Historical data
REVIEW ON THE
UPPRR BLLKLZEY RIVER.

JOAT CONSUTING
Shrais Brockizhurst lag8.

Watershed Libraryeculus summan

Over the past century, changes have been occurring to the land and water courses of the Upper Bulkley Watershed... These changes, along with over-exploitation of fish stock, are attributable to the decline in the coho population in this water system.

Research was carried out to compile historical data on the Upper Bulkley in the areas of water flow, temperature, and use, as well as climate and aerial photographs. Although data available is fragmentary in extent, it is still possible to note adjustments to the historical flow patterns and discharge amounts. The confinement of analysis of hydrological and climatological data within the Upper Bulkley is limiting, however. To place the basin's climate and hydrology in a long term context, the study boundaries were expanded outside the confines of the Upper Bulkley for comparison purposes.

Overall trends were noted in the areas of declining discharge volumes and the flattening out of discharge peaks over time. When reviewing the analysis that was provided for runoff volume outside the study area, it supported the findings of within the study area, showing a 6-7\% reduction in runoff volume below the long-term mean. In addition, atmospheric temperature has increased from April to September in the 1990s, compared to the 1960s. A decrease in precipitation of 7 to 10% below the long term mean is noted for months of October to April.

Over 100 water licenses are active within the study area. Due to a margin of error related to these licenses and their relative water usage, it is difficult to extrapolate the true impact on the discharge levels. Excessive water withdrawals, coupled with climate variation, could result in water shortages and insufficient in-stream flows for fish. In the worst case scenario, existing licenses may exceed supply during a 7 day low flow 10 year occurrence.

Aerial photographs demonstrate the changes that have occurred in the study area over time. Increased clearing of land both adjacent and away from the water systems may be contributing to the changes in discharge and may be affecting fish habitat. The mainstem of the Upper Bulkley River, like all rivers, is moving and changing all the time. However, with the presence of the CN Rail grade along its length, interference in the natural movement of the river path is evident. Meandering sections are changing and becoming straighter, which could be affecting the flow of the river, and side channeis have been entirely cut off reducing available fish habitat.

Flood events continue to occur as a natural cycle, however, with the additions and changes imposed by development, those events can be more destructive and severe as we continue to tamper with the river. Flood events recorded in the Bulkley show peak discharges for those events to be on the rise.

In summary, a number of factors are at play in the decline of the coho fish stock in the Upper Bulkley River. Some of those factors, such as land development, water use, and fish exploitation, are within our control, while others, such as climate change and discharge levels are not. Nature continues on a cycle that is greater than any given generation. Although man cannot control those cycles, understanding them can aid us in making more knowledgeable decisions on how we use our natural resources. Further analysis on existing data and continuing and improving data collection, are necessary in understanding the trends and changes of fish habitat.

Acknowledgments

Great thanks are extended to all those individuals who took the time to help me in locating and compiling historical data which could at times prove to be quite elusive. A special thanks to Brenda Donas for her input, direction and enthusiasm. Also thanks to Eero Karanka for his contribution to the review in the analysis of long-term records of precipitation and streamflow from the nearby stations outside the Upper Bulkley Watershed, which help to support the trends observed of fragmentary data within the watershed.

Table of Contents

1. INTRODUCTION 1
1.1 Scope of Study 1
1.2 Study Area 2
1.3 FISH POPULATIONS. 4
2. METHODS 4
2.1 Research Details 4
2.2 INFORMATION RELIABILITY 5
3. RESULTS 6
3.1 Water Flow Data 6
3.1.1 Total Monthly Discharge. 7
3.1.2 Daily Discharge and Freshet Occurrence 7
3.1.3 Daily Discharge and Spawning 19
3.1.4 Forestry in Relation to Flow Data 28
3.2 Water Level and Temperature Data 29
3.3 Water Allocation and Licenses 30
3.4 Climatological Data. 32
3.5 AERIAL Photographs and Land Use 34
3.5.1 Aerial Photographs 34
3.5.2 Land Use 35
3.6 OTHER Historical Information 36
3.6.1 Major Storms and Floods 36
4. DISCUSSION 38
4.1 Discharge Analysis 38
4.1.1 Spring Discharge and Freshets 38
4.1.2 Fall Discharge and Spawning 40
4.2 Water Allocation and Licenses 41
4.3 Historical Land-Use Changes. 41
4.4 AERIAL PHOTOGRAPHS. 42
5. RECOMMENDATIONS 42
6. BIBLIOGRAPHY 44
List of Tables
Table 1: WSC Stations on the Upper Bulkley and its Tributaries. 6
Table 2: Freshet Occurrence on the Upper Bulkley River and Buck Creek. 7
Table 3: Equivalent Clearcut areas (ECA) Of most of the sub-basins and whether future harvesting will ee LOW, MODERATE OR HIGH. 28
Table 4: Distribution of Anthropogenic (i.e. originated by man) Activity by Watershed within the Maxan River BASIN. 28
Table 5: Summary of Water Licenses on the Upper Bulkley 31
Table 6: Summary of Tributaries 35
Table 7: Major Storm and Floods Recorded on the Upper Bulkley and Surrounding Area 36
Table 8: Storm and Flood Occurrences by Rivers, Creeks and Lakes in Houston Area, 1891-1991 37
Table 9: Summary of Event Catalogue and Relevant Data 37
List of Fiqures
Figure 1: Upper Bulkley Study Area 3
Figure 2: Total Monthly Discharge at Bulkley in Houston for Data Years Between 1930-1993 8
Figure 3: Total Monthly Discharge at Richfield Creek, 1965-1974 9
Figure 4: Total Monthly Discharge at Buck Creek, 1973-1993 10
Figure 5: Total Monthly Discharge at Maxan Creek, 1975-1979. 11
Figure 6: Daily Discharge in April at Bulkley in Houston, 1931-51, 1971, 1980-87 13
Figure 7: Daily Discharge in April at Buck Creek, 1973-1993 14
Figure 8: Daily Discharge in May at Bulkley in Houston, 1931-51, 1971, 1980-93 15
Figure 9: Dally Discharge in May at Buck Creek, 1973-1993 16
Figure 10: Daily Discharge in June at Bulkley in Houston, 1931-51, 1971, 1980-93 17
Figure 11: "Daily Discharge in June at Buck Creek, 1973-1993 18
Figure 12: Daily Discharge in September at Bulkley River in Houston, 1945-1993 20
Figure 13: Daily Discharge in September at Buck Creek, 1973-1993 21
Figure 14: Mean September Discharge at Buck Creek and Bulkley River, 1980-93 22
Figure 15: Mean September Discharge at Buck Creek, 1973-93 23
Figure 16: Daily Discharge in October at Bulkley River in Houston, 1931-49, 1971, 1985-93. 24
Figure 17: Daily Discharge in October at Buck Creek, 1973-93 25
Figure 18: Mean October Discharge at Bulkley in Houston, 1931-49, 1971, 1985-93 26
Figure 19: Mean October Discharge at Buck Creek, 1973-93 27
Figure 20: Mean Monthly Temperature and Precipitation in houston, April to Sept., 1959-62 and 1990-94 33
Figure 21: Peak Discharge levels at Bulkley River in Quick and Houston during Recorded Flood Events 39

List of Appendices

APPENDIX A: DAILY DISCharge Data For Stations 08EE003, 08EE009, 08EE013, 08EE018, AND 08EE019
Appendix B: Analysis of Climate and Hydrological Data Trends Outside of the Upper Bulkley, by Eero Karanka
Appendix C: Effects of Harvesting on Streamflow and Directions in Calculating Equivalent Clearcut Areas (ECA)
Appendix D: Spot Water Temperature Data at Sites 08EE009, 08EE013, and 08ee018
Appendix E: Listing of Water Licenses on the Upper Bulkley and its Tributaries
Appendix F: Summary of Aerial Photographs and Flightlines available on the Upper Bulkley AND SURROUNDING AREA
Appendix G: Major Storm and Flood Events in the Upper Bulkley Area

List of Sleeves

[^0] consurting

Historical Data Review on the Upper Bulkley Watershed

1. Introduction

1.1 Scope of Study

Salmon stocks in the Upper Bulkley River have declined substantially over the past two decades and various studies are being conducted in an attempt to define the limiting factors in this watershed. Over-exploitation, i.e. total harvest rates of up to 70%, have been common. Upper Skeena coho stocks are heavily exploited in Alaskan fisheries and have historically been heavily exploited in Canadian fisheries. Recently, changes have been made to the Canadian fisheries in order to conserve coho stocks. Over-exploitation, however, is not the sole factor contributing to the decline of Upper Bulkley River coho. Changes to the habitat have occurred over the past century.

Transportation corridors such as CN Railway and Highway 16, have impacted the river habitat. In the early 1900's, the Upper Bulkley River was moved during construction of the railway. The old river channel can still be seen today and lies in between Highway 16 and the existing railway track. The river was straightened in many places therefore removing the natural meander pattern of the water course, a pattern which assists in diffusing the energy of flow in high water events.

Land clearing for agriculture and forestry has resulted in removal of much of the riparian area and canopy cover. Removal of streamside vegetation can contribute to: streambank instability; loss of land through erosion; low water levels and flows; high sediment levels during highwater events; higher water temperature at crucial times of the salmon life cycle; and reduced recruitment of large woody debris in sections of the river.

Historical and current land and water use practices are negatively impacting the aquatic habitats in the Upper Bulkley River watershed. Some of the suspected impacts are declining water level, flow, and quality and sediment accumulation in gravel beds used in spawning and incubation. Current studies are being conducted on water quality parameters, historical side channel assessments, over-wintering capacity, adult recruitment and juvenile stock assessment. This report deals with the compiling of the historical water data.
J.OA.T. Consulting was retained by Fisheries and Oceans Canada (DFO) to gather the relevant data on water level and flow, along with water use (allocation or licenses), and historical stream hydrological information, to assist the Department of Fisheries in determining if these factors are contributing to the decline of coho in the system. It is hoped that this report will help guide future work in regard to habitat rehabilitation, water use education and perhaps water allocation concerns.

The required scope of work, as outlined by DFO, is as follows:
\Rightarrow comprehensive flow data from the Upper Bulkley mainstem and its tributaries where information exists;
\Rightarrow comprehensive water use data from information on water licenses and other use permits broken down by reaches on the mainstem Upper Bulkley River and Buck Creek. Reach breaks Are determined by the WRP report on the Mid Bulkley River by Scott Mackay and the upper sections WRP report by AGRA Environmental Consultants;
\Rightarrow copies of the WRP aerial photos of the Upper Bulkley River and Tributaries;
\Rightarrow stream hydrology data where available for the Upper Bulkley River and Tributaries;
\Rightarrow a discussion of the data in relation to use versus supply, probably critical use times with respect to the fish as well as the farmers etc. Suggestions on how DFO can make better use of water to ameliorate or eliminate these conflicts;
\Rightarrow peak freshet data to be analyzed to determine changing trends in timing and if they are significant.

1.2 Study Area

The Upper Bulkley watershed originates in the east from a sequence of lakes (Broman, Old Woman and Conrad) connected by ephemeral muskeg tributaries to each other and Bulkley Lake, which collectively form the headwaters for the Bulkley River (AGRA, 1996). Feeding directly into Bulkley Lake and joining the river approximately 1.5 km downstream from its outlet, are Maxan and Crow Creek respectively (Figure 1).

From there the river flows first northwest, then west and finally south west to the confluence of the Morice and Bulkley Rivers just west of Houston, where the watershed, for the purposes of this study, ends. A large number of tributaries and lakes contribute to this system throughout its run to Houston. The largest tributary is Buck Creek which empties into the Bulkley approximately 8 km upstream from the confluence of the Morice and Bulkley Rivers. Buck Creek is thought to be one of the most significant "nursery" streams for salmonids in the watershed (Mackay, 1997). On average Buck Creek supplies about 19\% of the flows to the Bulkley River and represents about $25 \%\left(580 \mathrm{~km}^{2}\right)$ of the area of the watershed. Another major tributary is Maxan Creek (draining Maxan lake).

The drainage area upstream of the Highway 16 bridge crossing in Houston, which is about 2.75 km upstream from the confluence of the Morice and Bulkley Rivers, is $2380 \mathrm{~km}^{2}$ (Northern Hydraulic Consultants(NHC), 1997). This drainage area is situated in the Nechako Plateau physiographic region. Elevations range from 570 m (1900ft.) at the mouth of the Upper Bulkley to over 1500 m (5000 ft .) at Tachek Mountain and Mount McCrea on the north side of the river. The general topography of the Upper Bulkley watershed is that of low mountains and hills with the mainstem river of a generally low gradient with frequently meandering sections and some moderate gradient sections. The tributaries are generally moderate to high gradient; many are lake-headed (Tredger, 1982). This area, as part of the Bulkley Valley, has the highest agricultural capability in the Skeena region (Remington, 1996).

The Bulkley River is a Class II stream which is defined as containing "high natural values", often in attractive natural settings (Wildlife Amendment Act, 1989).

1.3 Fish Populations

Although this report is not to focus on information regarding the fish and fish habitat in the Upper Bulkley, as this is covered extensively in Mackay (1997), some brief mention is made here about the salmonid population.

The impetus behind this report is largely due to the concern of the decline in the coho population in the Upper Bulkley. Other salmonid species also claim the Upper Bulkley as home. Anadromous salmonid species using the Upper Bulkley include chinook, coho, and sockeye salmon, and summer run steelhead trout (Tredger, 1982). Chinook salmon enter the Upper Bulkley in late July to early August and peak spawning occurs about the third week in August. Coho salmon begin entering the Upper Bulkley River in early September and peak spawning occurs in mid to late October.

Chinook and steelhead are also known to use the watershed for one or more life stages (Mackay, 1997). Chinook fry may remain in fresh water an additional year before migrating to sea. In the 70's, the Bulkley accounted for approximately 800 chinook spawners annually. The Upper Bulkley makes up part the system of the Skeena Watershed, which is considered as one of the most important coho producers in British Columbia (Kussat \& Peterson).

Adult migratory salmonids require sufficient streamflow to allow passage over both shallow bars and obstructions such as falls. Low flows can affect fish passage in a number of ways. The most obvious of these is a delay or block in migration which depletes energy reserves and increases stress. If the block is of sufficient duration, fish may be in such poor condition that they are incapable of reaching the spawning grounds or of spawning successfully once they do arrive. Low flows also affect water temperature especially where the streamside canopy (riparian area) has been removed, i.e. water temperature increases to levels above which salmon gametes have optimum viability. Depth is probably the most serious limitation to fish passage during periods of reduced flow (Neuman \& Newcombe, 1977)

2. Methods

2.1 Research Details

Extensive research was carried out in efforts to locate any and all information and/or data that may exist on the Upper Bulkley and its tributaries. Reports have been completed on the Upper Bulkley for Overview Fish and Fish Habitat Assessments (Mackay, 1997 and AGRA, 1996) and a Review and Assessment of Water Quality (Remington, 1996). Since these reports contain extensive information on the rivers and creeks that make up the Upper Bulkley, little time was spent in reiterating that information in this report.

The focus of the information gathering here, was to obtain the data on water quantity and use, and look at it over time for any changes or trends. Anecdotal information was also obtained from individuals who have lived in the area for a long period of time. Any information on water
temperature and level was also researched. Given the known paucity of that data, information on climate for the area was also compiled as a secondary factor. .
Additionally, aerial photographs which exist over the years for the study area, were researched. It was decided that the earliest aerials as possible would be obtained along with a middle point and then the most recent, for comparison purposes. The aerial photographs and notes are included in Sleeves B, C, \& D.

Any other historical information that was encountered during the research has been referred to where relevant.

2.2 Information Reliability

Much of the data that exists for the Upper Bulkley is inconsistent. Where complete sets of data exist for parameters such as stream flow and climate, effort has been made to provide graphical representation of what is occurring over time. However, even in those cases, there are gaps in data of up to 20 years between sets. Temperature, water level and stream flow data for the major rivers and streams in the region is limited, therefore the information detail as presented in this report is reflective of that.

Section 6.0 lists references and includes current reports that have been written on the Upper Bulkley such as Water Quality \& Assessment (Remington) and Mid Bulkley Overview Assessment (Mackay). The information in this report is intended to compliment these reports.

Water use and allocation data is derived strictly from license applications and holds a significant margin of error. This margin, as referred to again later, is a result of licenses, once applied for, are entered into the database at the Ministry of Environment and remain there unless they are formally canceled. Therefore, licenses may be included that are no longer in use. Additionally, licenses that are in use are rarely ground truthed for their actual and type of usage. Readers should keep these limitations in mind when using the facts as presented in this report.

Aerial photographs covering the mainstem have been provided here.
Any other historical information presented in this report, is strictly a factual recounting. The intent is to provide as complete a picture as possible as to the events occurring on the Upper Bulkley over time.

3. Results

3.1 Water Flow Data

Water Survey Canada (WSC) has kept a number of monitoring stations over time on the mainstem and tributaries of the Upper Bulkley. These stations have been read either automatically or manually. Therefore, at some locations, the data for a full year is incomplete if manual operations were not scheduled for some months. For example, monitoring station 08EE003, in Houston is a manual recorder and is only read during the spring through fall months. For the purposes of this report, the lack of data for the winter months will not be of great concern in order to observe historical trends during freshet and spawning periods. However, it does limit the ability to look at the overall discharge annually, since completeness of the data in any given year is extremely variable.

Table 1 below, provides a list of WSC stations and the years that they have run in the Upper Bulkley area:

Table 1: WSC Stations on the Upper Bulkley and its Tributaries

Station
08EE003 - Bulkley River near Houston
08EE009 - Richfield Creek near Topley
08EE013 - Buck Creek at the Mouth
08EE015 - Foxy Creek above Lu Creek
08EE018 - Maxan Creek above Bulkley Lake
08EE019 - Maxan Creek at Outlet of Maxan Lake

Years of Data 1930-1993 (seasonal)
1964-1974 (year round except '64/65) 1973-1993 (year round)
1974-1975 (inconsistent)
1975-1979 (year round)
1976 (full year)

Appendix A contains the details of the daily discharge over the years for each site (except for Foxy Creek). This data has been used to plot the Total Discharge over time for each location through the months of April to September, as well as the daily discharge for April, May, June, September and October. Wherever the data has been sufficiently incomplete to obtain a relevant value, the site or year has been skipped over. These graphs are used to observe any trends or changes in the discharge. To truly place the basin's hydrology in a long term context, the study boundaries have to be expanded outside the confines of the Upper Bulkley Watershed. This information and its analysis, provided and summarized by Eero Karanka, DFO, can be found in Appendix B.

The annual maximum flood peak on the Bulkley River normally occurs during the month of May as a combination of snowmelt and rainfall runoff. Since no data obtained is beyond 1993, for purposes of comparison, the peak flood levels on the Bulkley River and Buck Creek during the flood of 1997 were $275 \mathrm{~m}^{3} / \mathrm{s}$ and $95.2 \mathrm{~m}^{3} / \mathrm{s}$ respectively (NHC, 1997). The Bulkley River flow in 1997 of $275 \mathrm{~m}^{3} / \mathrm{s}$ represents the highest flood in the 32 years of available record prior to 1995 and since 1931: the second highest peak of $204 \mathrm{~m}^{3} / \mathrm{s}$ occurred in 1951. The 1997 peak for Buck Creek is the highest in the 23 year record up to 1995 with the second highest having occurred in 1973. The ratio of Buck Creek to the Bulkley River peak is on average 0.32 (NHC, 1997). Extreme low flows have been
noted to the order of $0.37 \mathrm{~m}^{3} / \mathrm{s}$ in the Bulkley River and $0.066 \mathrm{~m}^{3} / \mathrm{s}$ in Buck Creek (Mackay, 1997) with some tributaries completely drying in some years (O'Neill, per. comm.).

3.1.1 Total Monthly Discharge

The following pages contain graphs showing the Total Monthly Discharge from April through to September for stations 08EE003, 08EE009, 08EE013 and 08EE018 (Maxan and Foxy Creek have not been included due to the insufficiency of the data).

An interesting trend appears in all 4 graphs. Especially during the month of May, the total discharge from one year to the next displays an evident cycle of increasing and decreasing. However, the overall trend for May, most prominent with the Houston and Buck Creek stations, is a decline in total discharge per year. Since this data only runs to 1993, it is difficult to say whether the conditions in 1997 would considerably affect this observed trend. Results from data analyzed in Appendix B by Karanka, support this observation noting that the Bulkley River near Houston stream gauge shows a 1980-1990 May to September runoff volume at about 18\% lower than during 194452.

3.1.2 Daily Discharge and Freshet Occurrence

Freshet occurrence and spring discharge characteristics are significant to the young fish populations. General study of the discharge data was to determined the top three discharge days of each month of April through to June, for each year of complete data, and their relevant dates of occurrence, to observe any changes in the peak freshet timing. The results are summarized below:

Table 2: Freshet Occurrence on the Upper Bulkley River and Buck Creek

Bulkley River at Houston								
		Datas		heto	curre	nce	Range: of High m $\mathrm{m}^{3} / \mathrm{s}$	Rangeaf Low mis ${ }^{2}$
Month:	\% Years/.5.	Kı3,	WIİ	W2\%	W3	W4\%		
April	1935-51	7		1/2	1/2	6	96.80-21.80 (54.64)	11.30-0.57 (5.81)
	1980-87 (+'71)	8			$11 / 2$	61/2	45.20-6.23 (30.02)	1.26-0.520 (3.66)
May	1931-51	15	2	61/2	4	21/2	204.00-49.30 (119.22)	41.30-10.40 (26.63)
	1980-93 (+'71)	15	$31 / 2$	5	$41 / 2$	2	173.00-75.60 (116.31)	52.80-9.91 (28.19)
June	1931-51	17	131/2	2	11/2	1	120.00-19.00 (55.70)	25.80-5.10(10.29)
	1980-93 (+'71)	15	91/2	2	11/2	2	125.00-19.70 (65.11)	48.10-3.16 (13.29)
Buck Creek								
April	1973-93	21		1/2	11/2	19	59.20-2.52 (19.16)	10.00-0.178 (1.15)
May	1973-93	21	6	51/2	6	$31 / 2$	72.50-21.70 (39.24)	25.90-2.97 (10.17)
June	1973-93	21	13	3	$31 / 2$	11/2	56.20-6.35 (23.93)	17.20-0.29 (4.25)

Weeks were counted off in seven day segments. Therefore, any freshet occurring in the 4th week is anytime after the 21 st to the end of the month.

Total Monthly Discharge at Bulkley in Houston for Data Years Between 1930-1993

Total Monthly Discharge at Richfield Creek, 1964-1974

Total Monthly Discharge at Maxan Creek, 1975-1979

In general there did not appear to be a significant change in the timing of the freshet in May or the second peak in June over the long term. In the shorter time frame, from 1987 to 1993, the freshet in May was more likely to occur in the first or second week of the month instead of the usual second or third week for both Bulkley and Buck. The overall data, shows that the freshet period does seem to extend itself over more days than in the past minimizing the dramatic peaks and valleys found more often prior to 1951.

As can be seen in the comparison of the means, the overall highs from 1980 onwards, have decreased compared to highs in 1935-51 for the months of April and May, but have increased for the month of June. However, it is important to note that since means are affected by extremes, it is important to look at the total discharge before assuming that more runoff volume is occurring throughout the month and in going back to the total monthly discharge graphs, this trend is not as evident and in some cases appears to be decreasing.

The next set of graphs show the daily discharge for April through to June, for the stations at Bulkley and Buck Creek. They demonstrate discharge patterns throughout the month and thus changes in freshet characteristics over time. It is important to note again the gap in data between 1951 and 1971 for the Bulkley at Houston. This is to be kept in mind when viewing the relevant graphs.

April appears to show an increase in discharge earlier in the month, from the mid-1980s onward, which is also seen in the late 1930s. However, the extreme peaks reached in the period from 19311951, are not mimicked in more recent years.

As shall be demonstrated later, since Buck Creek contributes to the Bulkley, its patterns generally mimic those found on the Bulkley but with smaller values, given that it is a smaller system. Given the lack of data for the Bulkley From 1972-1980, we may assume that it would be reflective of activity occurring on Buck Creek. The graph for the month of April for Buck Creek, shows an increase in runoff volume in the later 1980s to early 90 s when compared to the 1970 s filling in a data gap and being consistent with the pattern occurring on the Bulkley graph.

May demonstrates pronounced runoff volumes throughout the '40s and perhaps into the ' 70 s for the Bulkley. Discharge activity then appears to stretch out with less pronounced peaks for the remainder of the years except for an exceptional year in 1985. The greater runoff volume also appear to occur earlier in the month. The Buck Creek graph also supports this trend showing dramatic peaks throughout the 1970s with discharge extremes for the month flattening out somewhat throughout the '80s and '90s, with an exceptional case in 1985. Peak freshet events appear to stay at higher levels of discharge for longer periods during this time.

June graphs do not appear to demonstrate any significant trends in freshet timing. However, there is an overall increase in runoff volume through the years at the Houston station starting in the 1970s and peaking in the mid 1980s and then declining in the 1990's. This is supported by the discharge patterns at the Buck Creek station.

Overall, all three sets of graphs show a decrease in runoff volume in more recent years. In reviewing the analysis done by Karanka in Appendix B, this is supported by his observation of mean runoff volumes decreasing by about 7\% below the long term mean post 1976.

Daily Discharge in April at Buck Creek, 1973-1993

Sl 06ed

Daily Discharge in May at Buck Creek, 1973-1993

3.1.3 Daily Discharge and Spawning

Adult coho enter the Bulkley in September and begin the trek to their spawning grounds throughout October. As mentioned previously, adult migratory salmonids require sufficient streamflow to allow passage over both shallow bars and obstructions such as falls. Low flows can affect fish passage in a number of ways. The following graphs show the discharge levels in September and October for Buck Creek and Bulkley River. The month of September has been used to compare the discharge of both Buck and Bulkley and their reflective patterns as mentioned in section 3.1.2. This allows us to extrapolate data in the 1970s and apply it to the Bulkley.

