1.1	6.0
24-Dec-07			1.2	6.1
25-Dec-07			0.9	5.8
26-Dec-07			1.0	5.9
27-Dec-07			1.0	5.9
28-Dec-07			1.0	6.0
29-Dec-07			1.3	6.2
30-Dec-07			1.3	6.2
31-Dec-07			1.4	6.3
1-Jan-08			0.9	5.8
2-Jan-08			0.9	5.9
3-Jan-08			1.0	5.9
4-Jan-08			3.4	5.7
5-Jan-08			5.7	
6-Jan-08			5.8	
7-Jan-08			5.8	
8-Jan-08			5.8	
9-Jan-08			5.8	
10-Jan-08			5.8	
11-Jan-08			5.7	
12-Jan-08			5.7	
13-Jan-08			5.7	
14-Jan-08			5.6	
15-Jan-08			5.6	
16-Jan-08			5.6	
17-Jan-08		5.5	5.6	
18-Jan-08			5.6	
19-Jan-08			5.5	
20-Jan-08			5.5	
21-Jan-08			5.5	
22-Jan-08			5.5	
23-Jan-08			5.4	
24-Jan-08			5.4	
25-Jan-08			5.4	
26-Jan-08			5.4	
27-Jan-08			5.3	
28-Jan-08			5.2	
29-Jan-08			5.2	
30-Jan-08			5.2	
31-Jan-08			5.2	
1-Feb-08			5.2	
2-Feb-08			5.2	
3-Feb-08			5.2	
4-Feb-08			5.1	
5-Feb-08			5.2	
6-Feb-08			5.1	
7-Feb-08			5.1	
8-Feb-08			5.1	
9-Feb-08			5.0	

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
10-Feb-08			5.0	
11-Feb-08			5.0	
12-Feb-08			5.1	
13-Feb-08			5.0	
14-Feb-08			5.0	
15-Feb-08			5.0	
16-Feb-08			5.0	
17-Feb-08			5.0	
18-Feb-08		5.0	5.0	
19-Feb-08			4.9	
20-Feb-08			4.9	
21-Feb-08			4.9	
22-Feb-08			4.9	
23-Feb-08			4.9	
24-Feb-08			4.9	
25-Feb-08			4.9	
26-Feb-08			4.9	
27-Feb-08			4.9	
28-Feb-08			4.8	
29-Feb-08			4.9	
1-Mar-08			5.1	
2-Mar-08			5.5	
3-Mar-08			5.6	
4-Mar-08			5.5	
5-Mar-08			5.5	
6-Mar-08			5.5	
7-Mar-08			5.5	
8-Mar-08			5.5	
9-Mar-08			5.5	
10-Mar-08			5.5	
11-Mar-08			5.5	
12-Mar-08			5.5	
13-Mar-08			5.5	
14-Mar-08			5.5	
15-Mar-08			5.5	
16-Mar-08			5.5	
17-Mar-08		4.5	5.0	
18-Mar-08			4.7	
19-Mar-08			4.7	
20-Mar-08			4.7	
21-Mar-08			4.7	
22-Mar-08			4.7	
23-Mar-08			4.7	
24-Mar-08			4.6	
25-Mar-08			4.6	
26-Mar-08			4.6	
27-Mar-08			4.6	
28-Mar-08			4.6	
29-Mar-08			4.6	
30-Mar-08			4.6	
31-Mar-08			4.6	
1-Apr-08			4.6	
2-Apr-08			4.6	
3-Apr-08			4.6	
4-Apr-08			4.6	
5-Apr-08			4.6	
6-Apr-08			4.6	
7-Apr-08			4.5	
8-Apr-08			4.5	
9-Apr-08			4.5	
10-Apr-08			4.5	
11-Apr-08			4.5	
12-Apr-08			4.5	
13-Apr-08			4.5	
14-Apr-08			4.5	
15-Apr-08			4.5	
16-Apr-08			4.5	
17-Apr-08			4.4	
18-Apr-08			4.4	
Note: Italiciz	es indicate likley error	trument malfunction.		(contin