The first graphs show the daily discharge in September for both Buck and Bulkley over the years. Both graphs show a marked decrease in runoff volumes in more recent years. In addition, Buck Creek shows fewer peaks in the 1980s and 90s than were occurring in the 1970s.

The next two graphs demonstrate the mean monthly discharge for September over the years for Buck Creek and Bulkley and then just for Buck Creek respectively. The first graph demonstrates how both systems mimic each other in their discharge patterns. The second graph allows us to extrapolate the information provided in the 1970s on Buck Creek to Bulkley River and we can see how there is a distinct decrease in the mean discharge over time.

The next four graphs are similar to September's without the comparison. The daily discharge graphs both show a general decline in runoff volume. As can be clearly seen on the graph of Buck Creek, discharge activity in the 1970s maintained a fairly high level compared to later years. Although later years do show some strong peaks, more often than not, the discharge levels are lower than pre-1980. Bulkley River also shows a decline in activity, however the data gap must be noted. Stronger support for declining runoff volumes is shown in both graphs demonstrating the mean October discharge.

Daily Discharge in September at Bulkley River in Houston, 1945-1993

Mean September Discharge at Buck Creek and Bulkley River, 1980-1993

Mean October Discharge at Bulkley in Houston, 1931-49, 1971, 1985-93

3.1.4 Forestry in Relation to Flow Data

In interior regions where snowfall is a significant component of the hydrological cycle, clear-cutting causes increased snow deposition in the opening and advances the timing and rate of snowmelt. The effect lasts several decades until stand aerodynamics approach those of the surrounding forest. Where rain on snow events cause naturally high spring runoff, the effect of clear-cutting can be pronounced (Remington, 1996). Tables 3 and 4 below list data related to sub-basin's and anthropogenic activity within the Upper Bulkley River watershed. See Appendix C for the definition of Equivalent Clearcut Area. The two tables differ slightly in their reporting due to their origin from two different reports.

Table 3: Equivalent Clearcut Areas (ECA) of most of the sub-basins and whether future harvesting will be low, moderate or high.

Sub-basin.......	Tributaries/....	ECAM $\%$	Future Harvesting
Buck	Klo	38	high
	Dungate	16	
	Upper	31	
	Buck	22	
Aitken		30	low
Barren		15	low
Byman	Byman	25	low
	Perow	14	
McKilligan		15	Iow
McQuarrie		14	low
Johnny David		14	moderate
Richfield/Robert Hatch		14	low
Cesford	McCrea	16	Iow
Bulkley	McKilligan	30	low
	Summit/Raspberry	30	low

Source: Mackay, 1997
Table 4: Distribution of Anthropogenic (i.e. originated by man) Activity by Watershed within the Maxan River Basin

Watershed	No. of cutblocks	Area (ha)	Stream.\# length $(k \mathrm{~km})$	Km of Llogging Roads	Km of other roads
Bulkley	35	24,037	224	54	25
Crow/Foxy	55	16,795	118	114	82
Upper Foxy	20	8,292	63	52	23
Broman	25	24,099	176	108	42
Day Lake	20	9,682	141	58	31

[^1]The Upper Bulkley watershed is networked with roads and railway. The railway, built in the 1900's follows the Upper Bulkley entirely along its mainstem. Rechannelization of portions of the river occurred during the construction of this railway. Major areas of forestry operation are in the Upper Bulkley tributaries of Maxan/Foxy Creeks, Dungate Creek and Buck Creek. Bustard (1986b), has stated that there are more sensitive fisheries sites in active logging areas in the Morice TSA than in other interior districts in the region. Approximately 70\% of the Upper Bulkley River watershed is contained in the Morice TSA. A small portion of the northwest corner lies in the Bulkley TSA and the remainder in the east is located in the Lakes TSA. Logging operations around tributaries of the Bulkley encompass high value salmon and steelhead streams.

3.2 Water Level and Temperature Data

WSC also collects water level and temperature data. Since the early 1950's the WSC field crews have had a program to take spot water temperatures whenever they take field discharge measurements, or service the recording equipment. This data (up to 1976) was published in a Four Volume report. This information is found in Appendix D. Bulkley River at Houston, has not published data because the early record occurred in a period when water temperature records were not kept, while the later period of record began after their publication ceased. Since 1976, the spot water temperature data can only be compiled from individual field forms and annual summaries, which are kept in Vancouver (Eero Karanka, 1998).

Further investigation into water temperature data yielded poor results. Some water temperature has been collected over the past 12 years, by Toboggan Creek Fish Hatchery, but only for a short period of time (approx. two weeks in spring and late summer) during fish releases (O'Neil, per. comm.). This water temperature is taken at McQuarrie Creek. Some attempt was made to collect this data however, due to the tight time frame of this report and the uncatalogued nature of the data, it was not possible. Additional water temperature data exists from the annual reports produced by Equity Silver Mines. Although, this data is again, thin in detail. Small amounts of water temperature data are also reported from the Fish Fence in Houston (NCFDC, 1997).

McNeil (1983) did conduct some data collection for a report on Maxan Lake. Irrelevant in part since the dynamics of a lake differ substantially from the dynamics of a river, however some data was collected on Foxy Creek. It was noted that Foxy Creek had an average temperature of $12^{\circ} \mathrm{C}$ and an average depth of 24 cm when surveyed in August, 1974. Water temperatures were also recorded monthly during 1973 and 1974 on Maxan Creek with temperatures varying from $-1^{\circ} \mathrm{C}$ to $17^{\circ} \mathrm{C}$. Water temperatures climbed in late May, peaked in late July and dropped quickly in September (McNeil, 1983).

In general, the system has been noted by Tredger (1982) as quite productive with a high estimated mean annual temperature of $7^{\circ} \mathrm{C}$.

Water level data is taken by WSC in order to calculate flow data. This data is not offered with flow data and has to be specially requested. Since this was discovered just prior to the completion of this report, this information is not presented here. Some water level data has also been collected at the Fish Fence in Houston, but only for September through to October.

3.3 Water Allocation and Licenses

In 1983, the Town of Smithers was granted an Order In Council (OIC) reserve on the Bulkley River upstream of Smithers for protection of their waterworks (OIC 418-1983). This reserve was requested because Smithers draws some of its water supply from wells which are located near and charged by the Bulkley River. A clause noting the existence of this reserve is placed in water use licenses issued upstream of Smithers (Remington, 1996).

Water use records, as identified through water licenses, exist at the Ministry of Environment office in Smithers. Actual licenses were taken from the trim maps at the Ministry office and additional information was supplemented through the on-line water rights database. This can be found on the internet at http://www.env.gov.bc.ca/wats/wrs/query/licenses/licenses.htm. Appendix E contains a list of all water licenses registered on the Upper Bulkley and its tributaries as found through this process. It has been noted that there is a significant margin of error regarding this data, as it relates to water volume, since it is rarely ground truthed and many licenses may no longer be active (D . Meredith, pers. comm.). Additionally, water use in the area is often in a form that is not registered with a government body, such as groundwater and surface wells, ponds or other diverted water. Short of visiting every home owner within the study area, it is nearly impossible to have an accurate reading on the actual water use.

Table 5, on the next page, provides a summary of the water licenses by type in the Upper Bulkley.
From Remington, 1996, it was stated that the licensed water withdrawals from the Upper Bulkley totaled $0.1 \mathrm{~m}^{3} / \mathrm{s}$, which is about 46% of the summertime 7 day average 10 year low flow $\left(0.216 \mathrm{~m}^{3} / \mathrm{s}\right)$.

Using the Remington (1996) conversion factors, on the data compiled here, it was found that licenses allocated for irrigation comprised $0.26 \mathrm{~m}^{3} / \mathrm{s}$ during summer use (water use for irrigation occurs during dry, hot periods of that season), and $0.013 \mathrm{~m}^{3} / \mathrm{s}$ was allocated for licenses measured in GD (gallons per day) which includes domestic, stockwatering, land improvement, water delivery and waterworks. Remington did not include licenses for conservation and storage. Conservation works are considered non-consumptive, whereas storage licenses are considered fully consumptive. Here, 10,753.63 AF (acres feet) are allocated per year for storage. Averaging out the $10,753.63 \mathrm{AF}$ over the year would be $36,392.93 \mathrm{~m}^{3} / \mathrm{d}$ or $0.42 \mathrm{~m}^{3} / \mathrm{s}$. Therefore assuming that the total potential water withdrawal could be $0.693 \mathrm{~m}^{3} / \mathrm{s}$, this would calculate out to be 321% of the summertime 7 day average 10 year low flow as deduced from Remington's information. However, it is important to keep in mind that there is no data available on the actual water utilization by licensees, therefore, this is an estimate. Field flow measurements should be conducted to determine the actual impact of licensed water withdrawal on the summertime 7 day average 10 year low flow.

According to documentation relayed by Dwayne Meredith, Dam Inspection Officer with Ministry of Environment, (pers. comm.), the average Canadian usage of water by a four person family is 1 $\mathrm{m}^{3} /$ day which is equal to approximately 400 GD . Since most domestic licenses are 500 GD , this demonstrates a 20% under utilization of water. However the GD measured licenses (of which 52% includes domestic type use) only make up 1.9% of the total water withdrawal.

Additionally it is important to consider that the additional AF of licenses over and above irrigation are mostly for storage in the shape of ponds or diversions. It is speculated that less than 50% of these allocations are truly used (D. Meredith, pers. comm.). One must keep in mind that the averaging out of the yearly allocation throughout the year is also perhaps a misnomer. Higher flows seen in the spring and fall, would easily fill the required allocation of AF.

Table 5: Summary of Water Licenses on the Upper Bulkley

Type of License	No: of Licenses issued	Amountallocated		Comments
			GB	
Conservation-Construction	2		0.00	1AN
Conservation-Stored Water	14	4,633.00		considered nonconsumptive
Domestic	68		52,400.00	
Irrigation	13	1,099.00		
Land Improvement	6	0.50	100,500.00	3@0TF
Ponds	4			all @ OTF
Stockwatering	7		4,100.00	
Storage	9	10,753.63		
Water Delivery	1		20,000.00	
Waterworks (Dist. of Houston) (this ficense comes out of Mathew Lake)	1		30,758.43	109,500,000 GY
Total	125	16,486,13	207.758.43	退衰

Legend

AF = Acres Foot (the amount of water required to cover an acre of land in one foot of water)
$G D=$ Gallons per day
GY = Gallons per year
TF = Total Flow
Type of License
Conservation
Domestic/Stockwatering

Irrigation
Land Improvement

Storage
Watenworks
Means the use and storage of water or the construction of works in and about streams for the purpose of conserving fish or wildife.
the use of water for household requirements, sanitation and fire prevention, the watering of domestic animals and poultry and the irrigation of a garden not exceeding $1,012 \mathrm{~m} 2$ adjoining and occupied a dwelling house
the beneficial use of water on cultivated land and hay meadows to nourish crops the diversion or impounding of water to protect property, to facilitate the development of a park or the reclamation, drainage or other improvement of land or to carry out a project of a similar nature.
the collection, impounding and conservation of water carriage or supply of water by a municipality, improvement district, development district or person for the use of residents of an area in B.C.
(Queen's Printer, 1997)

The allocation of water use licenses for irrigation in the watershed is complicated by the fact that very few small tributaries are gauged. Excessive water removal from streams for irrigation can contribute to increased water temperatures and inadequate in-stream flows for fish (Remington, 1996).

Today there are an estimated five ranches and 20 hobby farms running approximately 500 breeding cows in the Upper Bulkley drainage. Grazing permits were issued for 3121 cattle and 48 horses in 1992 (Remington, 1996). Cattle can cause damage to water courses through eroding streambanks in efforts to get to water. Additionally they cause water pollution.

The majority of licenses have a points of diversion (POD) on creek systems other than the mainstem. Low flows in the Upper Bulkley River lead to the importance of tributaries as refuge areas for the fish. Therefore, there is a need to protect the flows in the tributaries (MIC, 1997). In addition, it has been stated that long-term changes in weather have lead to a decline in ground water levels over the last 30 years (MIC, 1997)

Sleeve A contains a map of the study area, water license locations and reach breaks. For each reach break on the Bulkley River and Buck Creek, the allocation of water due to licenses has been shown in $\mathrm{m}^{3} / \mathrm{s}$. Reaches are relatively homogeneous lengths of channel with similar confinement, gradient and substrate.

3.4 Climatological Data

The northwest corner of the Interior Plateau has a climate that is continental in nature.
Temperatures range from $-47^{\circ} \mathrm{C}$ to $+32^{\circ} \mathrm{C}$ with relatively long, cold winters, prolonged spring and fall periods and short, warm summers. Freeze-free periods are generally short (McNeil, 1983). 44% of the annual precipitation falls between May and September. Snow depths range from 0.5 to 1.0 meters at elevations below 900 meters with snow cover extending from mid-November through late April. Peak flows in the watershed generally occur during the month of May due to precipitation patterns and snowmelt. It has been noted that discharge events are influenced approximately two days after a heavy rain event (Mackay, 1997).

Precipitation and temperature data acquired, exists from Houston station \#1073615, Atmosphere Environment Canada (AES), for the years 1957-1963, and 1988-1995. It is reported that each of these periods operated at different locations (Eero Karanka, 1998). The fact that climate stations existed at different sites creates a microclimate analysis and interpretation problem. However, in combination with information and analysis provided by Eero Karanka, Habitat Management Unit, DFO, of data outside of the study area, the data in Houston has been plotted for comparison purposes. Results of information provided by Eero Karanka, are found in Appendix B.

The following graph shows the mean temperature and precipitation per month from April to September, 1959-62 and 1990-1994. Data on precipitation provided by Karanka, addresses precipitation from October to April. This would reflect the snowpack influence to the spring runoff period.

Mean Monthly Temperature and Precipitation in Houston, April to September, 1959-1962 and 1990-1994

[^2]The graph shows a general increase in temperature through the 1990s as compared to the 1950s and 1960s. This warming trend is supported by Environment Canada climate change data. Precipitation does not demonstrate any significant changes over the years however, results provided by Karanka state that regional October to April precipitation has decreased by about 7 to 10\% below the long-term mean.

Climate Trends and Variations Bulletin for Canada (AES, 1997) reports that long-term cooling dominates (as seen over 48 years) in all regions of Canada except British Columbia and the far northeastern seaboard.

3.5 Aerial Photographs and Land Use

3.5.1 Aerial Photographs

Aerial photographs were obtained in 1:30,000 from the 1950's, 1:60,000 for 1971, and 1:15,000 for 1994: Copies of these aerials are found in Sleeves B, C and D respectively. Since it was too onerous to obtain copies of aerials for the complete study area, only copies of the mainstem Upper Bulkley are provided for comparison purposes. Additionally, due to lack of facilities in the Northwest to reproduce the aerials 'cut and pasted' together on a single map sheet, the best attempt was made to provide 11×17 numbered copies which can be put together for an overall view of the mainstem. Appendix F contains an incomplete list of the existing flightlines and years of aerials for the Upper Bulkley, as an example of available footage.

Current aerial photographs at 1:3,000 scale taken in 1997 (Mackay, 1997) provide a high level of detail of the mainstem and many of its tributaries. Due to the sheer numbers of photographs at that scale, they are not duplicated here but can be viewed through the Ministry of Environment in Smithers. The details of what is available with these photographs are included in Appendix F.

Comparison of the aerial photographs reveals the changes in the mainstem over time. Some of these changes are listed below:

- increase in cleared land right to the bank of the river, prominently seen in the area of the mainstem between the tributaries of Raspberry and McInnes and towards Johnny David Creek;
- loss of a significant amount of meandering characteristics on the mainstem causing a general straightening trend in many cases;
- development and growth in the towns of Houston, Topley and Wiley with the addition of a trailer park near the mouth of McQuarrie;
- natural path changes of the river have run into interference as the bends now bank up against the CN Rail line where previously they were further away;
- changes to the mouth of Byman Creek and its connection to the mainstem;
- clear separation of side channels from the mainstem.

3.5.2 Land Use

Along the floodplains of the Bulkley River, numerous side channels have been cut off at their upstream end from the main river channel by the rail line or Highway 16. Side channels are often very important rearing habitat for juvenile salmonids, particularly coho. In some instances the side channels have been culverted, but culverts are often the target sites for beaver dams (Remington, 1996). The Upper Bulkley stretching from the confluence of Ailport to Bulkley Lake was noted as being extensively colonized by beavers with approximately 24 dams (AGRA, 1996). Beaver dams were also noted on the reaches of Buck, Ailport and Crow. Beaver dams in the lower reaches of Buck Creek are impeding fish access (MIC, 1997).

Table 6 below summarizes many of the tributaries and the land-use associated with their basins. As mentioned previously, land-use in the Bulkley Valley has largely been oriented around agriculture-based.

Table 6: Summary of Tributaries

Tributary Name	$\begin{aligned} & \text { size } \\ & \text { (ha) } \end{aligned}$	Basin Order	Bifurcation Ratio	Historicall Laname	Comments
Buck Creek	56,333	Third		Agriculture, urbanization, forestry, mining	Thought to be most significant nursery stream. Includes Klo Creek and Dungate Creek
Aitken Creek	11,947	Second	Intermediate	Agriculture, Forestry	
Barren Creek	2,606	Second	High	Agriculture, dwellings, powerline, railway	
McQuarrie Creek	11,583	Third	Intermediate	Agriculture, dwellings, railway, Forestry	
Byman Creek	11,435	Third	High	Agriculture, dwellings railway	
Johnny David Creek	4,571	Second	Low	Agriculture	
Richfield Creek	21,634		Low	Agriculture, dwellings	Includes Robert Hatch Creek

Note: Basin Order reflects the attachment of that tributary to the fourth order basin, in this case, the Upper Bulkley Bifurcation Ratio is the relative rate at which runoff occurs without factoring in storage variables

Data from: Mackay, S., 1997
During or just after World War II, the BC government provided bulldozers to those interested in clearing land at a per-cost rate (no profit margin). This greatly increased the rate and extent of land clearing the in the watershed, and paved the way for more mechanized farming. To put a perspective on the extent of cattle ranching and hay farming, and thus show the temporal trends in possible impacts to the watershed, it was noted that between 1947 and 1967, the number of cattle in the Houston area increased from 60 head of cattle to 1500 (Houston Centennial ' 71 Committee (HCC), 1971). It is important to note that all of this activity has been focused in the valley bottom of the Bulkley River, on alluvial fans of most tributaries, and on the Buck Flats.

3.6 Other Historical Information

3.6.1 Major Storms and Floods

A storm of a certain magnitude may cause considerably more damage to developed property in 1990 than a similar storm might have in 1890. However, a storm in 1990 may cause less damage than a storm/flood in the 1970s because of improved road and bridge construction standards and a generally greater awareness of problems associated with development and poor road construction and maintenance practices (Septer, D. and J.W. Schwab, 1995).

Peak Flows occur in parallel with the melting of mid to high elevation snowpacks and are exaggerated by rain-on-snow events and high temperatures. Floods in the watershed which have not been gauged have been noted in May, 1924, June 1962, and May 1967. The flood of 1962 was estimated to be the largest known flood at the time and was also a rain-on-snow event (Mackay, 1997).

Late spring/early summer snow-melt floods occur when cool weather extends into the late spring/early summer months. A sudden rapid warming to hot weather extending over a period of a few weeks leads to a rapid melt of the snow-pack, which brings rivers to flood levels. These floods have historically occurred at the end of May to early June, most notably region-wide in 1894, 1898, 1936, and 1948. Smaller floods occurred in 1916, 1942, 1964, and 1972 (Septer, D. and J.W. Schwab, 1995). Rainstorms also augment snow-melt runoff in localized areas.

Icejam floods are caused by freeze-up or the break-up of ice and do cause flooding on the Bulkley Rivers and tributaries. These tend to occur from November to April. In January 1919, ice jammed the Bulkley River east of Telkwa taking out two spans of the bridge at Hubert.

Numerous floods and precipitation events are reported for the Bulkley from the Telkwa/Smithers area through to Hazelton, but few for the Houston area. This may be due to the fact that water accumulates downstream and is not as abundant near the headwaters.

Major storms and floods recorded on the Upper Bulkley or surrounding area are listed in tables 7 and 8 below:

Table 7: Major Storm and Floods Recorded on the Upper Bulkley and Surrounding Area

Spring Floods:

June 17-19, 1931
May 24, 1942
May 25-June 10, 1948
May 31-June 2, 1972
June 14-16, 1986
Flash Floods:
July 16-18, 1974

Bulkley River and minor flooding Skeena River minor flooding Skeena and Bulkley Rivers major flooding Skeena and Bulkley flooding Skeena and Bulkley Rivers and elsewhere
"Father's-Day Storm": Telkwa and Bulkley Rivers
flash floods north and northwestern B.C.

Icejam Floods:

January 1919
April 8-12, 1966
April 1968
December 23-28, 1984
December 23-29, 1992

Bulkley River, Hubert
Bulkley River, Smithers
Morice River, Houston; Bulkley River, Telkwa
Bulkley River, Quick
Bulkley River, Smithers

Data from: Septer, D. and J.W. Schwab, 1995

Table 8: Storm and Flood Occurrences by Rivers, Creeks and Lakes in Houston Area, 1891 - 1991

Buck Creek: May 10, 1951; May 31-June 8, 1964; May 20-23, 1968
Bulkley River: \quad November 21-25, 1914; May-June 1916; October 28-November 19, 1917;January 1919; May-June, 1928; May 4, 1931; June 17-19, 1931; November 17-24, 1933; October 21-26, 1935; November 5-8, 1935; May 29June 3, 1936; November 9-19, 1936; May 25-26, 1942; May 15-19, 1945; May-June, 1947; May 25-June 10, 1948; June 14-18, 1950; May 10, 1951; December 2-5, 1959; May 31-June 8, 1964; June 8-11, 1964; April 8-12, 1966; October 21-24, 1966; April 9-10, 1968; May 20-23, 1968; May 31-June 2, 1972; June 12, 1972; October 29-November 1, 1978; December 23-28, 1984; June 14-16, 1986; October 6-14, 1991

Data from: Septer, D. and J.W. Schwab, 1995
Floods can have a significant impact to the fish habitat through sediment loading and erosion. Not all of the storms or floods listed above may have directly impacted the Upper Bulkley however, details of most of the events are included in Appendix G. Table 9 summarizes the events that had direct mention of Houston or the Upper Bulkley, and the peak discharge as it is reported in Appendix G along with the discharge occurring in Houston from the WSC data in Appendix A.

Table 9: Summary of Event Catalogue and Relevant Data

Date of Event	Peak Discharge Recorded at Quick	Peak Discharge Recorded at Houston
May 4, 1931		53.8 m $/$ /s
May 25-26, 1942	$691 \mathrm{~m}^{3 / \mathrm{s}}$	$96.3 \mathrm{~m}^{3} / \mathrm{s}$
May 15-19, 1945		$156 \mathrm{~m}^{3 / \mathrm{s}}$
May-June 1947	$538 \mathrm{~m}^{3} / \mathrm{s}$	$93.7 \mathrm{~m}^{3} / \mathrm{s}$
May 25-Júne 10, 1948	$895 \mathrm{~m}^{3} / \mathrm{s}$ on May 30.	$193 \mathrm{~m}^{3 / \mathrm{s}}$
May 10-12, 1951	$634 \mathrm{~m}^{3} / \mathrm{s}$ on May 13	$204 \mathrm{~m}^{3} / \mathrm{s}$
August 9-11. 1951		
May 29-June 8, 1964	$847 \mathrm{~m}^{3} / \mathrm{s}$	
June 8-11, 1964		

Batexofikyent	Peak Discharge Recorded at Quick	Peak Bischarge Recormediat Houston
April 8-12, 1966		
May 20-23, 1968	$861 \mathrm{~m}^{3} / \mathrm{s}$	
June 12, 1972	$957 \mathrm{~m}^{3} / \mathrm{s}$	
June 14-16, 1986	$721 \mathrm{~m}^{3} / \mathrm{s}$.	$131 \mathrm{~m}^{3} / \mathrm{s}$
May 17, 1997	$846 \mathrm{~m}^{3} / \mathrm{s}$	$275 \mathrm{~m}^{3} / \mathrm{s}$

It is interesting to note that in general, there is an increase in the reported peak discharge at Quick during the flood events, with the highest being in 1972. Although expected, the flood in 1997 did not exceed this amount (WSC, pers. comm.) considering the peak discharge at the Houston station exceeded its previous record in 1951. A graph of this data has been included to demonstrate this trend.

4. Discussion

The results as presented in Section 3 are potentially indicative of problems occurring with the coho population in the Upper Bulkley. Reasons behind the trends or changes are discussed below and followed by potential effects to the fish life cycle and habitat.

4.1 Discharge Analysis

4.1.1 Spring Discharge and Freshets

Stream flow data seems to demonstrate an overall trend of declining total discharge over time. This is supported by anecdotal evidence from long-time resident Henry Murphy. It is felt that not only is there less water, but the water that does come through, runs off faster. He noted that there used to be two distinct freshet periods in the spring; one in early May, as a result of valley bottom warming; and a higher event usually around the May long weekend, as the snow melts from the upper elevations. Now the river comes up earlier and runs fuller, but the high water spans the entire period instead of abating and reaching a second peak (Murphy, pers. comm.) This is supported by the graphs as higher discharges pick up again in the 1990s in April and the peaks are less prominent during May than they were in the earlier years. Other residents in the area still feel that the main peak period consistently occurs around the long May weekend although it does maintain itself for a longer period of time and may be starting earlier (Strimbold \& Wilson, pers. comm.). As noted in the results of the peak freshet period, no significant timing changes appeared over the long term, only in the short term.

There is also consistent support for the fact that there seems to be less water overall also supported outside of the study area as shown by Karanka. Freshets often scour the spawning beds and wash away redds, while low flows may dry up redds on the periphery of spawning areas. Therefore, a longer more constant freshet period may be having a greater effect on spawning beds than in the past. A longer, highwater event occurring in mid to late spring (i.e. mid-May to early June) may affect swim-up fry leaving the redds.

Peak Discharge Levels at Bulkley River in Quick and Houston during Recorded Flood Events

Juvenile rearing is perhaps the most vulnerable phase of the salmonid life-cycle and rearing requirements are the most difficult to understand. Coho salmon stay in streams for a few months to several years. Fish which rear in streams need an easily exploitable food source and adequate living space. Production of benthic invertebrates occurs mainly in riffles and fish usually stay in pools to feed. Thus, a riffle:pool sequence is a basic requirement of productive salmon streams (Neuman \& Newcombe, 1977). Therefore, it is possible that lower constant flows may not allow for the refreshing of pools necessary for the success of juvenile survival.

Reasons behind these trends, although speculative, are numerous. As mentioned earlier, clearcutting causes increased snow deposition in the opening and advances the timing and rate of snowmelt. Additionally, there is less storage capability of that land to slow down the release of water to the river system. Some suggestion has occurred that the potential effect of climate change (warming) may reduce summer and early autumn flows in streams of the Interior Plateau hydrologic regions, such as the Upper Bulkley basin (Environment Canada, 1997). Climate warming may also account for earlier snow melts and therefore earlier freshet periods.

4.1.2 Fall Discharge and Spawning

Both the mainstem and tributaries are important habitat for salmonids. The mainstem provides a lower energy habitat that does not require a great deal of effort to maintain position in, with deeper and more constant flows during low-flow periods. The tributary theoretically provides better water quality (cooler and more oxygen due to higher gradients, larger substrate, more turbulence), more food due to better and more frequent invertebrate habitats, and both may provide an alternative habitat when there is either high concentration of suspended sediments or ice in the water column. The mainstem floodplain may provide critical overwintering habitat when there is a lack of deep pools, large substrates, and/or deep, groundwater fed off-channel areas in the tributary. (Mackay, 1997)

Spawning salmonids have at least three basic requirements which are affected by low flow. These are gravel composition, water depth, and water velocity (Neuman \& Newcombe, 1977). Reduced stream flows can affect all of these spawning requirements. Successful egg incubation and fry emergence depends on adequate percolation of high quality water through the gravel where an adequate oxygen supply is essential. High flows can increase the sediment load of stream water and cause sedimentation, and low flows also reduce percolation rate. Since coho are known to spawn through late September to November, it is expected that high flow days are necessary when the fish are able to pass barriers and reach their spawning beds.

Graphs of September and October discharge characteristics, show a reduction in discharge over time. As well, dramatic peaks, especially seen on the Bulkley, are less evident. This loss of peaks may be an important factor in the success (or lack of) spawning salmonids reaching the redds as well as affecting the riffle:pool characteristics important in juvenile rearing.

4.2 Water Allocation and Licenses

Difficulty with this data is a result of the significant margin of error explained earlier. This margin of error is a result of lack of ground truthing and updating due to limited manpower and cost. Licenses are often abandoned, and under or over utilized: Additionally, water usage that is not recorded under licenses will make up a significant amount of allocation that cannot be considered due to its unknown details. These usages can take the form of diversion of water into a pond for domestic use, diversion of water that was not to be used but gets used anyway, surface wells beside or close to water courses and any groundwater use that may be water meant for the river. Therefore relying on the data derived from water licenses to determine trends or problems, is a problem in itself.

It is difficult to speculate whether water allocation causes a significant depletion in water. If it does, it is likely to be evident in low flow periods rather than in flood periods. Therefore, it would be expected that discharge data in July and August would be skewed to support this water usage. Despite the increase in monthly discharge in 1993, the monthly discharge graphs do show a slight decrease for August and September on both Buck and Bulkley. No significant change is seen in July. Overall, the peaks reached in those months in later years, are less prominent. If the overall annual discharge is down, and the overall water use is up, then it is possible that the systems may be taxed in some areas.

Since the majority of PODs occur on tributaries, it is more likely that water use is having some significant effect. Hydrometric data is necessary to the assessment of these withdrawals. Although the District of Houston holds a water license on Mathews Lake, north of Houston, it presently supplies the municipality with water from shallow wells in the floodplain next to the river (which do not show up in licenses), and there are 68 other domestic water use licenses in the watershed. Water withdrawals, mainly for agriculture and storage, are significant. Local residents however, did not suspect that more than one irrigation license (Groot Bros.) is currently in use (Strimbold, pers. comm.).

Excessive water withdrawals, coupled with climate variation, could result in water shortages and insufficient in-stream flows for fish (Remington, 1996). In the worst case scenario, existing licenses may exceed supply during a 7 day low flow 10 year occurrence.

4.3 Historical Land-Use Changes

There is the possibility that the ongoing changing of the river channel (loss of meandering sections) is allowing for a faster flow. This is merely speculative and would have to be followed up with a more in-depth analysis through aerial photographs of the changing river path. However, local residents confirm the ongoing erosion of stream banks and the subsequent log jams being created as trees from eroded banks drop into the system (Murphy, Strimbold, \& Wilson, pers. comm.). Although log jams are often thought to be barriers to migrating spawners and even juveniles, this is usually untrue unless there is a marked increase in the hydraulic head behind the jam, as an indication of how impermeable it is. Basically if water can freely get through, so can fish (Mackay, 1997). However, log jams can cause the backing up of water and then the
subsequent heavy and high rush of discharge if and when it releases or the water breaches the jam. This sort of water action can potentially destroy sensitive fish habitat.

It has been found that most mainstem-rearing salmonids have lateral distributions that are skewed to the banks rather than the middle of a given channel cross-section. This distribution provides a refuge from higher velocities in the mid-channel area, better cover from predators, and represents optimum feeding area. In this way, stream banks play an extremely important role in the survival of species inhabiting the mainstem (Mackay, 1997). However, as streambanks erode, these habitats are reduced.

There has also been a marked increase in beaver dams. Long-time resident Frank Strimbold recalls how as children, it was a great event to even see a beaver. Now however, there are many beaver especially along the mainstem towards Knockholt. Beaver dams in Topley are causing siltation behind them and the fish cannot get through (Strimbold, pers. comm.). With the general ban against the hunting of beaver, and the decrease of natural predators due to human presence, it is not surprising to see a marked increase in beaver populations. The Overview Assessment done by AGRA (1996) also notes the presence of numerous beaver dams to support this anecdotal evidence.

4.4 Aerial Photographs

There has always been some concern that the clearing of land close to river banks would contribute to erosion, increased sedimentation and water temperature, which impact fish stocks. Review of aerial photographs from 1950 compared to 1994, show changes in land clearing along the river banks to have increased in certain section. Clearing of the land not directly adjacent to the mainstem still affects the river by its reduced capacity to control runoff.

It is also felt that increased use of the land for grazing purposes may also be degrading fish habitat. Local residents however, suggest that the number of head of cattle in the area is significantly less than in the past when coho stocks were still fairly healthy (Wilson, pers. comm.). In addition, erratic flood events, such as the one that occurred in 1997, cause the flooding of hay fields and subsequent siltation in the river. Therefore, there may be an indirect effect due to land use that only becomes apparent in years where severe natural hazards occur.

5. Recommendations

The data presented in this report shows trends on which speculation on the effects on salmonid populations have been made. Unfortunately data on the Upper Bulkley River and tributaries is not abundant. Many data gaps have been identified and call for the need of ongoing data collection focused on the parameters directly affecting fish and fish habitat.

Over-exploitation of salmonid stocks, especially Upper Skeena coho stocks, is a prominent factor in stock decline. The fewer adult salmon to reach spawning grounds will account for the lower
numbers of fry. Local residents support the observation that there is an evident decrease in fish numbers to the point of exclaiming that "there are no fish" (Strimbold \& Wilson, pers. comm.).

Below are listed a number of recommendations for further investigation into the decline of the fish population and future monitoring of the Upper Bulkley watershed:
4. Ongoing monitoring of the stream flow with a switch to automatic data collection at the Houston station to increase data consistency. Monitors should potentially be set up on tributaries which hold significant fish habitat and where water usage is high such as Buck, Richfield and Byman/Perow.
(4) Monitoring of water level and temperature is essential in order to fill the gap of data necessary to determine the health of fish habitat.
© Further analysis on the cumulative departures from the long-term means of climatological data and discharge of an expanded study area.
(4) Analysis and review of water level data related to all discharge data.
4. Air photo interpretation and GIS mapping of the channel configuration, from the first aerial photographs to the present, to show how the channel dynamics also affected by the CN Railgrade, may be changing over time and thus affecting fish habitat.
4) Ground truthing of the real water usage relative to the Upper Bulkley and its tributaries to determine the ratio of supply and demand. Close analysis of discharge data and water diversion would be necessary to determine any true effects on the overall flow and what seasons are more sensitive to water use relative to fish life cycles. It would be necessary to collect data on ground water in this situation.
4. Closer monitoring of beaver activity in the watershed and its potential effect on data parameters such as water quality, sedimentation, flow and temperature.
4. Collection of livestock numbers in the area and their effects on the water systems. Comparison of these numbers to historical numbers would be necessary to determine if there is a true maximum that the area can support without affecting fish habitat.
4) Reduction in exploitation rate

6. Bibliography

AGRA Earth and Environmental, 1996. Level 1 Fish Population and Riverine Habitat Assessment, Maxan Watershed. Prince George, B.C. 25 pp.

Bustard, D. and associates. 1986b. Assessment of stream protection practices in the interior of the Prince Rupert Forest Region and future research recommendations. Contract report prepared for Forest Hydrology Research Section of the BC Forest Service, Smithers, B.C.

Environment Canada. 1997. Climate Trends and Variations Bulletin For Canada. as acquired from the Internet, address; http://www.tor.ec.gc.ca/ccrm/bulletin/autumn95/page2.htm

HCC (Houston Centennial '71 Committee). 1971. Marks on the Forest Floor - A Story of Houston, British Columbia. Houston, B.C. 152 pp.

Interior Watershed Assessment Procedure Guidebook (IWAP), Level 1 Analysis. September 1995. Forest Practices Code of British Columbia

Karanka, Eero. 1998. Unpublished. Memorandum to Brenda Donas. Department of Fisheries and Oceans.

Kussat, Rick \& Ken Peterson. 1972. An Assessment of the Effects on the Morice and Bulkley River Systems of a Puip Mill at Houston, B.C. Unpublished. 28 pp.

MIC (Morice District IWAP Round Table Committee Meeting notes). 1997. Unpublished. BC Conservation Foundation, Smithers. 8 pp.

Mackay, Scott. 1997. Mid-Bulkley Overview Fish and Fish Habitat Assessment for Watershed Restoration. BC Conservation Foundation. 208 pp.

McNeil, Allan O. 1983. The Maxan Lake Multi-Land Use Study; A Summary Review. Project Number 271032. B.C. Ministry of Agriculture and Food.

NCFDC (Nadina Community Futures Development Corporation). 1997. Bulkley River Fish Fence Project Report. DFO Smithers, and NCFDC, Houston.

Neuman, H.R. \& C.P. Newcombe. 1977. Minimum Acceptable Stream Flows in British Columbia: A Review. Fisheries Management Report No. 70. British Columbia Fish and Wildlife Branch.

Queen's Printer. 1997. Water Act [RSBC 1996] Chapter 483
Remington, Dawn. 1996. Review and Assessment of Water Quality in the Skeena River Watershed, British Columbia, 1995. Department of Fisheries and Oceans. 316 pp.

Septer, D. and J.W. Schwab. 1995. Rainstorm and Flood Damage: Northwest British Columbia 1891-1991. Ministry of Forests Research Program, B.C. 196 pp.

Tredger, C.D. 1982. Upper Bulkley River Reconnaissance with Reference to Juvenile Steelhead Carrying Capacity. Skeena Region MELP, Fish and Wildlife Branch, Smithers. 8 pp. + photos.

WILS (Water License Information System data base). Ministry of Environment, Lands and Parks,
WSC (Water Survey of Canada). 1997. Hydrologic Records from Hydrometric Stations at Bulkley River near Houston (08EE003), Richfield Creek near Topley (008EE009), Buck Creek at the Mouth (08EE013), Foxy Creek above Lu Creek (08EE015), Maxan Creek above Bulkley Lake (08EE018), Maxan Creek at the Outlet of Maxan Lake (08EE019). Digital Data. Environment Canada. Ottawa.

Personal Communications:
Brenda Donas, DFO, Smithers Community Advisor
Jeff Lough, Skeen Region MELP WRP Fisheries Specialist Dwayne Meredith, Skeena Region MELP Dams Inspection Officer Henry Murphy, Long-time Resident, Houston Mike O'Neill, Toboggan Creek Fish Hatchery Jim Schwab, Ministry of Forests Frank Stimbold, Long-time Resident, Topley Brian Wilson, Long-time Resident, Topley

stanume											-	!
Stamame=	BULKLEY RIV	near hou										
LATITUDE	54:23:45N											
LONGITUDE	126:12:30W											
PARAMETER=	Flow m3/s											
	1930	1938	1932	1833	1934	1935	1936	1937	1938	1939	1940	「
March 18												
March 19												
March 20			3.230									
March 21												
March 22												$!$
March 23												
March 24												
March 25												
March 28												
March 27												
Match 28												
March 29												
March 30									-			
Morch 31												1
Total March Discharge												;
Appil 1						11.800		0.568			10.500	
${ }^{\text {Aposil }} 2$						11.600		0.568			10.800	
April 3						11.600		0.708			11.600	
April 4						11.600		0.708			12.500	
April 5						11.600		0.850			13.300	
${ }^{\text {Appil }} 6$						11.600		3.400			14.700	
April 7						10.800		5.850			18.100	
Appil 8						10.600		8.500			17.600	-
April 9		6.510				10.400		10.800			17.600	
April 10		5.970				0.740		14.000		10.800	17.600	
April 19		5.970				8.510		17.300	12.400	11.800	20.400	
Appill 12		6.510				0.630		19.500	16.400	13.300	23.200	!
April 13		5.890				10.100		21.800	20.400	19.600	25.800	
Appil 14		6.510				8.400		21.800	22.200	25.800	35.700	1
Aprit 15		6.600				8.500		21.800	24.100	27.500	39.600	
Appis 16		6.600				7.700		21.800	25.500	29.200	47.600	
April 17		0.510				7.700		21.800	27.200	30.800	45.000	[:
Appil 18		6.680				7.700		21.800	28.900	32.000	50.400	
April 19		5.690				7.700		21.800	28.400	33.700	53.000	.
April 20		5.870				7.590		21.800	30.000	35.100	55.500	
April 21		6.510			.	7.520		21.800	31.700	38.500	57.800	
April 22		5.870				10.600		21.800	33.100	38.200	63.400	,
April 23		6.600				14.200		21.800	38.200	39.800	67.700	[]
April 24		8.880				47.000		20.700	43.600	41.600	71.000	
April 25		15.000				21.500		18.700	48.700	48.600	75.800	
Appil 28		17.400				26.300		18.700	51.500	41.600	75.800	I
April 27		21.400			218.000	26.300		19.400	54.100	39.600	75.800	,
April 28		25.200				26.300		20.200	56.600	37.400	75.800	
April 29		30.300				28.300		20.200	56.400	38.500	74.200	
April 30		34.300				26.300		20.200	55.800	35.700	72500	
Total Aprid Discharge		247.970			219.000	399.090	0.000	461.748	706.200	658.200	1244.600	
May 1		40.800				28.000		22.700	55.200		72500	
May 2		43.300				29.700		24.800	53.800		72.500	
May 3		47.300				39.400		39.600	52.700		73.600	
May 4		53.800				48.700		37.100	51.500		74.800	
May 5		49.800				68.500		42.500	50.400		75.800	
May 6		49.800				73.800		47.800	53.800		77.600	
May 7		48.100				75.600		54.700	56.800		70.300	
May 8		41.900				75.600		61.400	60.000		83.000	
May 9		40.500				79.000		66.000	63.400		88.700	
May 10		39.400				80.700		74.800	64.000		94.300	1
May 11		34.300				79.300		81.600	64.800		102.000	
May 12		31.700				78.300		81.600	68.300		110.000	
May 13		30.300				79.300		81.800	62.900		88.000	
May 14		30.300				92.000		78.700	59.500	68.700	88.700	,
May 15		30.300		122.000		94.000		75.600	58.100	128.000	88.300	
May 18		30.300		121.000		94.000		73.100	52.700	139.000	80.300	
May 17		30.300		120.000	47.000	83.000		70.800	52.700	152.000	87.800	
May 18		30.300		118.000	42.800	78.300		67.400	52.700	143.000	85.200	()
May 19		30.300		118.000	338.600	75.800		80.000	52.700	135.000	83.000	I
May 20		30.300		118.000	35.400	75.800		62.000	57.800	128.000	79.300	
May 21		28.000	57.800	118.000	32.800	79.300		63.700	76.500	116.000	75.800	
May 22		24.800		81.000	30.800	83.000		65.700	85.100	118.000	71.100	1
May 23		24.800		81.000	20.400	83.000		67.700	114.000	114.000	68.300	
May 24		24.600		71.800	28.300	75.800		69.400	120.000	114.000	62.600	1
May 25		24.600		64.800	27.000	68.100		71.400	122.000	108.000	58.900	
May 28		23.400		76.500	28.300	69.100		85.000	110.000	105.000	55.200	
May 27		21.800		93.200	24.800	68.100		81.600	88.000	102000	48.400	
May 28		20.800		77.000	23.200	75.800		75.600	85.800	102000	41.600	,
May 29		19.300		68.200	22.300	72.500	45.800	69.800	73.800	101.000	38.500	
May 30		18.200	50.100	55.800	20.400	68.100		64.000	67.700	87.400	35.700	
May 31		17.300		50.700	18.400	69.100	48.200	58.300	58.100	80.000	34.300	
Total May Discharge		1008.900	107.900	1854.600	488.700	2242200	91.800	1978.300	2153.000	2072.100	2289,300	+

STANUM-	O日EE009											
staname	BULKLEY RN	ENR HOU										
Latitude	54.23:193N											
LOWGITUDE	126:42:30W											
Parameter=	$\begin{array}{r} \text { FLow m3/s } \\ 1930 \end{array}$	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	
August 17		1.050	1.730	1.280								
August 18		1.020		1.290								
Auguss 10		0.863	2.170	1.120								
August 20		0.863		1.200								11
August 21		1.020		1.160								
August 22		1.020	2070	0.868								
August 23		0.063		0.778								
August 24		0.834	2.580	0.778								
August 25		0.834		0.779								,
August 26		0.863	1.780	0.779								
August 27		0.663		0.779								1
Auguat 28		0.834	2170	0.779								
Augusa 29		0.063		0.671								
Aupura 30		0.003	2.780	0.609								
August 31		0.963		0.609								
Total August Discharge		50.686	54.240	31.397	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
September 1		0.034	2280	0.609								
Septomber 2		0.863		0.541								
September 3		0.963		0.609								
September 4		0.834		0.677								
September 5		0.834		0.779								
September 8		0.834		0.711								1
September 7		0.834	2.610	0.677								
Septomber 8		0.834		0.609								I
September 9	0.142	0.834		0.541								
September 10	0.142	0.934		0.439								
September 11	0.142	0.806		0.377								?
September 12	0.142	0.808	2.170	0.293								,
Seprember 13	0.057	0.651		0.180								
September 14	0.188	0.651		0.159								
September 15	0.189	0.651		0.127								;
September 16	0.188	0.651		0.127								!
Seprember 17	0.425	0.651		0.439								,
September 18	0.481	0.651		0.778								
September 19	0.481	0.623		0.779								
September 20	0.738	0.623		0.892								
September 21	0.680	0.623		0.868								I
September 22	0.481	0.623		1.160								I
September 23	0.453	0.623		1.550								
September 24	0.425	0.623		1.590								
September 25	0.425	0.623		1.730								
September 26	0.880	0.623		1.830								,
September 27	0.765	0.651		1.830								1
September 28	1.100	0.651		2020								
September 29	1.300	0.708		2070								
September 30	1.670	0.808		2340								
Toual September Dischar	11.321	23.016	7.060	27.472	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
October 1	2.290	2.070						7.050		0.568		
October 2	2.150	1.980						7.830		0.585		
October 3	2.150	1.980						7.900		0.651		
October 4	2.150	1.980						10.600		0.680		1
October 5	2010	2.290						13.200		0.765		
October 6	3.080	2.610						10.300		0.878		
October 7	3.060	2.610						7.500	60.600	0.983		
October 8	3.230	2.720						0.710	57.800	1.050		
October 9	3.230	2720						11.800	55.200	1.050		1
October 10	3.080	2610						14.200	55.200	1.050		
October 11	3.060	2610						15.700	55.200	1.220		
October 12	3.060	2810						17.300	65.700	1.380		,
October 13	3.060	2.610						17.600	76.200	1.560		
October 14	3.080	2610						18.000	88.700	1.560		
October 15	3.370	2850						17.800		1.580		
October 18	3.370	2850						17.600		1.580		
Octaber 17	3.370	2.860						17.400		1.560		,
October 98	3.230	2.720						17.300		1.580		1
October 19	3.230	2.720						18.700		1.580		
October 20	3.060	2.610						18.500		1.700		
October 21	3.060	2.610						20.200		1.840		
October 22	3.060	2.610						22.700		1.880		1
October 23	2.920	2480						25.100		2120		1
October 24	2.820	2.480						27.500		2.120		
October 25	2.820	2.490						28.200		2.120		
October 28	3.060	2.610						24.800		2.120		
October 27	3.050	2.610						25.800		2120		
October 28	3.230	2720						28.600		2.120		
October 29	3.370	2.660						28.300		2120		
October 30	3.370	2.880						25.800		2480		
October 31	3.540	2070						25.600		2.830		
Total October Discharge	93.370	79.960	0.000	0.000	0.000	0.000	0.000	554.680	512.600	47.458	0.000	

February 1
February 2
February 3
February 4
Februery 5
February 6
February 7
February 8
February 9
February 10
February 11
February 12
February 13
February 14
February 15
Februaty 48
February 17
February 18
February 19
February 20
February 21
Februay 22
February 23
February 24
February 25
February 26
February 17
February 28
February 29
Total Febuary Discharge
Match 1
March 2
March 3
March 4
March 5
March 6
March 7
March 8
March 9
March 10
March 11
March 12
March 13
March 14
March 15
March 18
March 17