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
19-Apr-08			4.4	
20-Apr-08			4.4	
21-Apr-08		4.1	4.4	
22-Apr-08			4.4	
23-Apr-08			4.4	
24-Apr-08			4.3	
25-Apr-08			4.3	
26-Apr-08			4.3	
27-Apr-08			4.3	
28-Apr-08			4.3	
29-Apr-08			4.3	
30-Apr-08			4.3	
1-May-08			4.3	
2-May-08			4.3	
3-May-08			4.3	
4-May-08			4.3	
5-May-08			4.3	
6-May-08			4.3	
7-May-08			4.2	
8-May-08			4.3	
9-May-08			4.3	
10-May-08			4.3	
11-May-08			4.3	
12-May-08			4.3	
13-May-08			4.3	
14-May-08			4.3	
15-May-08			5.0	
16-May-08			5.5	
17-May-08			5.4	
18-May-08			5.3	
19-May-08			4.8	
20-May-08			4.8	
21-May-08		4.5	4.7	
22-May-08			4.7	
23-May-08			4.8	
24-May-08			4.7	
25-May-08			4.8	
26-May-08			4.8	
27-May-08			4.8	
28-May-08			4.9	
29-May-08			5.0	
30-May-08			5.1	
31-May-08			5.2	
1-Jun-08			5.3	
2-Jun-08			5.4	
3-Jun-08			5.5	
4-Jun-08			5.6	
5-Jun-08			5.7	
6-Jun-08			5.7	
7-Jun-08			5.8	
8-Jun-08			5.9	
9-Jun-08			6.0	
10-Jun-08			6.2	
11-Jun-08			6.3	
12-Jun-08			6.4	
13-Jun-08			6.5	
14-Jun-08			6.6	
15-Jun-08			6.7	
16-Jun-08		7.1	6.8	
17-Jun-08			6.9	
18-Jun-08			7.0	
19-Jun-08			7.1	
20-Jun-08			7.2	
21-Jun-08			7.3	
22-Jun-08			7.5	
23-Jun-08			7.6	
24-Jun-08			7.6	
25-Jun-08			7.7	
26-Jun-08			7.7	
Note: Italiciz	es indicate likley error	trument malfunction.		(contin

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
27-Jun-08			7.8	
28-Jun-08			7.8	
29-Jun-08			7.9	
30-Jun-08			7.9	
1-Jul-08			8.0	
2-Jul-08			8.1	
3-Jul-08			8.1	
4-Jul-08			8.1	
5-Jul-08			8.2	
6-Jul-08			8.4	
7-Jul-08			8.5	
8-Jul-08			8.4	
9-Jul-08			8.5	
10-Jul-08			8.5	
11-Jul-08			8.5	
12-Jul-08			8.6	
13-Jul-08		9.7	8.8	
14-Jul-08			8.8	
15-Jul-08			8.9	
16-Jul-08			9.0	
17-Jul-08			9.0	
18-Jul-08			9.1	
19-Jul-08			9.3	
20-Jul-08			9.5	
21-Jul-08			9.6	
22-Jul-08			9.6	
23-Jul-08			10.0	
24-Jul-08			10.5	
25-Jul-08			10.7	
26-Jul-08			10.7	
27-Jul-08			10.7	
28-Jul-08			10.8	
29-Jul-08			10.8	
30-Jul-08			10.8	
31-Jul-08			10.9	
1-Aug-08			10.9	
2-Aug-08			10.9	
3-Aug-08			11.0	
4-Aug-08			11.0	
5-Aug-08			11.0	
6-Aug-08			11.1	
7-Aug-08			11.2	
8-Aug-08			11.2	
9-Aug-08			11.2	
10-Aug-08			11.3	
11-Aug-08			11.2	
12-Aug-08			11.3	
13-Aug-08			11.3	
14-Aug-08			11.3	
15-Aug-08			11.4	
16-Aug-08			11.5	
17-Aug-08		11.9	11.5	
18-Aug-08			11.6	
19-Aug-08			11.6	
20-Aug-08			11.8	
21-Aug-08			11.7	
22-Aug-08			11.7	
23-Aug-08			11.9	
24-Aug-08			12.0	
25-Aug-08			12.0	
26-Aug-08			12.1	
27-Aug-08			12.2	
28-Aug-08			12.3	
29-Aug-08			12.4	
30-Aug-08			12.4	
31-Aug-08			12.4	
1-Sep-08			12.5	
2-Sep-08			12.5	
3-Sep-08			12.5	