11.	STANUME STANAME LATHUDE* LONGITUDE-PARAMETER-											
1		1941	1962	1943	1944	1945	1946	1947	1948	1949	1950	1951
1	March 18											
	Meach 19											
	March 20											
	March 21											
	Mearch 22											
1	March 23											
	March 24											
	March 25			-								
	March 28				3.260							
	March 27				2.970							
1	March 28				2.650							
	March 29				3.110							
	March 30				3.540							
	March 31				3.960							
	Total March Discharge											
	Appis 1	11.300			3.740		1.610	8.720				
	$A^{\text {Aprial }} 2$	14.800			3.540		1.730	8.740				
1	April 3	18.400			3.340		1.840	8.720				
	Aprit 4	22.200			4.420		1.840	7.700				
1	April 5	28.100			5.520		1.840	7.110				
	April 8	30.000			5.470	.	1.730	6.540				
	Appil 7	34.000			5.410		1.640	5.850	6.370			
11	April ${ }^{\text {a }}$	37.700	0.630		5.350		1.530	7.730	6.090			
I	April 9	37.900	8.800		5.870		1.470	9.510	5.800			2.900
	Aprid 10	38.200	10.000		6.570	2.690	1.350	8.000	5.520			3.140
	April 11	38.500	10.200		6.710	2.520	1.500	8.500	5.100	2.860		3340
	Aprit 12	38.800	11.300		6.850	2350	1.610	10.700	4.670	3.230		4.380
!	April 23	41.600	12500		7.220	2.180	1.870	12.800	4.250	3.620		5.40
1 l	Appil 14	44.500	13.800		7.590	2.350	2.150	15.100	2.690	3.860		0.810
	Appis 15	47.300	14.700		7.870	2.550	2.410	18.200	3.340	4.300		8.380
	Aprit 18	48.100	19.800		8.180	2.750	2.630	21.200	3.860	7.380		9.810
$1{ }^{\prime}$	Apris 17	48.700	24.600		8.500	2870	2860	28.300	4300	10.500		11.400
	Aprol 18	48.600	29.400		9.630	3.200	3.280	35.700	4.840	13.600		10.800
	April 19	50.400	31.700		10.800	3.060	3.880	38.500	5.270	16.700		10.400
	April 20	56.400	34.300		11.800	4.760	4.730	37.100	6.060	24.600		10.300
	April 21	62300	38.800		13.200	6.940	5.800	37.900	6.850	25.000		10.300
!	Appoil 22	68.000	39.400		15.800	0.120	6.850	42.200	10.100	22.600		10.700
!	April 23	71.800	35.700		18.500	11.300	8.090	46.400	13.300	21.200		11.000
	April 24	75.800	32.000		21.200	14.200	11.300	53.200	15.300	18.600		12.700
	Apria 25	79.800	28.300		23.800	17.200	24.600	60.000	17.200	18.300		14.300
$1{ }^{\prime}$	April 28	84.100	28.600		26.600	15.800	37.800	72.200	19.200	18.500		14.700
	Appind 27	85.800	28.900		27.700	14.400	38.100	84.700	18.300	20.700	4.590	15.000
1:	Apnis 28	87.500	29.200		28.800	14.500	40.200	96.800	17.500	30.000	5.880	18.400
	Apnil 20	89.200	29.400		29.700	14.500	41.300	83.200	18.100	39.400	7.220	17.700
	Aprit 30	89.500	25.500		30.800	14.600	40.200	89.500	18.700	38.800	8.780	18.100
11	Total Aptil Oistharge	1528.700	505.330	0.000	370.880	168.840	299.680	981.020	222.800	346.060	26.480	220.350
1	May 1	90.000	21.200		31.700	16.500	38.400	83.800	22.800	38.500	10.400	20.500
	May 2	80.600	17.000		31.400	18.500	48.300	78.200	27.000	37.800	13.700	21.100
	May 3	80.800	23.800		31.100	35.400	58.800	74.200	31.100	37.100	19.800	23.300
1	May 4	85.500	30.600		34.000	52.100	88.300	70.200	40.800	36.200	24.100	25.500
1	May 5	79.800	37.400		37.100	52.400	107.000	68.300	50.100	35.700	28.600	39.800
	May 6	74.200	44.500		38.800	52.700	125.000	68.500	65.700	35.100	34.000	54.400
	May 7	67.700	51.000		38.500	53.000	140.000	71.100	87.500	51.000	39.400	66.800
	May 8	61.400	57.500		38.200	57.500	154.000	62.400	84.700	68.800	84.700	85.500
T	May 8	54.800	64.000		33.700	62.000	164.000	89.700	81.600	82.400	50.400	105.000.
	May 10	48.700	73.300		31.100	68.800	171.000	88.800	78.700	88.300	61.700	118.000
	May 11	40.300	82700		31.700	75.000	183.000	83.600	118.000	115.000	74.500	132000
	May 12	50.100	92.300		32300	85.500	161.000	78.700	134.000	118.000	87.200	160.000
		51.000	102.000		33.100	104.000	159.000	71.400	142.000	148.000	119.000	200.000
-	May 14	48.100	88.300		33.700	125.000	148.000	63.700	156.000	144.000	115.000	204.000
1	May 15	45.300	B5. 100		34.500	132.000	134.000	58.800	173.000	139.000	111.000	184.000
	May 18	42500	01.700		42.500	135.000	130.000	54.100	173.000	134.000	101.000	165.000
	May 17	39.800	87.800		48.300	148.000	128.000	50.400	174.000	126.000	92.000	159.000
1	May 18	38.200	63.500		48.100	155.000	116.000	46.700	180.000	118.000	82.100	144.000
	May 19	32600	79.300		48.700	156.000	106.000	43.000	168.000	112000	71.800	128.000
1	May 20	28.800	75.300		42.800	154.000	95.700	43.600	161.000	106.000	68.800	109.000
	May 21	28.800	69.100		38.800	149.000	92.000	44.500	156.000	97.700	81.700	90.000
	May 22	24.800	62.600		34.800	144.000	90.000	47.300	146.000	89.200	56.600	86.800
,	May 23	22.900	56.400		32.300	137.000	83.800	50.100	168.000	81.000	51.800	83.600
1	May 24	21.000	65.100		30.000	131.000	77.600	52.100	187.000	70.800	48.400	75.300
	May 25	20.400	73.600		28.400	125.000	71.800	54.400	183.000	60.600	50.400	60.500
	May 28	18.890	85.500		29.200	118.000	68.400	56.400	187.000	60.000	52.100	60.000
11	May 27	18.300	96.300		29.200	108.000	59.500	53.800	177.000	59.700	53.500	53.200
1	May 28	18.000	85.000		29.400	97.100	55.500	51.500	168.000	63.100	54.800	48.400
11	May 29	18.700	74.200		29.400	85.400	51.500	47.600	153.000	68.800	56.400	45.000
	May 30	18.700	60.500		27.300	93.700	45.800	43.900	137.000	70.500	52.700	43.600
	May 31	18.400	50.500		25.200	77.000	38.800	41.300	129.000	60.600	48.000	40.500
1	Total May Oischarge	1397.700	2102.100	0.000	1069.300	3012.600	3167.200	1914.500	3946.100	2559.000	1634.800	2838.200

\prod	STANUM: StaNAME= LATIUDE= LOMGITUDE: PARAMETER=								.			
1		1941	1942	1943	1944	1945	1946	4947	1948	1949	1950	1951
,	August 17				1.010	0.891	4.590	8.880	10.800	5.850	4.670	9.290
	August 18				1.020	0.946	4.260	6.370	9.290	5.720	4.860	8.580
	Augua 19				1.010	0.898	3.960	8.030	8.440	5.520	4.820	7.870
	Aupust 20				1.000	0.850	3.790	5.680	7.590	5.320	4.280	7.160
0	August 21				0.091	0.835	3.620	5.480	7.330	5.150	3.240	6.460
	August 22				0.820	0.821	3.400	5.270	7.110	4.860	3.570	5.750
	August 23				0.850	0.793	3.140	5.040	8. 850	5.240	3.310	5.040
	August 24				0.783	0.765	3.000	4.780	6.140	5.520	3.060	4.870
	Augurt 25				0.738	0.718	2.830	4.530	5.440	6.030	2.970	4.670
	August 26				0.725	0.671	2.690	4.360	5.040	6.540	2.890	4.110
1	August 27				0.716	0.623	2.550	4.180	4.670	6.290	2.690	3.510
	August 28				0.708	0.560	2.410	4.080	4.760	6.030	2.480	3.400
	August 29				0.880	0.541	2270	3.950	4.840	5.780	2.440	3.260
[1	August 30				0.851	0.504	2120	3.860	4.830	5.520	2.350	3.170
	August 31				0.583	0.484	1.850	3.860	5.100	5.320	2.270	3.060
11	Total August Discharge	0.000	0.000	0.000	37.304	43.121	199.350	236.570	314.130	200.930	104.230	165.550
	September 1				0.515	0.447	1.780	3.860	5.270	5.100	2.550	2.940
	September 2				0.473	0.430	1.610	3.960	5.440	4.930	2.830	2.820
1	September 3				0.428	0.413	1.530	3.860	5.350	4.760	2720	2.850
	September 4				0.382	0.478	1.420	4.130	5.070	4.590	2.610	2.690
	September 5				0.337	0.541	1.380	4.300	4.810	4.390	2.480	2.480
	September 6				0.374	0.566	1.350	4.280	4.530	4.110	2.520	2270
	Seplember 7				0.413	0.505	1.270	4.250	4.280	3.820	2.550	2.040
!	September 8				0.388	0.575	1.160	4.220	4.020	3.620	2.280	1.700
	September 8				0.362	0.558	1.100	4.180	3.820	3.400	2.040	1.330
	September 10				0.326	0.541	1.050	3.960	3.620	3.280	1.830	0.863
[1	September 11				0.292	0.532	0.991	3.910	3.450	3.170	1.810	0.834
	September 12				0.272	0.524	0.863	3.820	3.310	3.060	1.640	0.908
;	Seplember 13				0.252	0.515	0.834	3.960	3.140	2.240	1.470	0.878
	Seplember 14				0.294	0.515	0.891	4.130	3.570	3.000	1.420	0.878
	September 15				0.337	0.480	1.050	4.300	3.060	3.050	1.390	0.850
	September 16				0.564	0.464	1.100	4.930	4.450	3.570	1.360	0.850
	September 17				0.790	0.439	1.090	5.520	4.930	3.710	1.300	0.850
I	September 18				0.991	0.456	1.080	5.350	4.700	3.880	1.220	0.765
	September 19				1.420	0.473	1.050	5.180	4.470	4.020	1.130	0.680
	September 20				1.840	0.480	1.020	4.880	4.250	3.780	1.090	0.651
	September 21				2.250	0.515	1.080	4.760	3.940	3.570	1.020	0.623
,	Septembet 22				2.460	0.524	1.050	4.530	3.620	3.480	1.050	0.680
	September 23				4.050	0.532	1.080	4.160	3.450	3.400	1.130	0.736
	September 24				5.860	0.541	1.080	4.080	3.260	3.310	1.050	0.783
	September 25				7.360			3.860	3.770	3.200	0.863	0.793
	September 26				7.480	0.515	1.100	3.70	3.060	3.110	1.000	0.621
11	September 27				7.580	0.515	1.130	3.540	2.970	2.870	1.080	0.621
	Seprember 28				12.500	0.515	1.270	3.340	3.000	2.830	1.020	0.850
	September 29				17.300	0.515	1.400	3.140	3.060	2800	0.834	0.850
					17.800						0.850	
,	Total September Dischar	0.000	0.000	0.000	95.400	45.254	35.709	125.660	119.060	107.650	48.497	38.292
	October 1				18.200	0.515	0.991	2.970	2.850	2890	0.821	
											0.753	
[]	October 3				18.500	0.595	1.840	3.450	2.860	3.080	0.821	
	October 4				20.200	0.823	1.730	3.080	2.860	3.080	0.850	
	October 5				16.800	0.851	1.700	4.780	3.030	3.080	1.700	
	October 6				17.500	0.689	1.670	5.520	3.200	3.080	1.610	
	October 7				16.200	0.745	1.640	5.350	3.370	3.060	1.530	
	October 8				16.100	0.783	1.590	5.180	3.540	3.080	1.610	
	October 9				14.000	0.820	1.560	5.010	3.710	3.090	1.700	
	October 10				13.000	1.050	1.530	4.810	3.850	3.110	1.780	
	October 11				12.000	1.080	1.470	4.590	4.020	3.230	1.870	
	Otober 12				11.200	1.100	1.470	5.720	3.820	3.340	4.830	
	October 13				10.400	1.210	1.470	6.850	3.620	3.370	1.880	
	Otober 14				0.660	1.310	1.470	7.840	3.450	3.400	1.850	
	October 15				8.880	1.420	1.470	8.330	3.260	3.450	1.950	
	October 16				8.270	1.440	1.470	8.380	3.230	3.480	1.830	
	October 17				7.870	1.470	1.470	7.830	3.200	3.510	1.870	
,	October 18				7.480	1.410	1.420	7.700	3.140	3.500	1.810	
	October 19				7.080	1.350	1.420	7.480	3.110	3.680	1.470	
	October 20				6.680	1.320	1.300	7.250	3.090	3.230	1.130	
	October 21				6.400	1.290	1.300	7.100	3.280	2.780	1.250	
	October 22				6.080	1.280	1.440	7.160	3.450	3.170	1.380	
11	October 23				5.780	1.390	1.500	7.760	3.510	3.570	1.470	
	October 24				5.810	1.530	1.580	8.380	3.570	3.960	1.580	
	October 25				5.440	1.500	1.580	10.400	3.620	4.300	1.530	
	October 26				5.300	1.470	1.530	12.500	3.540	4.390	1.470	
11	Octaber 27				5.180	1.400	1.500	14.600	3.450	4.760	1.440	
$\lfloor 1$	October 28				5.150	1.330	1.470	14.700	3.250	5.100	1.420	
	October 29				5.130	1.260	1.500	14.700	3.140	5.380	1.270	
	Octaber 30				5.100	1.330	1.560	14.400	2970	5.660	1.130	
	Oetober 31				5.350	1.400	1.380	14.000	2800	5.950	1.100	
θ	Total October Discharge	0.000	0.000	0.000	324.470	35.416	46.531	242.340	102.690	113.760	46.135	0.000

STANUM												
STANAME-												
LATIUDE-												
LONGITUDE												
PARAMETER=												
	1941	1942	1943	1944	1945	1946	1947	1949	1949	1930	1951	
November 1	9.910			5.640	1.470	1.180	13.500	2.830	6.650	1.100		
November 2	10.200			5.680	1.530	1.370	13.800	2.860	7.360	1.060		1
November 3	10.500			5.760	4.220	'1.590	12.600	2.690	8.070	1.530		
November 4	10.800			5.610	6.940	1.840	11.000	2.600	8.830	1.880		
November 5	11.000			5.440	0.630	1.810	11.200	2.630	9.570	2.410		1
November 8	11.300			5.270	9.970	1.780	10.500	2.610	10.500	2.830		
November 7	11.600			5.100	10.200	1.810	10.600	2.810	- 11.500	3.110		1
Norember 8	11.800		1.420	4.830	12.500	1.840	10.400	2.580	12.800	3.400		
November 9	12.300		1.440	4.760	14.700	1.640	10.300	2.480	14.300	4.330		
November 10	12.800		1.470	4.590		1.440	10.100	2.410	14.200	5.270		
November 11	13.300		1.500	4.260		1.280	9.740	2.440	14.200			
November 12	13.600		1.530	3.660		1.470	9.400	2.460	13.400			
Novomber 13	14.000		1.470	3.620		1.670	9.060	2.460	12.700			
November 14	14.400		1.440	3.860		2.100	8.720	2.460	11.000			11
November 15	14.700		1.420	4.300		2520	8.580	2.460	11.100			
November 16	14.300		1.360	4.180			8.410		10.300			1
November 17	13.800		1.350	4.110			8.270		10.600			
November 18	13.300		1.180	4,330			8.180		11.000			
Nowember 19	13.300		1.050	4.560			8.100		14.000			1
Nowember 20	13.300		1.300	4.790			8.010		11.000			
Novembet 21	13.300		1.560	5.010			7.830		11.000			,
Nowember 22	13.300		1.560	5.270					11.000			
November 23			1.530	5.520					10.700			
November 24			1.530	4.880					10.300			
November 25			1.760	4.470					9.970			
November 28			1.850	4.050					9.830			
November 27			1.800	3.620					9.680			
November 28			1.840	5.010					9.570			
November 29			1.780	6.370					0.400			
November 30			2380	7.050					0.200			
Total November Dischar	276.910	0.000	35.750	146.230	71.100	25.320	209.600	36.250	321.730	27.040	0.000	
December 1			2.970	7.700					8.000			
December 2			2.550	7.220								
December 3			2.120	6.740								
December 4			1.830	6.290								
December 5			1.700	7.110								
December 8			1.470	7.830								
Docember 7			2.100									
December 8			2.650									
December 9			2.820									
December 10			3.140									
December 11			3.170									
December 12			3.230									
December 13			3.260									
December 14												
December 15												
December 16												
December 17												
December 18												
December 19												
December 20												
December 21												
December 22												
December 23												
December 24												
December 25												
December 26												
December 27												
December 28												
December 29												
December 30												
December 31												

AMETER=												
	1971	1980	1881	1882	1983	1984	1985	4806	1987	1888	1909	0
Masch 18	1.270											
March 18	1.270											
March 20	1.270							3.560				
March 21	1.270											1
March 22	1.270											
March 23	1.270											
March 24	1.250											
March 25	1.250											
March 26	1.250											
March 27	1.230											
March 28	1.230											
March 29	1.230											
Merch 30	1.250											
March 31	1.260											
Total Mareh Discharge	40.870											
April 1	1.260		6.460	0.520	1.800	7.350	4.050	4.400	5.100			
April 2	1.270		6.290	0.530	1.850	7.800	4.200	4.410	5.740			
Apon 3	1.300		6.200	0.540	2020	8.150	4.350	4.700	7.290			
Aprit 4	1.320		6.120	0.550	2.110	8.550	4.500	4.850	8.150			
Appil 5	1.350		5.970	0.560	2230	8.500	4.750	5.000	10.000			
Aprit 6	1.370		5.800	0.580	2.360	8.450	5.200	5.200	11.800			
April 7	1.400		5.690	0.610	2.650	8.710	0.600	5.400	12.800			
April B	1.430		5.610	0.640	2.850	8.390	8.340	6.000	17.600			
April 9	1.470	2.920	5.440	0.670	3.250	7.800	11.700	7.200	22.200)
April 10	1.510	3.060	5.300	0.700	3.600	7.560	11.600	0.600	23.800			
Apmil 11	1.560	3.260	5.150	0.600	3.820	7.750	14.800	6.000	24.600			
Aprit 12	1.600	3.510	5.070	0.900	4.000	8.010	14.000	5.500	24.600			
April 13	1.640	3.830	4.770	1.000	4.340	8.200	18.700	5.350	24.700			-
April 14	1.680	5.010	5.350	1.100	4.530	8.650	21.500	5.350	27.800			
April 15	1.760	6.240	5.850	1.200	5.410	10.800	18.100	5.650	29.600			
April 16	1.810	7.730	6.810	1.350	5.880	13.000	21.200	6.670	28.600			1
Aprit 17	1.870	10.100	7.450	1.540	8.880	18.500	21.500	7.870	30.600			
Aprit 18	1.950	12.000	8.570	1.080	8.600	16.800	20.100	10.300	28.400			1
April 19	2.010	85.300	9.600	1.900	12.600	17.800	18.800	12.300	25.500			
Apsil 20	2.120	15.600	10.600	2.540	13.300	27.000	18.500	17.400	24.500			
April 21	2.220	16.300	12.900	3.200	17.400	24.100	18.500	22.600	25.400			1
Apris 22	2.440	17.000	15.700	3700	21.800	24.700	16.800	20.400	25.300			
April 23	2.690	18.700	18.300	4.200	23.300	28.800	15.800	18.100	25.500			,
April 24	3.260	21.500	28.800	4.600	28.800	25.200	14.300	17.400	27.200			
April 25	3.680	24.600	31.500	5.000	40.900	23.700	14.400	17.000	27.000			
Apan 26	4.530	28.600	29.300	5.600	44.500	23.500	14.700	15.700	27.300			
April 27	5.660	33.400	30.100	6.600	51.600	23.300	15.000	16.400	27.600			
April 28	6.170	38.200	31.100	8.200	56.800	22700	14.200	17.200	27.900	68.800		
April 29	6.200	43.400	33.700	9.740	67.200	22.200	14.100	17.300	31.100			
Aprit 30	6.230	45.200	40.300	10800	75.300	24.600	13.800	17.200	36.500			
Total April Discharge	74.760	373.450	399.850	81.550	525.190	450.700	404.780	316.550	672.380	60.800	0.000	I
May 1	9.810	48.600	48.800	12.400	75.600	29.800	13.800	16.200	58.900	80.000	140.000	
May 2	14.200	56.600	53.000	14.200	75.600	33.400	18.200	18.000	84.300	72.300	134.000	
May 3	22.100	58.000	51.500	16.000	71.700	34.600	24.800	18.300	88.100	65.700	143.000	1
May 4	32.600	53.800	51.800	17.100	68.300	33.200	54.300	20.100	91.800	62.800	157.000	
May 5	48.100	51.600	58.100	21.200	65.600	32.400	55.400	21.800	89.800	04.100	183.000	1
May 6	79.300	67.800	68.800	24.800	64.000	32200	50.700	26.000	87.200	62.600	159.000	
May 7	85.500	80.300	75.200	31.300	62.500	32.000	51.100	30.800	91.600	65.700	157.000	
May 8	89.800	82.700	87.000	34.600	72.400	42.700	51.600	32.400	106.000	73.000	150.000	
May 9	102.000	80,600	89.400	48.200	68.400	60.700	52.000	34.100	113.000	81.100	138.000	
May 10	85.400	85.500	108.000	53.800	04.000	59.000	50.400	32.300	107.000	88.800	125.000	
May 11	87.800	85.800	97.900	59.800	56.200	55.700	46.300	32.500	102.000	84.800	105.000	
May 12	102.000	109.000	92.000	74.400	52.700	55.300	42.200	32.600	97.600	108.000	89.800	
May 13	122.000	104.000	93.500	79.300	52.300	60.800	41.700	29.300	94.900	107.000	73.600	
May 14	130.000	97.200	107.000	80.100	53.300	66.300	43.000	28.000	75.800	124.000	67.000	
May 15	121.000	67.400	125.000	82.200	52.800	71.700	46.100	26.700	66.300	100.000	60.700	
May 16	109.000	82700	134.000	85.200	48.600	80.500	55.600	27.800	54.800	85.300	61.400	
May 17	93.200	68.400	133.000	86.200	45.900	98.200	78.400	229.000	50.600	72.100	50.200	1
May 18	87.200	62600	122.000	113.000	43.200	83.400	108.000	35.200	46.400	61.900	01.200	
May 19	88.100	48.800	114.000	124.000	41.200	97.300	138.000	41.600	44.000	58.400	05. 200	I
May 20	83.200	44.500	112.000	114.000	37.100	100.000	167.000	23.400	45.800	65.700	58.600	
May 21	96.300	40.200	110.000	107.000	35.700	94.800	873.000	58.300	48.000	44.300	51.800	
May 22	301.000	33.800	103.000	109.000	31.800	86.200	164.000	68.000	52.500	44.700	47.500	
May 23	109.000	31.800	104.000	B0.600	28.200	73.500	153.000	58.600	58.100	45.400	45.800	,
May 24	125.000	30.600	94.800	86.300	25.600	68.600	154.000	56.900	56.700	45.300	42.400	3
May 25	108.000	29.200	101.000	80.400	23.800	64.800	180.000	69.300	57.400	40.400	39.100	
May 26	85.400	28.100	181.000	85.500	21.100	57.100	148.000	88.600 .	60.600	39.200	38.400	
May 27	88.100	25.600	102.000	79.900	10.300	55.800	140.000	102000	58.600	39.300	37.200	,
May 28	88.100	24.700	85.400	79.700	18.500	53.700	123.000	109.000	57.500	43.300	35.300	!
May 29	83.300	23.100	76.100	82.000	15.800	52.800	104.000	109.000	57.100	47.000	33.400	
May 30	79.300	20.000	71.100	88.800	15.000	51.600	90.700	116.000	52.100	50.800	33.400	
May 31	73.800	19.800	63.700	117.000	14.700	47.700	79.600	115.000	47.100	43.100	33.800	1
Total May Discharge	2855.810	1765.890	2863.100	2193.100	1422.500	1874.200	2673.900	1807.900	2193.800	2072.400	2610.000	

11.	STANUM= STANARE* LATTUDE: LONGTTUDE PARAMETER											
$T 1$		1971	1980	1981	1982	1983	1904	1985	1986	1937	1988	1989
	Jure 1	69.400	19.700	56.100	157.000	14.000	42.800	68.100	110.000	42.100	38.500	31.800
	Jume 2	69.100	18.500	45.300	175.000	13.400	39.400	61.500	105.000	34.500	34.600	28.800
	June 3	71.100	17.800	36.700	168.000	13.300	41.500	55.000	88.100	32.800	32.400	26.200
11	June 4	68.200	17.000	37.600	146.000	13.300	43.500	49.000	77.700	30.000	29.700	23.600
	Juse 5	63.100	16.300	34.500	119.000	13.100	45.100	44.800	71.100	32.200	28.800	21.000
	June 6	68.000	15.100	33.100	83.300	13.100	47.200	40.500	67.300	33.400	29.800	18.800
	Jure 7	58.000	14.800	32.300	81.700	16.800	47.400	34.400	68.600	30.300	42.000	16.800
	June 8	63.100	14.400	28.300	65.400	15.400	46.200	38.000	58.400	27.200	60.700	15.600
$1]$	June 9	62.000	13.000	27.800	57.000	15.200	45.400	27.600	50.800	23.800	118.000	14.600
	June 10	56.400	12.800	25.300	53.800	18.000	42.100	24.100	44.000	21.500	111.000	12.800
	June 11	51.300	12.600	31.100	53.200	19.100	38.700	22.200	39.300	21.600	92.500	11.800
	June 12	48.100	13.300	39.800	41.500	18.000	37.600	20.600	35.300	20.200	74.000	10.800
	June 13	52.700	13.300	44.100	38.100	15.700	32.000	20.400	31.800	18.000	62.700	10.800
$\lceil 1$	June 14	59.200	11.500	40.000	35.300	14.400	30.400	20.500	28.300	16.600	52.400	10.400
	June 15	55.200	11.000	35.700	30.800	13.700	28.600	21.000	85.700	15.300	43.700	8.080
	June 18	54.400	9.740	31.100	23.800	12800	27.000	19.800	115.000	14.500	38.400	8.280
	Junt 17	56.600	9.500	28.500	23.000	13.800	25.800	18.600	131.000	13.200	38.000	7.520
	June 18	57.200	8.910	27.800	22.600	13.300	24.600	14.800	120.000	11.700	35.500	6.850
1	Juna to	58.000	7.890	28.400	18.600	12.900	20.700	13.400	125.000	11.500	32.000	6.480
	June 20	58.000	7.230	27.000	17.100	12.700	17.100	12.500	103.000	10.500	28.600	6.380
	Junt 21	52.700	6.240	24.900	28.200	12.300	14.800	12.300	08.000	9.560	25.800	5.750
	June 22	48.300	5.950	23.700	14.800	12.000	14.400	12.000	69.200	8.620	25.100	5.700
$\{$	June 23	50.400	5.780	23.800	13.800	11.800	14.000	16.800	30.400	7.880	22.500	5.350
	June 24	56.800	5.610	22.000	12.100	13.200	13.500	20.800	56.600	6.850	20.600	4.880
	June 25	70.800	5.440	19.800	11.100	14.000	12.700	21.300	45.800	5.890	18.800	4.400
	June 26	70.800	6.430	18.700	10.400	17.700	12.200	18.100	40.000	5.850	17.500	3.910
	June 27	68.000	6.810	15.800	13.200	22.100	11.400	15.800	30.400	4.880	45.800	3.950
$\{$	June 28	66.000	6.810	14.000	14.300	20.900	11.700	14.300	28.800	4.150	16.500	4.030
	June 29	57.800	6.810	13.300	23.800	18.100	12.100	17.800	30.500	3.430	15.500	4.380
	June 30	52.400	5.850	13.000	16.800	18.600	12.300	21.000	24.700	3.160	13.800	4.310
	Total June Discharge	1793.900	326.600	888.400	1566.400	450.900	852.200	788.100	2005.900	520.370	1218.500	345,300
! '	Juty 1	53.000	4.360	10.700	14.300	18.400	12.400	21.700	25.600	3.070	12.700	4.880
	Juty 2	53.000	5.350	8.860	\$3.200	17.200	12.100	18.600	23.600	3.010	11.600	5.300
$1 i$	Juty 3	53.000	5.010	9.150	15.800	15.700	10.600	16.100	21.200	2.470	11.500	5.730
	Juty 4	53.000	7.120	8.570	14.300	14.300	10.400	13.900	19.800	2.180	11.400	5.630
11	July 5	53.000	13.000	7.230	12.800	: 13.400	10.700	17.500	18.500	2.190	11.200	5.020
	July 6	53.200	15.700	8.910	11.300	12.300	11.600	18.600	16.400	2.200	10.600	5.230
	July 7	53.500	13.300	8.810	11.500	20.500	12.300	16.700	14.200	2.220	8.020	5.320
	July 8	53.500	11.200	6.330	11.200	25.800	12.700	14.700	12.700	2370	6.270	5.870
	July 9	60.300	10.500	6.240	10.000	23.000	11.800	12.800	11.600	2.830	7.480	5.850
11	July 10	63.100	10.300	5.950	8.850	21.500	10.500	11.600	10.400	2690	7.100	6.130
	July 19	68.000	10.200	5.610	8.880	20.800	9.160	10.800	10.300	2.630	6.740	5.710
	Jutr 12	59.500	9.980	5.100	8.420	20.800	8.450	10.700	10.200	2.530	6.060	5.220
	Juty 13	60.000	8.570	4.520	7.630	21.400	8.010	10.600	9.280	2.420	5.720	4.820
	July 14	48.600	8.100	4.280	7.820	20.500	8.070	9.410	8.330	1.720	5.240	4.570
$[1$	July 15	42.500	7.770	3.760	12.800	18.500	9.350	8.200	7.760	1.470	5.040	4.085
	July 16	38.200	7.340	3.430	13.200	18.800	6.340	7.510	7.250	1.500	4.390	3.820
	July 17	31.700	6.720	3.220	12.000	18.200	5.560	6.830	7.040	1.320	4.100	3.570
	July 18	28.900	4.830	3.110	10.700	17.700	5.040	8.220	6.550	1.160	3.810	3.180
1	July 19	25.300	4.280	2.450	0.540	17.300	4.940	5.340	5.890	1.160	3.740	2.950
	Juty 20	22.500	5.100	1.780	8.480	17.000	4.730	4.810	5.230	1.170	3.260	3.250
	July 21	19.800	5.350	1.870	12.000	16.800	4.580	4.150	4.530	1.280	2.780	2.940
	July 22	17.400	4,800	2400	16.000	15.400	4.130	3.700	4.380	1.220	2660	2.620
	July 23	15.200	4.360	2.450	20.100	14.200	3.670	3.740	4.190	1.170	2830	2.480
$]$	July 24	13.600	5.180	1.850	18.500	13.700	3.290	3.710	3.810	1.150	2.740	2.340
	July 25	12.300	4.680	1.870	14.800	14.000	3.170	3.670	3.540	8.180	2.870	2.220
	July 26	10.300	4.280	1.830	12.300	13.700	2.350	3.630	3.260	1.310	2.690	1.960
	July 27	9.430	4.050	1.810	10.600	13.200	1.860	3.590	3.010	8.430	2450	2430
	July 28	8.210	3.830	1.610	9.610	12.800	1.820	3.550	2.770	2050	2400	2860
11	July 29	4.380	4.130	1.420	7.760	12.200	1.840	3.510	2.590	2440	2.240	2.450
	Juty 30	6.540	2.830	1.530	7.180	11.300	1.770	1.940	2.560	2.130	2.180	2.380
	July 31	7.830	2.800	1.480	6.830	10.700	1.630	1.800	2.530	2.020	2.110	2.300
	Total Juiy Discharge	1098.700	215.030	135.310	358.780	522.400	215.160	278.980	289.010	59.500	176.770	123.340
11	August 1	8. 830	1.120	1.420	6.450	10.000	1.410	1.720	2.270	1.890	2.050	1.980
	August 2	10.800	2.860	1.340	5.350	8.520	1.360	1.530	2.240	1.820	1.830	1.820
	August 3	12.800	1.810	1.380	4.600	7.860	1.380	1.510	2.210	1.750	1.850	1.700
	August 4	14.700	1.500	1.260	3.240	7.710	1.410	1.350	2.180	1.670	1.520	1.650
\lfloor	August 5	18.400	1.630	1.220	4.320	7.460	1.590	1.280	1.800	1.640	1.470	1.450
	August 6	13.700	1.300	1.120	4.200	6.750	1.770	1.230	1.650	1.370	1.450	1.320
	August 7	10.300	1.260	1.070	4.280	6.470	2.150	1.570	1.690	1.180	1.480	1.200
	August 8	8.070	1.140	0.946	4.000	6.180	1.850	2.480	1.500	1.080	1.520	1.160
	August 9	5.860	1.080	0.912	3.880	5.380	1.800	3.310	1.410	1.050	1.520	1.000
$\lfloor!$	August to	4.390	1.100	0.821	3.840	5.360	1.760	3.600	1.260	1.010	1.450	1.030
	Angust 11	3.910	1.030	0.736	3.320	5.360	1.570	3.020	1.100	0.987	1.420	1.140
	August 12	3.780	1.040	0.623	3.160	3.860	1.350	2.450	1.000	1.010	8.400	1.130
	August 13	3.740	1.060	0.544	3.120	3.800	1.140	2340	0.847	1.100	1.400	1.150
	August 14	3.880	1.180	0.425	3.040	3.480	1.180	1.810	0.836	1.340	1.350	1.470
	August 15	3.650	1.250	0.283	3.000	3.450	1.380	1.340	0.803	1.160	1.310	1.150
	August 16	3.510	1.330	0.258	2.860	3.360	1.420	1.200	0.792	1.120	1.230	1.120

LATTUDE	staname											
LONGTUDE-												
PARAMETER=												
	1971	1980	1989	1892	1883	1994	1983	1886	1987	1588	1989	[
August 17	3.200	1.420	0.232	3.040	3.270	1.540	1.190	0.809	1.080	1.040	1.300	
Auguax 18	3.080	1.460	0.215	3.000	3.010	1.620	1.110	0.825	1.160	2.380	1.360	
Augure 19	3.060	1.000	0.178	3.040	2980	1.710	1.100	0.748	1.220	3.800	1.310	
August 20	3.060	0.810	0.183	2.680	2.940	1.800	1.070	0.649	1.680	3.840	1.280	
August 21	2.940	0.651	0.224	2580	2.820	1.540	0.723	0.627	1.780	3.770	1.260	
August 22	2.760	0.634	0.268	2.280	2.620	1.840	0.699	0.649	2.070	3.720	1.830	
August 23	2.680	0.783	0.368	2010	2.480	3.380	0.672	0.583	1.080	3.150	3.120	
August 24	2.570	0.878	0.382	1.850	2.060	3.530	0.660	0.572	1.840	2.880	3.020	
Augunt 25	2.410	0.785	1.180	1.710	9.500	3.700	0.681	0.561	1.180	2.640	2.710	
Auguse 28	2510	0.698	1.300	1.850	1.350	3.620	0.702	0.545	1.060	2.380	2710	
August 27	2.620	0.665	1.340	1.620	1.330	3.460	0.604	0.515	1.050	2.200	2.870	
Auguse 28	2.460	0.779	1.260	1.530	1.250	3.330	0.675	0.455	1.030	2000	3040	
August 29	2280	0.083	0.046	1.380	1.180	3110	0.669	0.335	1.000	1.760	2950	
August 30	2.100	1.180	0.821	1.590	0.890	3.040	0.633	0.360	0.950	1.680	2.020	
August 31	2380	1.300	0.544	1.500	0.792	2930	0.821	0.364	0.945	1.580	2380	
Total August Diseharge	169.120	33.832	23.745	94.300	123.862	64.970	43.529	32.335	41.22	64.080	80.950	
Sepramber 1	2510	1.500	0.510	0.850	0.020	2880	0.620	0.368	0.945	1.430	2050	
September 2	3.340	5.440	0.459	0.780	0.960	2730	0.618	0.370	0.856	1.360	2.110	
September 3	4.380	8.100	0.578	0.860	1.000	2600	0.606	0.368	0.622	1.290	1.880	
September 4	4.450	13.300	0.544	1.230	8.120	2.550	0.606	0.388	0.817	1.210	1.660	
September 5	4.530	12.800	0.476	1.170	1.400	2.600	0.642	0.525	0.870	1.140	1.640	
September 6	4.590	12.800	0.459	1.650	1.400	3.010	0.648	0.545	0.818	1.110	1.570	
September 7	4.640	7.660	0.459	1.860	1.430	3.560	0.669	0.544	0.785	1.080	1.430	
September 8	4.640	5.010	0.510	2.070	1.450	4.180	0.686	0.543	0.745	1.000	1.320	
September 9	4.390	5.440	0.478	2.440	1.470	5.420	0.723	0.567	0.725	1.090	1.150	
September 10	4.160	5.010	0.459	3.080	1.400	8.660	0.768	0.578	0.685	1.070	1.130	
Soptember 11	4.220	4.830	0.411	3.160	1.360	7.560	0.782	0.578	0.655	1.020	1.100	11
September 12	4.280	4.360	0.354	3.240	1.260	8.130	0.888	0.548	0.638	0.881	0.985	
September 13	4.300	3.400	0.382	3.320	1.300	8.520	1.430	0.518	0.628	0.037	0.898	11
September 14	4.160	3000	0.388	3.280	1.320	8.330	1.620	0.513	0.614	0.015	0.877	
September 15	4.160	2800	0.398	3.240	1.360	7.690	2460	0.508	0.606	0.854	0.857	
September 18	3.940	2740	0.425	3.040	1.870	7.330	3.280	0.543	0.638	0.845	0.868	!
September 17	3.710	2740	0.425	2.820	2220	6.880	3.280	0.548	0.650	0.838	0.910	,
September 18	3.450	2.440	0.382	2.880	2.240	6.280	3.150	0.556	0.700	0.000	0.049	1
September 19	3.200	2.320	0.340	2.560	2250	5.750	3.040	0.548	0.720	0.852	0.880	
September 20	3.000	2.500	0.311	2.400	2.240	5.580	2.830	0.528	0.888	1.110	0.874	
September 21	2.830	2.800	0.275	2.340	2.160	5.310	2.640	0.587	1.010	1.010	0.841	,
September 22	2720	3.340	0.283	1.710	2.040	5.100	2.460	0.743	1.060	0.898	0.832	
Soptembes 23	2.570	3.400	0.326	1.740	1.880	4.860	2.280	0.820	1.160	0.806	0.813	
September 24	3.060	3.270	0.354	1.770	1.710	4.830	2.220	1.080	1.070	0.979	0.785	
September 25	3.860	3.270	0.354	1.70	1.470	4.200	2.000	2.590	1.050	0.690	0.774	!
Septembet 28	5.100	3470	0.328	1.740	1.600	4.060	1.840	2.710	0.856	0.009	0.755	
September 27	6.540	3.830	0.311	1.740	1.860	2.890	1.830	2.500	0.808	1.040	0.680	(1)
September 28	6.770	3.610	0.311	1.770	1.610	3.720	1.680	2500	0.880	1.470	0.676	
September 29	7.360	3.470	0.283	1.710	1.560	3.470	1.570	2.420	0.840	5.310	0.817	
September 30	7.500	3.270	0.268	2010	1.520	3.220	1.460	2.870	0.830	8.250	0.828	
Total Sepsember Dischar	128.470	141.420	11.841	c4.240	47.310	149.900	40.914	29.094	24.809	43255	33.020	
October 1	6.650						1.430	3.620	0.810	7.820	0.835	
October 2	7.820						1.360	4.210	0.780	0.400	0.830	
October 3	9.120						1.320	6.160	0.780	5.710	0.830)
October 4	10.500						1.270	6.340	0.805	5.030	0.825	
October 5	11.800						1.220	5.800	0.820	4.730	0.801	
October 8	14.000						1.170	5.250	0.830	4.360	0.012	
October 7	13.300						1.130	4.800	0.840	3.980	0.033	
October 8	12.500		1.770				1.170	4.830	0.850	3.850	0.040	
October 9	11.800						1.140	4480	0.850	3.350	0.94	\]
October 10	10.800						1.200	4.380	0.850	3.170	0.865	
Ortober 11	10.200						1.210	4.020	0.840	3.110	0.945	
October 12	9.120						2100	3.880	0.830	2030	0.056	1
Octaber 13	0.120						2680	3.730	0.800	3.050	0.887	
Catober 14	0.120						3.220	3.430	0.780	3.120	1.250	1
Octaber 15	8.810						3.370	3.350	0.820	3.420	1.250	
Otaber 16	8.180						4.250	3.160	0.810	3.220	1.240	
October 17	7.360						4.440	3.130	0.800	3.150	1.210	T
Octaber 18	6.880						4.890	2.900	0.785	3.090	1.280	[
October 18	6.430						5.150	2.870	0.780	3.050	2.270	
Octaber 20	6.310						5.180	2.810	0.820	2000	2.380	
Octaber 21	3.800						5.210	2.750	0.780	3.310	2.510	
Octaber 22	6.090						5.150	2.750	0.760	4.630	2.420	!
October 23	5.950						5.210	2.720	0.740	4.800	2.330	ti
Octuber 24	5.720						5.040	2.750	0.740	4.830	2.150	
October 25	5.840						4.940	2.840	0.765	5.230	2.240	
Octaber 28	4.880						4.380	2.900	0.790	5.330	2510	$!$
October 27	5.470						4.150	2.860	0.870	5.370	2.600	I
Otaber 28	5.890						3810	3.580	0.911	4.880	2.880	1
Octaber 29	5.240						3.860	3.810	2240	3.880	2.590	
October 30	5.040						3.580	3.830	7.220	4.500	2.480	
October 31	4.760						3.670	3.750	8.590	4.830	2.450	[
Total Octuber Discharge	250.500	0.000	1.770	0.000	0.000	0.000	98.170	118.020	41.736	131.980	49.768	\square

							-					
$[1$												
	Stanusfe											
17	STANAME= LATITUDE= LONGITUDE PARAMETER=											
		1971	1880	1981	1982	1983	1984	1985	1986	1997	1989	1889
$]$	November 1	4.560						3.620	3.410	8.870	5.130	2.360
	November 2	4.560						3370	3.350	8.150	5470	2360
	November 3	4.560						3.330	3.280	. 6.940	5.710	2.330
	November 4	4.560						3.290	3.540	- 6.520	5.800	2.980
$\{1$	November 5	4.560						3.150	3.870	5.860	6.200	3530
	Novernber 8	4.560						3.000	3.750	5.800	6.430	4.160
	Novernber 7	4.550						2.800	3520	7.220	6.970	3.840
	Nowember 8	4.560								14.500	6.730	3.800
	November θ	5.720								21.800	8.610	4560
13	November 10	4.980								22.700	6.670	5000
	November 11	4.560								21.800	6.610	4.480
	November 12	4.220								18.400	8.130	5.080
	November 13	3.650								16.700	5.300	5.680
11	November 14	3.050									4.880	4.680
	November 15	2.550									4.530	6.000
	November 16	2.180									4.530	4.520
	November 17	2.830									4.480	4.690
	Nowember 18	3.980									4.780	6.270
11	Nowember 19	5.070									4.730	8.280
	Nowember 20	4.900									4.680	10.500
	November 21	4.810									4.630	13.200
	November 22	4.730									4.680	13.500
	November 23	13.500										15.000
$1!$	November 24	11.100										13.900
	Novernber 25	11.800										18.500
	November 26	11.400										16.500
	November 27	11.000										16.500
	November 28	10.300										10.700
$[]$	November 29	9.770										8.340
	November 30	9.230										7.640
	Total November Oischar	181.040	0.000	0.000	0.000	0.000	0.000	22.680	24.760	165.380	121.080	226.920
$]$	December 1	8.750										
	December 2	8.010										
	December 3	7.670										
	December 4	7.390										
	December 5	6.970										
$[]$		8.570									.	
	December 7	6.290										
	December 8	6.000										
	December 8	5.720										
11	December 10	5.470										
	December 12	5.270										
	December 12	5.100										
	December 13	4.800										
	December 14	4.730										
(1)	December 15	4.530										
	December 18	4.390										
	December 17	4.250										
	December 18	4.160										
	December 19	4.050										
11	December 20	3.940										
	December 21	3.820										
	December 22	3.740										
	December 23	3.650										
	December 24	3.570										
11	December 25	3.510										
	December 26	3.450										
	December 27	3.400										
	December 28	3.370										
	Decembet 29	3.340										
	December 30	3.280										
	December 31	3.230										
	Hut Dounornomotic	St+id	\%						世K K K		$\%$	$\% \%$

LATITUDE*
LONOTTUDE-
PARAMETER=

January 1
January 2
Jonuary 3
January 4
January 5
January 8
January 7
January 8
January 9
danuary 10
January 11
January 12
Jamury 13
January 14
January 15
Jamary 18
January 17
January 18
January 19
January 20
January 21
January 22
January 23
January 24
January 25
January 26
January 27
January 28
January 20
January 30
January 31
Total January Discharge
February 1
February 2
February 3
Febsuary 4
Febjuary 5
February 6
February 7
February 8
February 8
February 10
February 11
February 12
February 13
February 14
February 15
February 16
February 17
February 18
February 19
February 20
February 21
February 22
February 23
February 24
February 25
February 26
February 27
February 28
February 29
Total February Discharge
March 1
March 2
March 3
March 4
March 5
March 6
March 7
March 8
March 9
March 10
March 11
March 12
March 13
March 14
March 15
March 18
March 17

Stanusm				
stamame				
Latmude				
LOMOTTUDE				
Parameter=				
	1990	1891	1992	1993
June 1	58.500	20.000	58.500	29.500
Sune 2	54.000	18.000	50.400	38.700
June 3	58.100	16.700	42000	32.500
June 4	58.100	19.400	38.700	31.700
June 5	60.400	18.000	31.600	34.500
Juna 6	50.700	17.200	29.500	30.800
June 7	45.600	15.100	26.100	27.300
June 8	38.300	14.300	24.400	24.900
Jume 9	33.600	14.500	23.300	22.200
June 10	33.700	13.100	23.700	21.400
June 19	33.800	12100	23.600	18.800
June 12	41.200	11.400	23.700	17.600
June 13	38.700	11.000	23.800	16.800
June 14	33.500	11.500	23.700	16.200
June 15	28.400	12.800	23.500	51.800
June 18	28.100	14.500	18.300	55.300
June 17	23.200	16.300	17.400	50.800
June 18	20.400	16.700	14.100	43.700
Jume 19	18.300	14.400	14.000	37.500
June 20	18.100	13.200	14.400	33.500
June 21	15.800	11.100	13.200	29.600
June 22	14.300	10.100	12.000	35.700
June 23	12.800	10.300	11.200	53.800
June 24	11.800	10.300	9.920	54.400
June 25	10.800	9.630	9.000	46.800
June 28	10.600	0.230	8.220	42.800
June 27	11.100	10.100	7.170	46.100
June 28	11.400	12.500	6.500	48.800
Jume 29	13.800	13.600	5.840	57.400
June 30	20.700	12.000	5.320	49.700
Total June Discharge	904.100	409.860	629.070	1102.600
Juty 1	30.600	11.400	4.500	40.600
Juty 2	41.900	10.700	4.400	34.800
Juty 3	35.000	9.700	4.310	30.600
Juty 4	30.100	0.580	4.730	27.700
Juty 5	25.800	8710	4.360	24.800
Juty 6	25.200	0.700	4.000	22.200
Juty 7	24.000	8.850	3.770	18.500
Juty 8	22.200	8.320	3.540	18.400
July 9	20.300	7.530	3.110	17.400
Jutr 10	18.300	6.630	3.010	15.700
dily 11	18.400	0.120	2600	14.000
July 12	14.100	5.500	2.470	12.600
July 13	14.000	6.810	2.330	12.500
July 14	13.700	8.000	2.270	11.800
Juty 15	11.900	8.600	2080	11.600
Juty 16	10.100	8.730	1.970	11.300
July 17	9.400	7.870	1.760	10.400
July 18	8.890	6.690	1.620	9.310
July 19	8.500	6.380	1.560	8.220
Jutr 20	8.120	5.600	1.500	7.880
July 21	7.100	5.400	1.240	7.700
July 22	6.480	4.720	1.150	7.300
July 23	5.880	4.390	1.080	7.040
Juty 24	5.630	3.810	0.970	6.470
July 25	5.480	3.630	0.822	5.680
Juty 26	4.930	3.420	0.624	5.130
July 27	4.500	3.120	0.729	4.820
July 28	4.220	3.170	0.816	4.810
Juty 29	4.000	3.020	0.471	6.470
July 30	3.780	2.780	0.429	7.370
Juty 31	3.380	2.500	0.422	32.700
Tetal July Discharge	443.920	200.800	68.743	496.910
Auguss 1	3.280	2.470	0.302	29.300
August 2	2.870	2.240	0.321	28.100
August 3	2.870	2.040	0.338	20.000
Auguat 4	2740	1.850	0.308	18.700
August 5	2.510	1.870	0.301	18.800
August 6	2290	1.680	0.337	14.000
August 7	2.110	1.800	0.285	12.400
August 8	2.110	1.820	0.273	12.800
August 9	1.860	2010	0.285	13.200
August 10	1.850	1.800	0.294	12.500
August 11	1.700	1.760	0.300	11.900
August 12	1.650	1.030	0.270	10.700
August 13	1.600	1.460	0.234	8.810
August 14	1.620	1.350	0.210	8.210
August 15	1.570	1.200	0.190	8.420
August 18	1.550	1.150	0.188	7.630

STANUM= PROVINCE=	OBEE0.09BC									
StANAME=	RICHFIELD CREEK NEAR TOPLEY									
LATITUDE	54:30:59N									
LONGITUDE=	126:20:04W									
	Flow m3/s									
	19641965	1966	1967	1968	1969	1970	1971	1972	1973	1974
January 01		0.048	0.113	0.110	0.181	0.413	0.119	0.292	0.314	0.020
January 02		0.048	0.108	0.108	0.181	0.402	0.119	0.278	0.311	0.019
January 03		0.048	0.108	0.108	0.181	0.391	0.119	0.266	0.309	0.018
January 04		0.048	0.105	0.108	0.178	0.385	0.119	0.255	0.306	0.018
January 05		0.048	0.102	0.105	0.176	0.377	0.119	0.246	0.303	0.017
January 06		0.048	0.096	0.105	0.173	0.371	0.119	0.235	0.300	0.017
January 07		0.048	0.093	0.105	0.170	0.365	0.119	0.227	0.300	0.016
January 08		0.048	0.091	0.102	0.167	0.360	0.119	0.215	0.297	0.016
January 09		0.048	0.088	0.102	0.159	0.354	0.116	0.204	0.294	0.016
January 10		0.048	0.079	0.102	0.153	0.345	0.116	0.195	0.294	0.016
January 11		0.048	0.071	0.099	0.147	0.343	0.116	0.187	0.292	0.015
January 12		0.048	0.065	0.099	0.142	0.340	0.116	0.176	0.292	0.015
January 13		0.048	0.062	0.099	0.136	0.337	0.116	0.167	0.289	0.015
January 14		0.045	0.057	0.096	0.133	0.334	0.116	0.159	0.289	0.014
January 15		0.045	0.054	0.096	0.130	0.331	0.116	0.150	0.286	0.014
January 16		0.045	0.051	0.096	0.127	0.326	0.116	0.144	0.286	0.014
January 17		0.045	0.048	0.099	0.125	0.317	0.116	0.142	0.286	0.014
January 18		0.042	0.045	0.105	0.122	0.314	0.116	0.136	0.283	0.013
January 19		0.042	0.045	0.113	0.119	0.306	0.116	0.130	0.283	0.013
January 20		0.042	0.042	0.125	0.116	0.303	0.116	0.125	0.283	0.013
January 21		0.042	0.042	0.136	0.113	0.300	0.116	0.122	0.280	0.012
January 22		0.042	0.042	0.147	0.110	0.297	0.116	0.116	0.278	0.057
January 23		0.042	0.042	0.156	0.108	0.289	0.116	0.113	0.275	0.091
January 24		0.042	0.042	0.164	0.105	0.283	0.116	0.110	0.269	0.091
January 25		0.042	0.042	0.173	0.105	0.280	0.116	0.108	0.266	0.088
January 26		0.042	0.042	0.181	0.102	0.278	0.113	0.105	0.261	0.085
January 27		0.042	0.045	0.187	0.099	0.275	0.113	0.102	0.258	0.085
January 28		0.042	0.045	0.193	0.099	0.269	0.113	0.099	0.249	0.082
January 29		0.042	0.045	0.193	0.099	0.268	0.113	0.099	0.241	0.082
January 30		0.042	0.045	0.195	0.096	0.261	0.113	0.096	0.232	0.079
January 31		0.042	0.045	0.190	0.093	0.258	0.113	0.093	0.218	0.079
Total January Discharge	0.0000 .000	1.392	2.000	3.997	4.145	10.070	3.602	5.092	8.724	1.14
February 01		0.042	0.045	0.187	0.093	0.252	0.113	0.091	0.210	0.076
February 02		0.042	0.045	0.184	0.093	0.249	0.113	0.091	0.201	0.076
February 03		0.045	0.045	0.181	0.091	0.244	0.113	0.088	0.193	0.074
Febrary 04		0.045	0.045	0.178	0.091	0.241	0.116	0.085	0.187	0.074
February 05		0.045	0.045	0.176	0.088	0.238	0.116	0.085	0.178	0.074
February 06		0.045	0.045	0.173	0.088	0.235	0.116	0.085	0.173	0.071
February 07		0.045	0.045	0.167	0.095	0.229	0.116	0.085	0.164	0.071
February 08		0.045	0.045	0.164	0.085	0.227	0.116	0.088	0.156	0.071
February 09		0.045	0.045	0.161	0.085	0.224	0.119	0.088	0.150	0.068
February 10		0.045	0.045	0.159	0.082	0.218	0.119	0.091	0.144	0.068
February 11		0.045	0.045	0.156	0.082	0.215	0.119	0.091	0.139	0.068
February 12		0.045	0.042	0.153	0.079	0.212	0.119	0.091	0.133	0.065
Februar 13		0.045	0.042	0.150	0.079	0.210	0.119	0.091	0.130	0.065
February 14		0.045	0.042	0.147	0.079	0.207	0.119	0.091	0.127	0.065
February 15		0.042	0.042	0.144	0.079	0.204	0.119	0.091	0.125	0.062
February 16		0.042	0.042	0.144	0.079	0.204	0.119	0.091	0.122	0.062
February 17		0.042	0.042	0.142	0.076	0.201	0.116	0.088	0.119	0.062
February 18		0.042	0.042	0.139	0.076	0.198	0.113	0.088	0.116	0.059
February 19		0.042	0.042	0.136	0.076	0.195	0.110	0.085	0.116	0.059
February 20		0.040	0.040	0.133	0.074	0.195	0.110	0.085	0.113	0.059
February 21		0.040	0.040	0.130	0.074	0.193	0.110	0.085	0.113	0.059