Summary of Daily Flow: A1 (continued)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
4-Sep-08			12.4	
5-Sep-08			12.4	
6-Sep-08			12.3	
7-Sep-08			12.2	
8-Sep-08			12.3	
9-Sep-08			12.2	
10-Sep-08			12.2	
11-Sep-08			12.3	
12-Sep-08			12.2	
13-Sep-08			12.2	
14-Sep-08			12.2	
15-Sep-08		11.9	12.1	
16-Sep-08			12.1	
17-Sep-08			12.1	
18-Sep-08			12.1	
19-Sep-08			12.1	
20-Sep-08			12.1	
21-Sep-08			12.1	
22-Sep-08			12.0	
23-Sep-08			12.0	
24-Sep-08			12.0	
25-Sep-08			11.9	
26-Sep-08			11.7	
27-Sep-08			11.4	
28-Sep-08			11.2	
29-Sep-08			11.0	
30-Sep-08			11.0	
1-Oct-08			10.9	
2-Oct-08			11.0	
3-Oct-08			11.0	
4-Oct-08			11.3	
5-Oct-08			11.4	
6-Oct-08			11.4	
7-Oct-08			11.4	
8-Oct-08			11.3	
9-Oct-08			11.2	
10-Oct-08			11.2	
11-Oct-08			11.1	
12-Oct-08			11.0	
13-Oct-08			10.9	
14-Oct-08			10.8	
15-Oct-08			10.8	
16-Oct-08			10.8	
17-Oct-08			10.7	
18-Oct-08			10.6	
19-Oct-08			10.6	
20-Oct-08			10.5	
21-Oct-08			10.3	
22-Oct-08			10.4	
23-Oct-08			10.2	
24-Oct-08			10.2	
25-Oct-08		9.7	10.0	
26-Oct-08				
27-Oct-08				
28-Oct-08				
29-Oct-08				
30-Oct-08				
31-Oct-08				
1-Nov-08				
2-Nov-08				
3-Nov-08				
4-Nov-08				
5-Nov-08				
6-Nov-08				
7-Nov-08				
8-Nov-08				
9-Nov-08				
10-Nov-08				
11-Nov-08				
Note: Italiciz	es indicate likley error	rument malfunction.		(conti

Summary of Daily Flow: A1 (completed)

Date	Manual Flow Measurement (L/s)	Flow Calculated from Manual Stage Reading (L/s)	Flow Calculated from Automated Stage Readings (L/s)	Estimated Flow (L/s)
12-Nov-08				
13-Nov-08				
14-Nov-08				
15-Nov-08				
16-Nov-08				
17-Nov-08				
18-Nov-08				
19-Nov-08				
20-Nov-08				
21-Nov-08				
22-Nov-08				
23-Nov-08				
24-Nov-08				
25-Nov-08				
26-Nov-08				
27-Nov-08		8.3		
28-Nov-08				
29-Nov-08				
30-Nov-08				
1-Dec-08				
2-Dec-08				
3-Dec-08				
4-Dec-08				
5-Dec-08				
6-Dec-08				
7-Dec-08				
8-Dec-08				
9-Dec-08				
10-Dec-08				
11-Dec-08				
12-Dec-08				
13-Dec-08				
14-Dec-08				
15-Dec-08				
16-Dec-08				
17-Dec-08				
18-Dec-08				
19-Dec-08		6.5		
20-Dec-08				
21-Dec-08				
22-Dec-08				
23-Dec-08				
24-Dec-08				
25-Dec-08				
26-Dec-08				
27-Dec-08				
28-Dec-08				
29-Dec-08				
30-Dec-08				
31-Dec-08				

Note: Italicized values indicate likley error due to instrument malfunction.