STANUM= PROVINCE $=$
STANAME=
LATITUDE= LONGTUDE= PARAMETER=

February 22
February 23
February 24
February 25
February 26
February 27
February 28
February 29
Total February Discharge
March 1
March 2
March 3
March 4
March 5
March 6
March 7
March 8
March 9
March 10
March 11
March 12
March 13
March 14
March 15
March 16
March 17
March 18
March 19
March 20
March 21
March 22
March 23
March 24
March 25
March 26
March 27
March 28
March 29
March 30
March 31
$\begin{array}{lll}\text { Total March Discharge } & 0.000 & 0.000\end{array}$
April 1
April2
Aprill 3
April 4
April 5
April 6
April 7
April 8
April 9
April 10
April 11

08EE009
BC
RICHFIELD CREEK NEAR TOPLEY
64:30:59N
126:20:04W
Flow m3/s

1964	1965	1956	1967	1968	1969	1970
		0.040	0.040	0.127	0.074	0.193
		0.040	0.040	0.125	0.074	0.193
	0.133	0.040	0.040	0.125	0.071	0.190
		0.040	0.040	0.122	0.071	0.190
		0.040	0.037	0.119	0.071	0.187
		0.037	0.037	0.119	0.071	0.187
		0.037	0.037	0.122	0.068	0.187
				0.125		
0.000	0.133	1.188	1.182	4.288	2.234	5.918

	STANUM $=$	O8EE009										
	PROVINCE	BC										
	STANAME=	RICHFIELD CREEK NEAR TOPLEY										
	LATITUDE=	54:30:59N										
	LONGITUDE $=$	126:20:04W										
	PARAMETERE	Flow m										
1		1964	1965	1966	1967	1968	1869	1970	1971	1972	1973	1974
	July 23		0.850	0.459	0.088	2.830	0.105	0.040	0.988	0.504	0.116	0.685
	July 24		0.714	0.459	0.076	2.140	0.102	0.113	0.824	0.521	0.156	0.643
11	July 25		0.595	0.462	0.028	1.590	0.099	0.283	0.835	0.665	0.144	0.691
	July 26		0.498	0.464	0.028	1.230	0.096	0.736	0.779	0.674	0.133	0.603
	July 27		0.433	0.470	0.028	1.060	0.091	1.280	0.742	0.682	0.116	0.544
	July 28		0.402	0.484	0.025	1.020	0.088	1.750	0.858	0.578	0.102	0.450
11	July 29		0.368	0.501	0.025	0.844	0.082	1.810	0.816	0.476	0.091	0.402
	July 30		0.345	0.541	0.025	0.682	0.082	1.570	0.725	0.428	0.085	0.343
	July 31		0.340	0.580	0.025	0.569	0.082	1.240	0.850	0.382	0.085	0.283
11	Total July Discharge	0.000	41.833	17.177	3.048	38.822	5.143	11.086	86.117	26.969	11.368	36.981
	August 1		0.337	0.572	0.025	0.521	0.074	0.974	1.130	0.289	0.079	0.244
11	August 2		0.328	0.538	0.025	0.535	0.074	0.762	1.420	0.272	0.076	0.221
	August 3		0.326	0.513	0.025	0.535	0.065	0.623	1.810	0.252	0.074	0.178
	August 4		0.320	0.507	0.025	0.552	0.054	0.538	2.270	0.252	0.071	0.139
	August 5		0.317	0.507	0.025	0.521	0.048	0.513	3.140	0.244	0.071	0.130
!	August 6		0.314	0.521	0.025	0.521	0.042	0.351	2.510	0.187	0.071	0.133
	August 7	5.100	0.314	0.547	0.025	0.425	0.037	0.595	1.880	0.164	0.071	0.136
	August 8		0.311	0.572	0.025	0.345	0.031	0.617	1.500	0.142	0.071	0.125
1:	August 9		0.309	0.617	0.025	0.292	0.028	0.595	1.240	0.119	0.074	0.113
	August 10	0.3090.306		0.651	0.025	0.275	0.025	0.544	0.881	0.088	0.074	0.108
	August 11		0.297	0.481	0.025	0.306	0.025	0.566	0.759	0.159	0.076	0.108
	August 12		0.294	0.530	0.025	0.351	0.040	0.566	0.756	0.300	0.079	0.096
1	August 13		0.292	0.688	0.023	0.374	0.034	0.513	0.748	0.289	0.082	0.091
	August 14		0.289	0.770	0.023	0.317	0.031	0.453	0.725	0.275	0.059	0.085
	August 15	0.283		0.767	0.023	0.278	0.031	0.411	0.728	0.261	0.057	0.082
1	August 16	0.283		0.716	0.023	0.275	0.028	0.405	0.731	0.178	0.065	0.079
	August 17		0.278	0.603	0.023	0.272	0.054	0.357	0.657	0.164	0.071	0.076
	August 18		0.266	0.555	0.023	0.266	0.096	0.300	0.685	0.153	0.079	0.076
	August 19		0.266	0.530	0.025	0.266	0.096	0.261	0.674	0.142	0.082	0.076
11	August 20		0.266	0.524	0.025	0.272	0.096	0.227	0.674	0.130	0.079	0.076 0.076
	August 21		0.266	0.544	0.025	0.280	0.093	0.193	0.668	0.147	0.082	
	August 22		0.255	0.569	0.025	0.323	0.088	0.164	0.677	0.224	0.082	0.076
11	August 23		0.255	0.603	0.025	0.396	0.085	0.142	0.688	0.201	0.076	0.082
	August 24		0.351	0.663	0.025	0.481	0.082	0.119	0.716	0.178	0.076	0.076
	August 25		0.394	0.697	0.025	0.538	0.232	0.102	0.688	0.164	0.076	0.076
	August 26		0.394	0.617	0.023	0.583	0.354	0.099	0.745	0.147	0.076	0.076
I	August 27		0.360	0.566	0.023	0.544	0.467	0.096	0.807	0.130	0.079	0.074
11	August 28		0.334	0.566	0.023	0.490	0.311	0.091	0.906	0.113	0.079	0.074
	August 29		0.320	0.569	0.023	0.442	0.244	0.082	0.991	0.108	0.076	0.074
1	August 30		0.306	1.040	0.023	0.362	0.198	0.071	1.130	0.102	0.076	0.074
	August 31		0.303	0.821	0.023	0.326	0.164	0.065	1.270	0.102	0.079	0.071
	Total August Discharge	5.100	9.634	18.964	0.751	12.264	3.327	11.395	34.204	5.676	2.318	3.201
1	September 1	0.595	0.300	0.697	0.023	0.311	0.184	0.074	1.380	0.088	0.079	0.071
1	September 2	0.566	0.286	0.595	0.023	0.297	0.198	0.085	1.230	0.085	0.085	0.071
	September 3	0.564	0.292	0.586	0.025	0.289	0.538	0.099	1.080	0.082	0.088	0.068
1	September 4	0.538	0.280	0.569	0.025	0.317	0.971	0.105	1.300	0.079	0.079	0.065
I	September 5	0.530	0.286	0.561	0.025	0.391	1.090	0.105	1.120	0.076	0.076	0.079
	September 6	0.521	0.275	0.493	0.025	0.566	0.946	0.105	1.010	0.074	0.074	0.088
	September 7	0.518	0.261	0.450	0.025	0.510	1.020	0.102	0.898	0.076	0.071	0.088
I	September 8	0.518	0.246	0.419	0.025	0.467	0.864	0.099	0.895	0.076	0.068	0.110
1	September 9	0.513	0.252	0.476	0.025	0.428	0.714	0.096	0.733	0.076	0.071	0.246
	September 10	0.513	0.246	0.484	0.023	0.405	0.600	0.091	0.767	0.079	0.076	0.405

STANUME
PROVINCE
STANAME
LATTUDE
LNGITEDE
PARAMETER
September 11
September 13
September 14
September 15
Seplember 16
Seplember 17
Seplember 18
September 19
September 20
Seplember 21
September 22
September 23
September 24
September 25
September 26
September 27
September 28
September 30
Total September Discharge

October 1
 October 2
 October 3
 October 4
 October 5
 October 6 October 7
 October 8
 October 9
 October 10

Octaber 11
October 12
October 13
October 14
October 15
October 16
October 17
October 18
October 19
October 20
October 21
October 22
October 23
October 24
October 25
October 26
October 27
October 28
October 29
October 30
October 31
Total October Discharge
BC

08EE009

RICHFIELD CREEK NEAR TOPLEY
64:30:59N
126:20:04W
Flow m3/s

1964	1965	1966	1967	1968	1969	1970	1974	1972	1973	1974
0.510	0.246	0.433	0.023	0.382	0.583	0.091	0.991	0.068	0.079	0.377
0.504	0.246	0.416	0.023	0.289	0.583	0.088	0.900	0.057	0.085	0.286
0.504	0.246	0.399	0.023	0.275	0.600	0.082	0.830	0.045	0.082	0.232
0.507	0.241	0.379	0.023	0.510	0.617	0.079	0.753	0.034	0.076	0.195
0.510	0.241	0.345	0.025	0.665	0.617	0.074	0.677	0.027	0.076	0.164
0.513	0.252	0.323	0.025	0.714	0.634	0.082	0.640	0.045	0.074	0.153
0.521	0.241	0.314	0.028	0.750	0.521	0.099	0.660	0.065	0.076	0.133
0.530	0.241	0.275	0.031	0.733	1.470	0.119	0.671	0.085	0.076	0.127
0.532	0.241	0.269	0.034	0.708	2.920	0.136	0.685	0.102	0.082	0.116
0.532	0.235	0.266	0.037	0.934	2.590	0.139	0.677	0.119	0.093	0.113
0.549	0.235	0.266	0.040	1.360	2.390	0.212	0.665	0.232	0.108	0.108
0.566	0.235	0.269	0.045	2.100	2.740	0.354	0.663	0.221	0.119	0.102
0.674	0.235	0.272	0.048	2.390	3.450	0.481	0.685	0.201	0.119	0.093
1.590	0.246	0.278	0.059	1.950	3.260	0.382	0.731	0.193	0.125	0.096
4.420	0.241	0.283	0.076	1.500	3.060	0.396	1.080	0.181	0.125	0.096
2.860	0.241	0.289	0.076	1.270	2.620	0.385	1.330	0.153	0.156	0.096
2.220	0.246	0.343	0.040	1.210	2.310	0.340	1.270	0.153	0.255	0.093
1.780	0.246	0.530	0.040	1.060	2.090	0.297	1.280	0.176	0.269	0.091
1.430	0.300	0.459	0.045	0.994	1.860	0.269	1.290	0.164	0.272	0.091
1.360	0.351	0.411	0.051	1.390	2.090	0.293	0.985	0.496	0.249	0.096
27.988	7.730	12.149	1.036	25.165	44.130	6.349	27.876	3.608	3.363	4.149

1.090	0.340	0.629	0.218	0.923	2.620	0.283	0.929	1.430	0.227	0.110
1.090	0.328	0.847	0.241	0.844	2.740	0.218	1.200	0.974	0.204	0.142
0.968	0.348	1.110	0.221	0.864	2.390	0.244	1.520	1.010	0.190	0.161
0.864	0.368	1.510	0.207	0.923	2.090	0.244	1.650	0.801	0.207	0.153
0.782	0.561	1.260	0.207	0.864	1.860	0.258	1.910	0.722	0.297	0.147
0.736	0.595	1.190	0.218	0.971	1.650	0.246	1.890	0.629	0.309	0.142
0.674	0.646	1.230	0.229	1.130	1.500	0.241	1.570	0.668	0.258	0.164
0.663	0.680	1.180	0.507	0.971	1.800	0.382	1.160	0.988	0.263	0.207
0.657	0.731	0.750	0.665	0.864	1.710	0.433	1.040	1.670	0.261	0.210
0.640	0.629	0.323	1.040	0.807	1.530	0.399	1.010	1.430	0.323	0.195
0.668	0.544	0.294	0.923	0.750	1.330	0.371	0.994	1.190	0.365	0.190
0.680	0.578	0.283	0.770	0.714	1.230	0.343	1.170	1.030	0.362	0.195
0.731	0.595	0.300	0.665	0.733	1.090	0.314	1.070	0.974	0.351	0.215
0.765	1.190	0.317	0.648	0.787	0.994	0.283	1.040	0.867	0.337	0.218
0.799	1.340	0.334	0.600	0.844	0.923	0.263	1.000	0.767	0.320	0.255
0.736	1.150	0.345	0.600	0.827	0.864	0.255	0.957	0.694	0.294	0.294
0.694	1.060	0.371	0.617	0.994	0.787	0.255	0.790	0.646	0.311	0.351
0.629	0.934	0.425	0.538	1.040	0.714	0.255	0.770	0.595	0.388	0.566
0.657	0.799	0.481	0.569	0.994	0.697	0.396	0.830	0.569	0.374	0.572
0.640	0.850	0.561	0.552	0.923	0.923	0.481	0.920	0.578	0.371	0.501
0.668	3.110	0.722	0.521	0.881	1.020	0.476	0.671	0.799	0.360	0.419
0.663	7.590	0.807	0.521	0.827	1.020	0.399	0.646	0.943	0.371	0.385
0.748	5.780	0.793	0.507	1.060	0.994	0.453	0.646	0.926	0.377	0.365
0.782	4.080	0.739	0.569	1.560	0.864	0.498	0.646	0.875	0.379	0.351
0.748	3.170	0.731	0.445	1.590	0.697	0.552	0.651	0.810	0.388	0.326
0.736	2.680	0.705	0.382	1.440	0.665	0.595	0.609	0.773	0.388	0.297
0.835	2.300	0.671	0.396	1.360	0.697	0.391	0.617	0.711	0.402	0.306
0.674	2.070	0.663	0.413	1.680	0.600	0.396	0.623	0.640	0.515	0.309
0.680	1.810	0.561	0.419	3.450	0.648	0.399	0.600	0.872	0.586	0.294
0.770	1.560	0.552	0.425	5.010	0.682	0.419	0.586	0.643	0.597	0.258
0.807	1.410	0.518	0.428	3.880	0.864	0.419	0.578	0.547	0.470	0.244
23.274	49.826	21.202	15.261	40.505	38.193	11.161	30.293	26.771	10.845	8.542

stanuma PROVINCE=	08EE009										
staname	RICHFIELD CREEK NEAR TOPLEY										
LATITUDE:	54:30:59N										
LONGITUDE:	126:20:04										
PARAMETERE	Flow m3/s 1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
November 1	0.850	1.340	0.501	0.413	3.140	1.500	0.371	0.566	0.909	0.422	0.184
November 2	0.770	1.230	0.510	0.396	2.620	2.090	0.343	0.544	1.070	0.379	0.218
November 3	0.759	1.190	0.459	0.382	2.130	2.090	0.221	0.515	1.170	0.357	0.195
November 4	0.793	1.120	0.476	0.368	1.770	1.920	0.238	0.515	1.260	0.328	0.193
November 5	0.680	1.020	0.493	0.453	1.560	1.770	0.261	0.527	1.150	0.306	0.187
November 6	0.663	0.997	0.535	0.538	1.410	1.590	0.258	0.515	1.060	0.283	0.176
Noverber 7	0.850	0.912	0.578	0.439	1.360	1.440	0.258	0.515	0.994	0.263	0.167
November 8	1.070	0.852	0.552	0.340	1.230	1.330	0.255	0.518	0.898	0.244	0.159
Novermber 9	1.150	0.850	0.521	0.303	1.130	1.280	0.261	0.521	0.855	0.229	0.176
November 10	0.821	0.816	0.493	0.278	1.060	1.180	0.263	0.521	0.816	0.212	0.201
November 11	0.634	0.765	0.425	0.258	0.900	1.130	0.283	0.521	0.782	0.198	0.127
November 12	0.614	0.731	0.413	0.241	0.799	1.110	0.292	0.524	0.728	0.187	0.125
November 13	0.617	0.612	0.419	0.229	0.731	1.110	0.297	0.527	0.663	0.178	0.125
November 14	0.620	0.977	0.408	0.218	0.660	1.440	0.283	0.530	0.634	0.173	0.119
November 15	0.668	2.720	0.402	0.229	0.603	1.440	0.272	0.530	0.603	0.161	0.116
November 16	0.597	2.650	0.402	0.229	0.555	1.280	0.235	0.538	0.549	0.136	0.113
November 17	0.592	1.900	0.396	0.227	0.507	1.130	0.170	0.552	0.479	0.125	0.110
November 18	0.586	1.120	0.396	0.224	0.473	1.280	0.167	0.575	0.473	0.113	0.108
November 19	0.580	0.680	0.394	0.221	0.436	1.980	0.164	0.609	0.439	0.108	0.105
November 20	0.572	0.595	0.396	0.218	0.408	2.790	0.161	0.637	0.447	0.116	0.105
November 21	0.575	1.020	0.399	0.229	0.385	2.970	0.156	0.864	0.470	0.110	0.102
November 22	0.566	3.000	0.402	0.229	0.360	2.660	0.153	1.110	0.481	0.105	0.099
November 23	0.572	2.940	0.405	0.255	0.337	2.350	0.150	1.010	0.484	0.099	0.096
November 24	0.640	2.830	0.411	0.303	0.320	1.980	0.147	0.949	0.504	0.093	0.093
November 25	0.549	2.830	0.413	0.283	0.306	1.710	0.144	0.878	0.790	0.088	0.091
November 26	0.547	2.320	0.416	0.263	0.292	1.560	0.142	0.827	0.773	0.082	0.091
November 27	0.544	1.870	0.416	0.246	0.280	1.650	0.142	0.782	0.759	0.076	0.088
November 28	0.538	1.440	0.411	0.232	0.272	1.800	0.139	0.742	0.742	0.074	0.085
November 29	0.535	1.020	0.408	0.218	0.263	2.090	0.136	0.708	0.722	0.068	0.085
November 30	0.530	0.680	0.402	0.207	0.255	2.510	0.136	0.671	0.708	0.065	0.082
Total November Discharge	20.082	43.027	13.252	8.669	26.552	52.160	6.498	19.341	22.412	5.378	3.921
December 1		0.595	0.396	0.198	0.249	2.590	0.133	0.640	0.411	0.059	0.079
December 2		0.578	0.388	0.190	0.244	2.350	0.130	0.612	0.399	0.057	0.079
December 3		0.663	0.385	0.184	0.238	2.130	0.130	0.595	0.385	0.054	0.076
December 4		0.782	0.371	0.178	0.232	1.770	0.127	0.580	0.379	0.051	0.076
December 5		0.629	0.360	0.176	0.227	1.440	0.127	0.566	0.374	0.048	0.074
December 6		0.561	0.351	0.170	0.224	1.380	0.125	0.566	0.377	0.045	0.074
December 7		0.544	0.343	0.167	0.221	1.310	0.125	0.566	0.377	0.042	0.071
December 8		0.527	0.328	0.164	0.218	1.280	0.125	0.569	0.377	0.042	0.071
December 9		0.544	0.320	0.161	0.215	1.130	0.122	0.572	0.377	0.040	0.071
December 10		0.527	0.306	0.159	0.212	0.946	0.122	0.572	0.377	0.040	0.068
December 11		0.481	0.297	0.156	0.210	0.883	0.122	0.572	0.377	0.037	0.068
December 12		0.459	0.283	0.150	0.207	0.821	0.122	0.572	0.377	0.037	0.068
December 13		0.450	0.275	0.147	0.204	0.76	0.122	0.575	0.374	0.034	0.065
December 14		0.430	0.263	0.144	0.204	0.736	0.122	0.575	0.374	0.034	0.065
December 15		0.402	0.252	0.142	0.201	0.694	0.122	0.575	0.374	0.031	0.065
December 16		0.411	0.244	0.142	0.198	0.671	0.122	0.566	0.371	0.031	0.065
December 17		0.430	0.232	0.139	0.198	0.663	0.122	0.538	0.371	0.031	0.065
December 18		0.481	0.224	0.136	0.195	0.654	0.122	0.518	0.368	0.028	0.065
December 19		0.442	0.212	0.133	0.195	0.646	0.122	0.496	0.365	0.028	0.065
December 20		0.442	0.204	0.133	0.193	0.631	0.122	0.473	0.362	0.028	0.062
December 21		0.442	0.193	0.130	0.190	0.612	0.122	0.450	0.362	0.027	0.06

STANUM=	O8EE009										
PROVINCE $=$	BC										
STANAME=	RICHFJELD CREEK NEAR TOPLEY										
LATITUDE $=$	54:30:59N										
LONGITUDE $=$	126:20:04W										
PARAMETER=	Flow m3/s										
	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
December 22		0.368	0.187	0.127	0.190	0.589	0.122	0.428	0.360	0.026	0.062
December 23		0.210	0.176	0.127	0.187	0.564	0.122	0.416	0.354	0.025	0.062
December 24		0.147	0.167	0.125	0.184	0.544	0.122	0.399	0.351	0.024	0.062
December 25		0.048	0.156	0.122	0.184	0.524	0.122	0.382	0.348	0.024	0.062
December 26		0.048	0.147	0.122	0.181	0.504	0.122	0.368	0.340	0.023	0.062
December 27		0.048	0.142	0.119	0.181	0.487	0.122	0.354	0.334	0.022	0.062
December 28		0.048	0.136	0.116	0.178	0.467	0.122	0.334	0.328	0.022	0.062
December 29		0.048	0.127	0.116	0.178	0.453	0.122	0.326	0.326	0.021	0.059
December 30		0.048	0.122	0.113	0.176	0.439	0.122	0.311	0.320	0.020	0.059
December 31		0.048	0.116	0.110	0.176	0.428	0.122	0.300	0.317	0.020	0.059
Total December Discharge	0.000	11.881	7.703	4.496	6.290	29.112	3.828	15.366	11.286	1.051	2.085

$\prod 1$	Staition Number Station Name Latitude	08EE013 Buck Creek at the Mouth 54:23:52										
	Longitude	126:39										
11	PARAMETER=	Flow m3/s 1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
	January 01	0.476	0.207	0.300	1.000	1.020	20.496	0.396	0.282	0.792	0.188	0.380
	January 02	0.476	0.187	0.297	0.988	0.997	0.490	0.388	0.280	0.784	0.183	0.379
	January 03	0.476	0.173	0.297	0.980	0.977	0.484	0.379	0.278	0.776	0.180	0.377
	January 04	0.476	0.164	0.297	0.974	0.957	0.479	0.374	0.277	0.768	0.177	0.371
$\lceil 1$	January 05	0.476	0.153	0.292	0.960	0.943	0.470	0.368	0.276	0.760	0.172	0.370
	January 06	0.476	0.144	0.289	0.940	0.923	0.462	0.362	0.275	0.750	0.168	0.370
	January 07	0.476	0.139	0.286	0.926	0.898	0.453	0.357	0.274	0.740	0.162	0.372
	January 08	0.476	0.130	0.280	0.917	0.872	0.445	0.351	0.273	0.730	0.159	0.380
	January 09	0.476	0.125	0.272	0.909	0.850	0.439	0.345	0.272	0.720	0.156	0.386
	January 10	0.476	0.119	0.263	0.912	0.830	0.433	0.343	0.270	0.710	0.153	0.395
	January 11	0.476	0.116	0.261	0.912	0.810	0.428	0.337	0.269	0.702	0.151	0.401
$[]$	January 12	0.476	0.113	0.258	0.895	0.790	0.422	0.331	0.268	0.694	0.151	0.402
	January 13	0.476	0.110	0.261	0.898	0.776	0.416	0.326	0.267	0.686	0.155	0.400
	January 14	0.476	0.108	0.261	1.000	0.756	0.411	0.323	0.266	0.678	0.162	0.397
	January 15	0.476	0.105	0.255	1.090	0.736	0.405	0.320	0.265	0.671	0.178	0.390
1	January 16	0.476	0.102	0.249	1.130	0.716	0.399	0.314	0.263	0.664	0.177	0.385
	Januar 17	0.476	0.102	0.246	1.150	0.731	0.396	0.311	0.261	0.657	0.169	0.380
	January 18	0.476	0.099	0.244	1.160	0.756	0.394	0.306	0.259	0.651	0.163	0.375
	January 19	0.476	0.099	0.249	1.150	0.821	0.391	0.300	0.257	0.645	0.158	0.371
	January 20	0.476	0.096	0.258	1.140	0.892	0.388	0.294	0.255	0.665	0.155	0.362
	January 21	0.476	0.127	0.255	1.130	0.917	0.382	0.289	0.253	0.695	0.155	0.355
	January 22	0.476	0.241	0.252	1.140	0.934	0.379	0.286	0.252	0.700	0.154	0.350
	January 23	0.473	0.765	0.249	1.140	0.943	0.377	0.283	0.251	0.700	0.153	0.346
	January 24	0.464	0.736	0.252	1.140	0.943	0.374	0.280	0.250	0.695	0.152	0.343
	January 25	0.459	0.708	0.246	1.150	0.940	0.371	0.278	0.249	0.680	0.151	0.341
1	January 26	0.456	0.685	0.241	1.180	0.934	0.368	0.272	0.247	0.670	0.151	0.340
	January 27	0.447	0.674	0.235	1.230	0.932	0.362	0.266	0.246	0.660	0.151	0.338
	January 28	0.442	0.654	0.229	1.260	0.929	0.360	0.261	0.245	0.650	0.151	0.336
1	January 29	0.428	0.637	0.227	1.260	0.917	0.357	0.258	0.244	0.640	0.151	0.333
	January 30	0.422	0.623	0.224	1.260	0.903	0.354	0.255	0.243	0.630	0.150	0.332
	January 31	0.408	0.609	0.218	1.240	0.892	0.351	0.252	0.242	0.615	0.150	0.331
	Total January Discharge	14.471	9.050	8.043	33.161	27.236	12.736	9.805	8.109	21.578	4.984	11.388
1	February 01	0.394	0.597	0.215	1.160	0.872	0.345	0.249	0.241	0.606	0.150	0.330
	February 02	0.374	0.586	0.212	1.100	0.861	0.340	0.246	0.239	0.597	0.150	0.329
$[!$	February 03	0.360	0.575	0.207	1.020	0.855	0.337	0.244	0.237	0.588	0.150	0.328
	Februay 04	0.345	0.564	0.204	0.960	0.847	0.334	0.269	0.235	0.579	0.150	0.321
	February 05	0.334	0.552	0.201	0.943	0.841	0.331	0.311	0.234	0.570	0.150	0.319
	February 06	0.328	0.541	0.198	0.937	0.835	0.328	0.303	0.232	0.562	0.150	0.315
$1]$	February 07	0.326	0.530	0.193	0.951	0.830	0.326	0.292	0.230	0.554	0.150	0.311
	February 08	0.323	0.521	0.187	0.957	0.824	0.323	0.280	0.228	0.546	0.149	0.308
	Februay 09	0.320	0.513	0.184	0.949	0.818	0.320	0.272	0.226	0.538	0.150	0.304
11	February 10	0.317	0.504	0.181	0.923	0.813	0.317	0.263	0.224	0.530	0.150	0.301
	February 11	0.314	0.498	0.178	0.892	0.818	0.317	0.255	0.223	0.522	0.150	0.300
	February 12	0.311	0.490	0.176	0.886	0.835	0.317	0.246	0.222	0.514	0.150	0.300
	Febsuary 13	0.311	0.481	0.173	0.878	0.850	0.320	0.238	0.220	0.506	0.150	0.301
11	Febsuary 14	0.311	0.473	0.170	0.867	0.838	0.334	0.232	0.218	0.498	0.150	0.302
	February 15	0.311	0.464	0.167	0.852	0.827	0.345	0.227	0.216	0.490	0.151	0.309
	February 16	0.311	0.456	0.167	0.850	0.821	0.357	0.221	0.214	0.485	0.168	0.312
11	February 17	0.311	0.447	0.164	0.847	0.813	0.354	0.215	0.213	0.480	0.200	0.317
	February 18	0.311	0.439	0.161	0.833	0.801	0.354	0.210	0.212	0.475	0.290	0.320
	February 19	0.311	0.430	0.159	0.824	0.787	0.351	0.204	0.211	0.470	0.340	0.321
	February 20	0.311	0.425	0.159	0.813	0.773	0.348	0.201	0.210	0.465	0.338	0.322
1	Februar 21	0.311	0.416	0.159	0.801	0.765	0.345	0.195	0.209	0.460	0.330	0.326
	February 22	0.311	0.411	0.210	0.793	0.753	0.343	0.190	0.208	0.455	0.321	0.328
	Febuary 23	0.311	0.405	0.232	0.784	0.745	0.340	0.184	0.207	0.450	0.315	0.330
	February 24	0.311	0.396	0.227	0.770	0.736	0.337	0.181	0.206	0.445	0.310	0.332
	February 25	0.311	0.391	0.227	0.750	0.731	0.334	0.178	0.205	0.440	0.309	0.337

$1]$.	Station Number Station Name Latitude Longitude	08EE013 Buck Creek at the Mouth $\begin{aligned} & \text { 54:23:52 } \\ & \text { 126:39 } \end{aligned}$										
11	PARAMETER=											
1		1973	1974	1976	1976	1977	1978	1979	1880	1981	1982	1983
	April 20	2.940	1.760	0.354	0.589	5.580	1.330	1.700	1.500	3.130	0.400	2.800
1	April 21	3.790	2.460	0.368	0.614	5.780	1.670	1.880	2.000	3.610	0.450	3.300
1	April 22	4.810	2.640	0.467	0.668	6.630	2.040	2.350	2.500	4.290	0.540	3.950
,	April 23	5.380	3.030	0.637	0.714	9.320	2.550	2.860	3.200	6.500	0.700	5.500
	April 24	5.800	3.740	0.821	0.850	17.000	3.260	3.960	4.000	9.100	0.930	7.420
1	Apria 25	6.120	5.150	1.060	1.020	28.000	3.960	5.890	5.200	8.380	1.150	10.300
1	April 26	6.710	7.450	1.390	1.360	48.100	7.080	8.720	8.000	7.630	1.520	13.800
	April 27	7.280	11.200	1.570	2.800	59.200	11.300	11.000	11.200	7.740	1.810	15.400
11	Apris 28	7.280	16.100	1.560	6.740	53.800	15.900	14.400	12.700	8.540	2.190	18.000
,	April 29	7.760	21.000	1.530	12.900	48.100	15.300	24.300	13.500	8.550	2.560	22.300
1	April 30	8.810	26.100	2520	18.500	40.800	14.600	33.400	14.200	10.200	2.730	24.800
	Total April Discharge	108.180	113.446	16.733	58.626	430.362	93.703	123.297	88.826	97.010	19.782	141.000
11	May 01	11.000	25.600	5.640	28.300	36.200	14.000	41.900	15.200	12.600	2.970	24.700
	May 02	13.900	24.000	16.700	39.600	37.400	13.500	50.100	17.200	14.000	3.080	24.200
11	May 03	17.000	21.700	17.000	45.300	35.700	12.900	61.200	16.700	13.800	3.200	23.500
,	May 04	21.500	21.400	16.700	47.600	33.700	12.100	66.000	15.700	13.700	3.430	21.700
	May 05	26.100	23.500	16.000	57.200	30.300	10.200	57.500	15.200	15.600	4.180	20.500
	May 06	29.200	23.800	15.300	60.600	30.900	9.660	44.700	19.800	19.500	5.380	19.900
	May 07	29.200	24.100	15.000	56.400	34.000	9.970	36.000	30.800	27.300	6.310	20.700
:	May 08	27.000	23.200	14.900	54.400	37.900	12.300	30.900	28.900	32.800	6.840	21.500
	May 09	24.100	21.300	14.800	53.200	37.700	15.600	27.400	26.900	35.800	8.120	19.700
P'	May 10	21.400	19.300	20.900	56.600	33.400	17.400	24.900	28.200	32.800	10.400	17.700
:	May 11	19.100	17.800	30.300	61.200	30.300	17.800	22.500	32.400	28.500	13.800	16.000
	May 12	19.000	16.400	33.700	53.800	26.200	16.800	20.700	34.600	27.400	16.500	14.500
	May 13	22.200	15.100	30.300	45.900	22.000	15.400	19.000	36.000	29.100	16.600	14.200
1	May 14	32.800	14.000	28.000	41.100	18.400	15.100	17.600	32.600	37.000	16.400	16.400
1	May 15	51.800	12.900	27.100	39.100	16.000	18.300	18.100	28.100	46.800	16.900	16.800
	May 16	67.100	13.100	26.100	40.800	15.500	21.100	21.000	25.500	44.400	18.200	16.300
$1!$	May 17	72.500	15.000	23.200	45.900	16.700	20.800	23.000	22.300	41.700	22.500	15.100
1:	May 18	62.300	16.600	19.900	45.300	16.100	19.800	. 24.800	19.200	37.300	27.300	13.200
	May 19	46.400	18.500	16.800	39.600	15.900	19.700	23.000	16.500	33.600	27.400	11.800
	May 20	35.700	21.400	14.900	36.000	15.700	21.200	20.600	14.200	33.500	27.600	11.200
1	May 21	28.900	23.400	14.200	34.000	14.400	21.700	20.500	12.400	34.100	28.300	10.700
1	May 22	25.600	24.900	13.600	33.400	13.300	20.200	20.600	11.000	32.500	26.300	9.710
	May 23	22.800	29.200	13.000	33.100	12.700	19.600	24.000	9.910	29.400	23.300	8.820
1	May 24	23.500	30.600	12.000	32.600	12.700	18.900	29.700	9.700	29.800	22.000	8.050
$1]$	May 25	24.200	31.100	11.800	32.600	11.800	17.400	32.600	9.570	35.600	23.500	7.410
	May 26	21.500	32.000	12.200	32.000	11.100	16.000	34.800	9.170	42.000	22.900	6.730
	May 27	19.500	31.700	13.300	31.100	11.300	15.900	33.700	8.560	37.000	21.100	6.230
	May 28	18.100	30.600	15.800	30.900	10.700	16.600	28.000	8.140	30.000	21.700	5.710
	May 29	17.800	30.600	18.300	28.900	10.400	15.400	24.200	7.840	25.200	24.600	5.180
	May 30	18.200	31.100	18.800	27.400	9.740	13.900	23.000	7.270	23.200	29.800	4.690
,	May 31	17.700	29.700	18.200	25.900	9.600	13.800	23.000	6.710	21.100	35.200	4.190
1	Total May Discharge	887.100	713.600	664.440	1289.800	667.740	603.030	945.000	676.270	917.100	535.810	437.020
11	June 01	17.000	28.600	18.100	26.500	9.660	14.200	24.900	6.350	18.300	45.600	3.870
1	June 02	16.800	29.700	18.700	30.900	8.830	15.000	24.500	6.010	15.700	56.200	3.740
	June 03	16.200	29.200	17.600	33.700	8.160	14.900	23.100	5.460	14.200	54.800	3.890
	June 04	16.300	25.800	17.100	33.700	7.530	13.700	20.900	5.040	12.900	46.000	3.780
,	June 05	17.200	23.700	16.700	33.400	7.360	12.500	20.600	4.470	11.400	36.300	3.670
L	June 06	19.400	22.200	15.000	33.400	7.250	11.300	18.000	4.740	10.600	28.300	4.630
	June 07	20.700	21.100	13.000	34.500	7.140	10.100	15.100	4.330	10.200	23.500	6.920
1	June 08	19.600	20.800	11.300	36.000	6.770	9.030	13.200	3.570	9.500	20.400	6.490
[June 09	17.800	20.300	10.000	39.100	6.480	8.160	13.000	3.090	8.800	18.300	5.540
	June 10	15.800	21.500	9.540	41.900	6.290	7.560	12.700	2.810	8.400	16.400	6.730
11	June 11	14.200	25.000	9.030	40.200	5.970	7.020	11.600	4.070	10.200	14.800	8.130
	June 12	14.300	24.100	8.300	36.000	5.660	6.850	10.600	5.560	13.000	13.500	7.590

Station Number	08EE013 Buck Creek at the Mouth											1
Station Name												
Latitude	64:23:52											
Longitude	126:39											
PARAMETER=	Flow m3/s											
	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	4983	
June 13	19.600	22.000	8.010	32.600	5.320	7.220	11.300	4.790	15.100	12.900	6.470	
June 14	22.800	22.100	7.700	30.900	5.100	19.100	13.900	3.950	14.200	12.200	5.660	1:
June 15	21.700	24.100	8.270	31.400	5.100	38.500	13.100	3.180	12.000	10.500	5.410	
June 16	19.700	25.200	8.520	37.400	5.010	35.700	12.400	2.510	10.800	9.280	5.330	
June 17	20.000	23.700	7.930	39.600	4.590	26.300	11.700	2.010	10.000	8.520	5.730	1
June 18	18.900	21.000	8.040	39.400	4.050	20.400	10.900	1.660	9.400	7.410	5.770	\dagger
June 19	16.800	18.500	8.470	36.800	3.600	16.500	9.770	1.360	9.200	6.160	5.370	,
June 20	15.100	16.500	7.960	32.000	3.200	13.600	8.890	1.100	8.800	5.350	5.190	
June 21	13.600	14.800	6.910	27.100	3.260	11.500	8.160	0.792	8.500	4.700	5.000	
June 22	12.700	14.000	6.230	24.900	3.480	20.000	7.160	0.532	8.200	4.050	4.540	
June 23	11.600	12.900	5.890	22.800	3.110	26.600	6.200	0.367	7.900	3.990	4.150	
June 24	10.700	11.100	5.410	20.800	2.920	23.200	5.970	0.344	7.300	3.560	4.200	1
June 25	9.940	9.660	4.900	18.000	2.780	18.400	5.150	0.529	6.700	3.070	6.470	
June 26	9.090	8.470	4.470	17.300	2.630	14.900	5.440	0.688	6.000	2.940	8.050	
June 27	8.130	7.080	4.080	17.100	2.470	12.400	5.410	0.905	5.300	4.070	8.630	
Juna 28	7.360	6.090	4.330	16.400	2.400	10.500	5.100	0.941	4.800	7.240	8.060	
June 29	6.850	5.380	5.150	17.200	2.310	9.000	4.470	0.633	4.550	6.990	7.040	
June 30	6.770	4.870	4.960	17.200	2.070	7.870	3.990	0.445	4.100	5.970	7.070	
Total June Discharge	456.640	659.460	281.600	898.200	160.500	462.010	367.210	82.236	286.050	493.000	173.120	[
July 01	6.340	4.420	4.250	15.400	1.830	6.800	3.260	0.355	3.550	4.910	7.570	
July 02	5.640	4.110	3.770	12.300	1.760	6.030	4.050	0.353	3.300	5.170	7.320	
July 03	5.490	3.940	3.400	11.200	1.740	5.320	5.610	0.577	3.100	5.420	6.460	
July 04	5.300	5.660	3.090	10.300	1.660	4.590	5.780	3.710	2.900	4.810	5.730	
July 05	4.900	8.500	2.830	9.800	1.550	4.250	5.210	15.500	2.650	4.380	5.020	
July 06	4.330	7.930	2.530	9.000	1.600	4.020	5.040	15.100	2.500	3.870	4.650	
July 07	4.050	7.590	2.310	8.670	1.460	3.450	4.470	10.700	2.300	3.750	7.440	
July 08	3.770	7.360	2.260	8.010	1.440	3.230	3.960	7.540	2.100	3.580	9.850	
July 09	3.340	8.210	2.310	7.500	2.060	3.230	3.570	5.480	2.140	3.460	8.720	
July 10	3.140	9.630	2.400	6.740	2.970	3.650	3.510	5.460	1.970	3.210	7.560	
July 11	2.940	11.300	2.190	6.170	3.400	3.990	3.340	5.380	1.840	2.750	7.890	1
July 12	2.640	9.630	1.880	6.200	6.120	3.570	3.310	4.830	1.810	2.410	8.680	
July 13	2.460	8.350	1.640	6.090	6.820	3.230	3.110	4.290	1.690	2.220	8.790	I
July 14	2.240	7.500	1.480	5.690	5.580	2.940	2.940	4.190	1.750	2.540	11.300	
July 15	1.900	6.510	1.420	5.150	5.040	2.590	2.710	3.970	1.670	3.440	12.100	
July 16	1.640	5.660	1.390	4.730	4.730	2.410	2.340	3.560	1.620	4.060	10.500	
July 17	1.390	5.100	1.300	4.220	4.530	2.120	2.130	3.250	1.460	3.580	8.650	
July 18	1.220	4.390	1.140	3.710	4.420	1.830	2.050	3.090	1.370	3.310	7.290	I
July 19	1.020	4.020	1.080	3.430	4.560	1.670	1.820	2.890	1.300	3.310	6.370	
July 20	0.850	3.620	1.050	3.540	4.220	1.470	1.770	2.710	1.170	2.980	5.660	+
July 21	0.708	3.340	1.030	3.620	3.680	1.270	1.570	2.500	1.130	4.300	5.730	!
July 22	0.629	3.000	1.040	3.600	3.200	1.120	1.570	2.380	1.020	7.650	5.510	
July 23	0.765	2.690	0.966	3.450	2.830	1.060	1.450	2.380	0.962	8.500	5.010	[
July 24	1.050	2.490	0.892	3.310	2.510	0.980	1.370	2.480	0.958	6.970	4.660	
July 25	0.991	2.830	0.810	3.140	2.260	0.821	1.150	2.290	0.976	5.310	4.570	
Juty 26	0.934	2490	0.801	3.030	2.020	0.773	0.971	2.100	0.967	4.160	4.510	
Juty 27	0.892	2270	0.753	2.940	1.830	0.731	0.872	1.960	0.826	3.750	4.260	
July 28	0.847	2.070	0.685	3.090	1.650	0.646	0.869	1.790	0.775	3.670	4.300	1
Juty 29	0.807	1.870	0.677	3.570	2.090	0.623	0.759	1.730	0.993	3.190	4.430	
Juty 30	0.762	1.700	0.612	3.570	2.420	0.793	0.711	1.670	0.999	2.960	4.010	1
Juty 31	0.725	1.560	0.544	3.370	2.300	0.688	0.850	1.550	0.928	3.000	3.590	I
Total July Discharge	73.710	159.740	52.530	184.540	94.280	79.895	82.122	126.765	52.724	126.620	208.130	
August 01	0.694	1.420	0.541	3.280	2.000	0.552	0.841	1.520	0.864	2.560	3.270	
August 02	0.575	1.270	0.521	3.260	1.760	0.493	0.603	1.540	0.977	2.420	3.130	
August 03	0.544	1.160	0.555	3.230	1.480	0.450	0.498	1.530	0.950	2.210	3.110	
August 04	0.496	1.080	0.714	3.310	1.300	0.428	0.532	1.450	0.784	1.720	2.860	
August 05	0.476	0.991	0.835	3.310	1.150	0.430	0.578	1.370	0.731	1.520	2.610	

Station Number
Station Name
Lattude
Longitude
PARAMETER:

08EE0 03
Buck Creek at the Mouth
64:23:62
126:39
Flow m3/s

1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
22.911	11.905	42.244	90.310	38.126	17.302	11.366	62.350	6.806	25.297	25.840
1.670	0.337	0.881	2.300	1.610	2.410	0.646	2.920	0.165	0.647	0.677
1.570	0.459	0.883	2.230	2.530	2470	0.685	2.820	0.162	0.689	0.673
1.440	0.575	1.020	2.210	2.700	2.320	0.780	2.700	0.298	0.724	0.667
1.480	0.722	1.040	2.170	2.640	2.220	0.682	2.480	0.590	0.731	0.670
1.730	0.677	1.050	2.350	2.580	2.050	0.589	2.360	0.516	0.782	0.673
1.880	0.691	0.920	2.690	2.310	2.080	0.549	2.310	0.505	0.755	0.666
1.750	0.722	0.767	3.230	2.030	1.840	0.580	2.220	0.571	0.766	0.673
1.610	0.841	0.886	3.260	2.120	1.680	0.558	2.120	0.968	0.866	0.669
1.530	0.963	1.150	3.140	2.020	1.620	0.524	2.060	1.420	1.200	0.670
1.590	0.974	1.400	3.000	1.730	1.780	0.589	1.940	1.510	1.360	0.680
1.680	0.974	1.580	2.970	1.910	1.780	0.816	1.990	1.660	1.330	0.687
1.710	1.060	1.510	2.890	2.080	1.840	0.974	1.940	1.740	1.360	0.678
1.680	1.060	1.460	3.110	2.120	1.910	1.160	2.130	1.520	1.390	0.657
1.670	1.010	1.470	3.480	2.080	1.950	1.100	2.250	1.390	1.390	0.636
1.630	1.280	1.960	3.260	2.010	2.020	1.010	2.330	1.310	1.370	0.608
1.610	1.740	2.750	2.970	1.990	2.070	0.943	2.190	1.300	1.300	0.579
1.600	2.020	2.860	2.890	2.010	2.020	0.855	2.050	1.200	1.190	0.584
1.660	2.550	2.830	2.620	2.100	1.940	0.851	1.920	1.100	1.230	0.616
1.660	2860	2.680	2.530	2.050	1.890	0.847	1.860	1.060	1.210	0.655
1.660	2.740	2.610	2.400	1.950	1.870	0.711	2.080	1.080	1.210	0.709
1.510	2.380	2.410	2.320	1.850	1.770	0.669	2.370	1.020	1.240	0.809
1.410	2.150	2.220	2.190	1.940	1.780	0.651	2.440	0.955	1.570	0.931
1.320	1.950	2.130	2.240	2.860	2.010	0.637	2.180	0.931	1.750	1.050
1.360	1.780	2.030	2.170	4.080	2.340	0.623	2.030	0.947	2.260	1.110
1.390	1.620	1.960	2.140	4.050	2.380	0.617	1.960	0.948	2.550	1.140
1.410	1.550	1.890	2.380	3.680	2.250	0.612	1.890	0.931	2.640	1.420
1.410	1.550	1.790	2.970	3.430	2.070	0.606	1.830	0.939	2.790	1.630
1.650	1.610	1.770	3.990	2.940	1.720	0.597	1.950	1.000	2.990	1.630
1.830	1.600	1.720	3.790	3.110	1.690	0.589	2.690	1.020	2.770	1.520
1.850	1.460	1.660	3.510	2.890	1.920	0.566	3.350	1.150	2.630	1.440
1.570	1,390	2.100	3.140	2.790	2.000	0.549	3.380	1.430	2.780	1.390
49.520	43.295	53.387	86.540	76.190	61.690	22.175	70.740	31.336	47.470	27.197
1.420	1.280	2.770	3.000	2.430	4.980	0.524	3.580	1.660	2.270	1.370
1.160	1.160	3.170	2.830	2.310	6.650	0.490	3.870	1.630	2.080	1.370
1.050	1.220	3.740	2.830	1.970	5.660	0.473	3.680	1.620	2.460	1.380
0.949	1.230	3.710	3.140	1.380	4.450	0.459	4.040	1.360	2.890	1.450
0.864	1.210	3.510	3.260	1.190	3.990	0.445	6.060	1.570	2.660	1.460
0.793	1.040	2.970	2.590	1.020	3.740	0.430	8.130	1.550	1.870	1.410°
0.722	1.070	3.110	2.920	0.934	3.450	0.416	9.530	1.390	1.620	1.300
0.665	0.957	2.790	2.680	0.906	3.230	0.405	9.190	1.300	1.470	1.450
0.637	0.878	2.350	2.380	0.886	3.060	0.394	8.440	1.220	1.360	1.380
0.595	0.830	4.450	2.420	0.864	2.890	0.382	7.490	1.130	1.260	1.300
0.566	0.799	4.900	2.440	0.841	2.750	0.379	6.480	1.070	1.180	1.290
0.538	0.767	3.370	2.380	0.818	2.620	0.362	5.920	1.010	1.110	1.240
0.510	0.736	4.130	2.290	0.799	2.480	0.354	5.440	0.960	1.040	1.250
0.481	0.708	5.520	2.180	0.782	2.400	0.345	5.160	0.910	0.990	1.330
0.467	0.680	5.320	1.830	0.765	2.320	0.337	4.670	0.870	0.940	1.270
0.453	0.660	4.670	2.010	0.756	2.210	0.331	4.330	0.831	0.904	1.290
0.439	0.640	4.250	2.210	0.745	2.100	0.326	4.050	0.792	0.868	1.300
0.425	0.620	3.680	2.140	0.733	1.980	0.320	3.840	0.753	0.832	1.300
0.419	0.612	3.110	2.050	0.725	1.870	0.317	2.810	0.714	0.796	1.110
0.413	0.586	2.830	1.980	0.719	1.760	0.314	2.450	0.685	0.760	0.880
0.402	0.572	2.610	1.930	0.714	1.680	0.309	2.120	0.660	0.742	0.750
0.391	0.558	2.420	1.900	0.711	1.610	0.306	1.950	0.635	0.724	0.680
0.385	0.544	2.270	1.880	0.708	1.530	0.303	1.760	0.610	0.706	0.630

$[]$												
11												
1	Station Number	08EE013										
	Station Name	Buck Creek	the Mout									
11	Latitude Longitude	$\begin{aligned} & \text { 64:23:52 } \\ & \text { 126:39 } \end{aligned}$										
	PARAMETER=	Flow m3/s										
11		1973	1974	1976	1976	1977	1978	1979	1980	1981	1982	1983
	Novernber 24	0.379	0.530	2.100	1.850	0.708	1.460	0.300	1.640	0.585	0.688	0.580
	Novernber 25	0.374	0.515	1.980	1.800	0.719	1.390	0.297	1.520	0.560	0.670	0.550
	Novernber 26	0.365	0.501	1.880 .	1.730	0.731	1.330	0.292	1.440	0.540	0.656	0.515
11	Novernber 27	0.360	0.487	1.780	1.680	0.759	1.270	0.289	1.350	0.520	0.642	0.490
	November 28	0.357	0.473	1.670	1.640	0.816	1.220	0.286	1.280	0.500	0.628	0.470
	November 29	0.351	0.459	1.600	1.580	0.827	1.160	0.283	1.240	0.480	0.614	0.445
1	November 30	0.343	0.447	1.500	1.530	0.824	1.100	0.280	1.200	0.460	0.600	0.425
	Total November Discharge	17.273	22.769	94.160	67.080	29.090	78.340	10.740	124.660	28.675	36.040	31.765
	December 01	0.337	0.436	1.460	1.480	0.813	1.060	0.278	1.160	0.444	0.590	0.410
i	December 02	0.334	0.425	1.390	1.440	0.787	1.010	0.275	1.130	0.428	0.580	0.392
	December 03	0.328	0.416	1.330	1.400	0.773	0.968	0.275	1.110	0.412	0.570	0.380
	December 04	0.323	0.408	1.290	1.360	0.753	0.923	0.272	1.090	0.396	0.560	0.370
$!$	December 05	0.317	0.399	1.230	1.320	0.728	0.878	0.272	1.070	0.380	0.550	0.360
	December 06	0.311	0.391	1.180	1.300	0.708	0.844	0.269	1.060	0.368	0.542	0.352
	December 07	0.309	0.382	1.130	1.280	0.694	0.810	0.269	1.050	0.356	0.534	0.344
	December 08	0.303	0.377	1.090	1.260	0.680	0.776	0.266	1.050	0.344	0.526	0.336
$1!$	December 09	0.300	0.371	1.060	1.250	0.671	0.742	0.266	1.060	0.332	0.518	0.328
	December 10	0.294	0.365	1.030	1.270	0.665	0.708	0.263	1.090	0.320	0.510	0.320
	December 11	0.292	0.360	0.997	1.300	0.657	0.685	0.263	1.200	0.311	0.502	0.314
$1!$	December 12	0.289	0.354	0.977	1.290	0.646	0.663	0.263	1.560	0.302	0.494	0.308
	December 13	0.283	0.348	0.963	1.270	0.631	0.640	0.261	1.500	0.293	0.486	0.302
	December 14	0.278	0.345	0.949	1.270	0.623	0.617	0.261	1.470	0.284	0.478	0.296
$[1$	December 15	0.275	0.343	0.934	1.290	0.617	0.595	0.261	1.380	0.275	0.470	0.290
	Decernber 16	0.272	0.340	0.917	1.330	0.609	0.578	0.261	1.300	0.268	0.465	0.287
	December 17	0.269	0.337	0.906	1.370	0.600	0.561	0.261	1.250	0.261	0.460	0.284
	December 18	0.266	0.334	0.898	1.360	0.592	0.544	0.261	1.210	0.255	0.455	0.281
$\lfloor!$	December 19	0.263	0.331	0.886	1.320	0.583	0.530	0.289	1.160	0.249	0.450	0.278
	December 20	0.261	0.328	0.878	1.300	0.572	0.515	0.340	1.110	0.243	0.445	0.275
	December 21	0.258	0.326	0.875	1.250	0.566	0.504	0.331	1.080	0.237	0.439	0.273
$1]$	December 22	0.255	0.323	0.864	1.240	0.561	0.493	0.326	1.030	0.231	0.433	0.271
	December 23	0.252	0.320	0.858	1.190	0.555	0.481	0.320	0.980	0.225	0.427	0.269
	December 24	0.246	0.317	0.855	1.170	0.547	0.470	0.314	0.960	0.219	0.421	0.267
	December 25	0.244	0.314	0.855	1.160	0.538	0.459	0.309	0.935	0.214	0.415	0.265
$[1$	December 26	0.241	0.311	0.855	1.160	0.532	0.447	0.303	0.900	0.210	0.410	0.264
	December 27	0.238	0.309	0.858	1.150	0.524	0.439	0.300	0.880	0.206	0.405	0.263
	Decernber 28	0.235	0.306	0.878	1.120	0.518	0.430	0.294	0.860	0.202	0.400	0.262
1	December 29	0.232	0.303	0.991	1.100	0.513	0.422	0.289	0.840	0.198	0.395	0.261
	December 30	0.229	0.300	1.080	1.060	0.510	0.413	0.286	0.820	0.194	0.390	0.260
	December 31	0.227	0.300	1.020	1.040	0.504	0.405	0.283	0.800	0.191	0.385	0.259
1	Total December Discharge	8.661	10.818	31.484	39.100	19.270	19.610	8.781	34.095	8.848	14.705	8.421
11												
1												

Station Number
Station Name
Latitude
Longitude
PARAMETER=

PARAMETER	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	11
January 01	0.300	0.470	0.059	0.484	0.360	0.800	2.500	0.461	0.990	0.400	
January 02	0.480	0.471	0.058	0.481	0.335	0.785	2.220	0.440	0.982	0.392	[]
January 03	0.660	0.472	0.057	0.478	0.319	0.770	2.160	0.412	0.981	0.381	1
January 04	0.680	0.473	0.055	0.475	0.300	0.760	2.100	0.390	0.981	0.379	
January 05	0.680	0.473	0.054	0.472	0.280	0.755	2.060	0.366	0.980	0.375	
January 06	0.645	0.470	0.053	0.469	0.269	0.745	2.040	0.340	0.980	0.372	
January 07	0.580	0.467	0.052	0.466	0.270	0.732	2.010	0.319	0.985	0.371	
January 08	0.540	0.464	0.052	0.469	0.276	0.721	1.980	0.311	0.995	0.369	
January 09	0.470	0.462	0.053	0.475	0.283	0.719	1.950	0.310	1.000	0.368	$1!$
January 10	0.430	0.460	0.054	0.510	0.305	0.710	1.910	0.307	1.010	0.365	,
January 11	0.395	0.460	0.057	0.660	0.335	0.719	1.820	0.301	1.020	0.362	
January 12	0.370	0.460	0.063	0.700	0.363	0.710	1.710	0.300	1.030	0.360	1
January 13	0.353	0.460	0.067	0.705	0.388	0.700	1.600	0.301	1.030	0.358	
January 14	0.342	0.475	0.070	0.698	0.401	0.690	1.550	0.310	1.030	0.355	! .
January 15	0.333	0.510	0.071	0.690	0.420	0.680	1.490	0.340	1.040	0.352	
January 16	0.328	0.545	0.073	0.675	0.428	0.680	1.480	0.368	1.060	0.350	
January 17	0.324	0.545	0.074	0.665	0.437	0.678	1.400	0.372	1.060	0.343	;
January 18	0.319	0.540	0.074	0.652	0.440	0.673	1.250	0.360	1.060	0.340	
January 19	0.312	0.535	0.074	0.645	0.450	0.663	1.110	0.340	1.060	0.330	':
January 20	0.308	0.532	0.073	0.635	0.455	0.658	1.000	0.329	1.060	0.328	
January 21	0.303	0.529	0.071	0.624	0.458	0.650	0.940	0.318	1.060	0.326	
January 22	0.301	0.526	0.069	0.612	0.460	0.643	0.900	0.311	1.060	0.324	
January 23	0.301	0.524	0.067	0.602	0.461	0.640	0.870	0.308	1.060	0.323	
January 24	0.303	0.521	0.065	0.595	0.462	0.639	0.830	0.303	1.070	0.328	
January 25	0.310	0.518	0.064	0.587	0.463	0.623	0.800	0.300	1.070	0.334	
January 26	0.320	0.512	0.064	0.580	0.467	0.615	0.780	0.298	1.080	0.340	'
January 27	0.330	0.506	0.064	0.572	0.469	0.600	0.755	0.291	1.080	0.350	
January 28	0.348	0.500	0.063	0.564	0.469	0.590	0.740	0.290	1.080	0.360	
January 29	0.365	0.495	0.061	0.556	0.450	0.561	0.720	0.289	1.080	0.368	
January 30	0.388	0.490	0.059	0.548	0.400	0.540	0.705	0.287	1.080	0.372	
January 31	0.404	0.486	0.057	0.540	0.360	0.518	0.690	0.310	1.080	0.381	1
Total January Discharge	12.522	15.351	1.947	17.884	12.033	20.967	44.070	10.282	32.134	11.056	
February 01	0.390	0.485	0.056	0.538	0.330	0.490	0.680	0.326	1.080	0.389	;
February 02	0.380	0.475	0.055	0.537	0.303	0.450	0.670	0.331	1.080	0.400	
February 03	0.370	0.460	0.054	0.523	0.300	0.370	0.665	0.329	1.090	0.410	
February 04	0.365	0.440	0.054	0.530	0.290	0.335	0.660	0.321	1.090	0.422	
February 05	0.360	0.425	0.053	0.537	0.292	0.310	0.655	0.319	1.090	0.440	
February 06	0.357	0.405	0.051	0.535	0.300	0.309	0.650	0.318	1.080	0.460	
February 07	0.360	0.385	0.049	0.545	0.310	0.305	0.645	0.315	1.070	0.470	
February 08	0.370	0.370	0.045	0.555	0.320	0.300	0.645	0.312	1.060	0.480	
February 09	0.388	0.365	0.042	0.565	0.330	0.301	0.640	0.311	1.060	0.482	
February 10	0.402	0.357	0.040	0.575	0.350	0.303	0.640	0.310	1.050	0.485	
February 11	0.401	0.354	0.038	0.595	0.363	0.306	0.640	0.310	1.040	0.485	
February 12	0.398	0.350	0.036	0.615	0.380	0.309	0.640	0.310	1.040	0.480	
February 13	0.393	0.347	0.033	0.635	0.390	0.311	0.640	0.310	1.040	0.477	
February 14	0.389	0.345	0.031	0.655	0.420	0.315	0.645	0.310	1.030	0.468	
February 15	0.387	0.350	0.021	0.680	0.435	0.319	0.645	0.310	1.010	0.455	
February 16	0.400	0.375	0.016	0.710	0.452	0.315	0.650	0.309	1.000	0.440	
February 17	0.420	0.395	0.011	0.740	0.470	0.310	0.655	0.309	0.995	0.430	
February 18	0.450	0.415	0.005	0.780	0.480	0.309	0.660	0.309	0.990	0.418	
February 19	0.490	0.427	0.002	0.800	0.500	0.304	0.670	0.308	0.980	0.403	
February 20	0.530	0.440	0.000	0.820	0.520	0.308	0.675	0.308	0.975	0.400	
February 21	0.560	0.450	0.000	0.830	0.532	0.311	0.685	0.306	0.968	0.392	1
February 22	0.560	0.455	0.000	0.830	0.538	0.329	0.695	0.304	0.970	0.390	I
February 23	0.525	0.460	0.000	0.824	0.538	0.345	0.700	0.301	0.975	0.390	
February 24	0.510	0.455	0.000	0.817	0.538	0.370	0.700	0.301	1.000	0.390	1
February 25	0.500	0.452	0.000	0.803	0.538	0.393	0.705	0.301	1.050	0.392	

$1]$	Station Number Station Name Latitude										
	Longitude										
\rceil	PARAMETER=										
	February 26	0.500	0.449	0.000	0.797	0.538	0.389	0.705	0.301	1.100	0.397
\lceil	February 27	0.500	0.447	0.002	0.788	0.538	0.370	0.710	0.300	1.200	0.420
	February 28	0.500	0.445	0.008	0.780	0.540	0.355	0.710	0.300	1.320	0.470
	February 29 Total February Discharge	0.495		0.540			9.441	18.680	1.400		
		12.650	11.578	0.702	18.939	12.376			8.699	30.833	12.136
$1]$	March 01	0.450	0.435	0.033	0.760	0.540	0.334	0.715	0.291	1.510	0.540
	March 02	0.480	0.430	0.060	0.750	0.541	0.320	0.715	0.289	1.550	0.555
11	March 03	0.470	0.427	0.066	0.740	0.542	0.315	0.720	0.281	1.600	0.555
	March 04	0.470	0.425	0.074	0.732	0.543	0.310	0.720	0.279	1.600	0.545
	March 05	0.480	0.425	0.080	0.725	0.544	0.311	0.720	0.275	1.880	0.540
11	March 06	0.490	0.423	0.086	0.719	0.545	0.316	0.725	0.276	1.950	0.530
	March 07	0.500	0.422	0.095	0.713	0.545	0.317	0.725	0.281	2.100	0.520
	March 08	0.510	0.421	0.108	0.707	0.550	0.320	0.730	0.290	2.250	0.505
	March 09	0.530	0.420	0.125	0.701	0.555	0.320	0.740	0.298	2.600	0.495
11	March 10	0.560	0.430	0.140	0.695	0.560	0.320	0.745	0.301	2.750	0.480
	March 11	0.620	0.445	0.170	0.692	0.560	0.328	0.755	0.302	3.200	0.450
	March 12	0.640	0.465	0.195	0.689	0.570	0.330	0.760	0.302	3.500	0.430
11	March 13	0.620	0.490	0.230	0.686	0.575	0.333	0.770	0.303	4.640	0.410
	March 14	0.600	0.510	0.340	0.683	0.580	0.340	0.780	0.303	5.860	0.400
	March 15	0.580	0.535	0.410	0.680	0.590	0.347	0.800	0.310	7.010	0.350
	March 16	0.560	0.580	0.409	0.680	0.610	0.350	0.820	0.321	8.080	0.388
1	March 17	0.560	0.620	0.410	0.685	0.605	0.357	0.850	0.345	9.100	0.390
	March 18	0.570	0.625	0.410	0.690	0.605	0.370	0.880	0.360	10.300	0.390
	March 19	0.580	0.620	0.440	0.695	0.600	0.380	0.910	0.371	10.700	0.390
11	March 20	0.580	0.615	0.517	0.710	0.600	0.386	0.950	0.375	9.900	0.390
	March 21	0.590	0.610	0.530	0.735	0.600	0.395	1.000	0.390	9.870	0.392
	March 22	0.620	0.605	0.550	0.770	0.610	0.408	1.050	0.395	10.900	0.395
11	March 23	0.660	0.601	0.570	0.815	0.618	0.430	1.130	0.400	11.400	0.398
	March 24	0.690	0.597	0.590	0.860	0.620	0.452	1.220	0.401	10.600	0.400
	March 25	0.705	0.595	0.610	0.905	0.620	0.480	1.340	0.406	10.700	0.405
	March 26	0.720	0.592	0.640	0.960	0.622	0.505	1.500	0.415	11.000	0.410
$[1$	March 27	0.730	0.590	0.670	1.020	0.630	0.515	1.670	0.421	10.200	0.420
	March 28	0.730	0.585	0.700	1.090	0.655	0.553	1.830	0.435	9.040	0.430
	March 29	0.740	0.580	0.730	1.180	0.670	0.575	2.040	0.450	8.350	0.435
11	March 30	0.790	0.575	0.750	1.260	0.690	0.598	2.300	0.458	8.490	0.439
	March 31	0.850	0.570	0.770	1.370	0.700	0.615	2.520	0.480	8.620	0.440
	Total March Discharge	18.715	16.263	11.508	25.097	18.395	12.230	33.130	10.814	201.250	13.857
11	April 01	0.940	0.567	0.850	1.540	0.730	0.640	2.820	0.501	11.700	0.470
	April 02	1.220	0.564	0.940	1.640	0.740	0.660	3.200	0.530	21.700	0.500
	April 03	1.500	0.561	1.020	1.780	0.760	0.680	3.650	0.555	26.300	0.530
11	April 04	1.950	0.558	1.180	2.050	0.780	0.710	4.400	0.595	23.100	0.580
	April 05	2.310	0.555	1.300	2.400	0.800	0.730	4.900	0.630	19.700	0.660
	April 06	1.540	0.553	1.440	2.900	0.815	0.770	5.600	0.680	17.400	0.740
	April 07	1.470	0.551	1.520	3.400	0.830	0.795	6.000	0.750	14.700	0.830
1	April 08	1.640	0.550	1.650	4.400	0.845	0.830	6.000	0.820	14.200	0.900
	April 09	1.710	0.570	1.730	5.200	0.855	0.880	5.700	0.880	12.800	1.000
	April 10	1.580	0.620	1.730	6.600	0.865	1.100	5.100	0.960	11.300	1.200
$[]$	April 11	1.570	0.750	1.660	8.000	0.880	1.900	4.920	1.010	10.500	1.380
	Apris 12	1.570	1.300	1.550	8.800	0.900	3.500	4.800	1.180	10.200	1.600
	Apris 13	1.650	1.700	1.600	9.050	1.000	7.200	6.100	1.300	10.000	2.000
	Appil 14	3.360	1.850	1.900	9.050	1.150	12.300	8.280	1.600	11.200	2.600
11	April 15	4.330	1.850	2.120	8.900	1.300	20.100	10.400	2.200	13.500	3.320
	April 16	5.730	1.850	2.350	8.600	1.550	21.000	12.500	3.400	17.500	4.200
	April 17	5.300	1.780	2.650	8.130	2.000	21.900	14.600	5.400	24.900	4.850
	April 18	5.240	1.680	2.870	6.270	2.600	23.000	16.700	9.000	26.100	5.800
	April 19	5.410	1.620	3.020	5.970	3.200	24.800	17.400	12.700	26.400	7.030

Station Number
Station Name
Lathude
Longitude
PARAMETER=

	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
April 20	6.330	1.560	3.150	6.020	4.600	26.200	19.900	15.100	28.500	7.900
April 21	7.100	1.510	3.300	6.980	5.800	27.000	20.500	15.500	25.000	9.200
April 22	7.540	1.450	3.440	6.950	7.200	27.300	21.000	16.900	21.800	11.300
April 23	7.360	1.420	3.570	7.260	9.200	28.000	20.700	17.500	19.300	13.500
April 24	6.680	1.420	3.700	7.840	11.000	29.300	19.300	18.900	16.100	14.400
April 25	6.450	1.650	3.850	8.160	15.000	31.500	17.600	20.700	14.200	13.800
April 26	6.220	1.900	4.000	8.070	17.500	33.100	17.300	17.000	20.400	14.500
April 27	6.030	2100	4.200	9.160	19.900	35.000	16.600	15.000	26.100	14.600
April 28	5.980	2.500	4.400	11.400	19.800	37.500	14.300	13.500	25.500	14.800
April 29	6.010	2.900	4.600	14.900	23.300	40.000	12.600	12.700	23.100	14.900
April 30	6.420	3.200	4.850	19.000	21.800	42.000	12.400	12.500	21.200	14.600
Total April Discharge	122.140	41.639	76.140	210.420	177.700	500.395	336.270	219.991	564.400	183.690

May 01
May 02
May 03
May 04
May 05
May 06
May 07
May 08
May 09
May 10
May 1
May 12
May 13
May 14
May 15
May 16
May 17
May 19
May 20
May 21
May 22
May 23
May 24
May 25
May 26
May 27
May 28
May 29
May 30
May 31
Total May Discharge

7.020	3.860	5.000	25.200	18.300	43.800	13.200	13.900	19.400	14.700
8.270	4.800	5.060	30.800	15.000	45.000	15.000	16.100	18.100	14.600
8.190	7.000	5.310	30.800	14.000	47.300	18.100	19.100	18.300	13.700
7.660	9.000	5.930	28.900	14.700	48.000	23.300	21.700	19.800	13.400
7.270	18.000	7.260	26.700	14.900	47.600	28.500	23.800	21.500	14.700
7.150	17.200	9.860	25.400	15.700	46.100	31.000	28.100	23.900	16.300
7.610	16.700	11.600	29.200	17.000	46.200	31.100	28.400	23.600	17.000
10.900	16.000	12.900	36.200	19.600	42.900	28.300	24.500	21.200	16.000
15.600	15.200	14.700	38.600	22.900	37.900	27.800	26.000	19.100	15.000
15.300	14.600	13.500	35.300	25.300	32.000	28.900	28.800	17.500	14.200
14.600	13.800	12.500	30.800	27.200	25.500	27.500	27.200	15.900	16.000
14.500	13.400	11.600	29.500	30.500	20.600	26.200	24.000	15.200	18.700
15.300	13.200	10.000	26.800	33.100	17.300	25.300	21.800	14.400	24.000
16.600	13.200	8.670	24.900	34.400	15.600	24.000	19.800	14.400	31.800
17.200	13.500	7.850	20.700	28.100	15.500	23.300	18.600	14.800	34.300
19.800	16.000	7.690	18.800	22.200	16.300	23.800	17.500	15.900	32.700
20.600	20.000	8.690	15.100	19.000	15.500	24.900	17.000	17.200	30.400
20.700	26.000	11.600	14.400	16.300	18.200	24.800	18.100	17.000	26.200
21.900	34.000	15.600	13.900	15.100	19.800	24.100	19.500	15.400	23.100
23.700	42.000	24.500	13.400	13.400	17.200	23.000	19.200	13.400	29.800
22.200	54.000	27.300	13.600	11.900	14.700	23.100	17.700	11.900	33.400
19.500	51.000	23.200	15.900	12.200	13.500	24.200	15.100	10.700	34.600
17.600	48.600	17.600	17.900	12.100	12.500	22.000	13.000	10.200	30.500
16.000	49.900	16.100	19.500	10.700	11.600	18.800	11.700	11.600	23.800
14.400	49.400	19.400	20.100	10.000	11.200	16.700	10.700	15.000	19.300
13.300	45.100	26.800	20.300	10.500	10.800	17.800	10.200	17.400	15.900
13.300	40.600	31.400	19.100	10.900	10.600	20.100	9.580	17.300	13.500
13.900	36.500	31.900	19.300	12.900	10.200	22.700	8.920	16.500	11.900
14.100	32.600	32.800	18.700	15.700	10.300	31.300	8.200	16.800	10.400
14.000	28.800	34.800	17.000	13.700	11.000	35.300	7.840	16.000	9.270
12.800	25.600	35.600	15.200	10.600	11.100	30.100	7.210	16.700	8.430
46.970	79.660	06.720	712.00	64.900	74.800	764.200	653.20	616.100	627.600

June 01	11.500	23.000	34.500	13.700	9.520	10.400	26.100	6.570	17.600	9.840
June 02	10.600	20.600	29.900	11.600	10.500	9.150	23.100	5.850	15.200	12.400
June 03	10.000	18.500	25.400	10.300	9.690	8.110	22.700	5.480	12.500	11.000
June 04	12.000	17.300	23.400	9.450	8.380	7.190	29.200	7.350	10.800	10.400
June 05	14.400	15.400	23.000	11.200	7.680	6.400	24.800	7.550	9.620	10.500
June 06	14.900	13.200	22.500	11.700	8.790	5.820	20.600	.6 .400	8.920	9.140
June 07	15.000	11.200	23.300	9.890	13.400	5.450	16.800	5.580	8.140	8.700
June 08	15.100	9.640	20.200	8.530	24.000	5.020	15.000	4.940	7.500	8.100
June 09	14.500	8.380	17.100	7.770	42.100	4.740	13.700	4.680	7.100	6.720
June 10	14.500	7.450	15.500	6.720	40.500	4.490	12.600	4.640	7.230	6.600
June 11	13.700	6.880	13.700	6.670	29.500	4.060	15.000	4.490	6.790	5.900
June 12	11.900	6.500	11.900	6.670	22.900	3.720	16.800	4.320	6.650	5.260

1	Station Number Station Name Lattude Longitude										
$]$	PARAMETER=	1984	1985	1986	1987	1988	1989	1980	1991	1992	1883
	June 13	10.200	6.010	10.400	6.000	18.300	3.480	15.300	4.190	7.260	4.830
$!$	June 14	8.750	6.280	9.450	4.620	15.200	3.400	12.700	4.170	6.920	4.960
	June 15	7.620	7.230	31.400	2.770	12.200	3.230	11.000	4.460	6.130	16.100
	June 16	6.790	6.630	40.900	2.410	10.600	2.940	9.240	5.130	5.760	27.400
	June 17	6.200	5.790	36.700	2.530	10.000	2.670	8.180	5.410	5.120	21.300
$\lceil 1$	June 18	5.630	5.170	32.200	2.180	9.420	2.560	7.130	5.430	4.620	17.200
	June 19	5.160	4.600	37.900	2.030	8.120	2.480	6.290	4.650	4.290	14.400
	June 20	4.680	4.270	34.700	1.820	7.050	2.280	5.810	4.440	4.380	12.100
$\lceil 1$	June 21	4.310	3.900	27.600	1.670	6.430	2.430	5.600	4.080	4.210	10.300
	June 22	4.050	3.830	23.000	1.480	6.240	2.410	4.910	3.700	3.780	12.900
	June 23	3.900	5.270	18.800	1.260	5.750	2.150	4.400	3.210	3.390	18.200
1	June 24	3.790	7.520	14.900	0.988	5.150	1.980	4.220	3.070	3.190	16.800
	June 25	3.580	7.620	11.500	0.637	4.840	1.890	4.170	3.090	2.930	14.600
	June 26	3.440	6.600	9.290	0.454	4.490	1.480	3.940	3.030	2.500	14.100
	June 27	3.340	5.580	7.800	0.292	4.340	1.240	3.890	3.330	2.300	14.300
11	June 28	3.290	4.990	6.900	0.636	4.650	1.310	4.030	4.030	2.060	17.300
	June 29	3.380	4.880	6.440	0.673	4.230	1.660	5.340	3.950	1.880	19.000
	June 30	3.600	6.050	6.060	0.509	3.750	1.800	9.140	3.830	1.690	16.400
11	Total June Discharge	249.810	260.270	626.340	147.169	367.720	115.940	361.690	141.050	190.460	376.750
	July 01	3.830	6.310	5.640	0.411	3.540	2.720	12.900	3.390	1.460	13.800
	July 02	3.660	5.420	5.570	0.351	3.440	3.140	12.700	3.050	1.380	11.700
$!$	July 03	3.320	4.650	5.080	0.290	3.340	2.990	10.600	3.190	1.450	9.960
	July 04	3.370	4.260	4.640	0.262	3.300	3.040	9.650	2.760	1.510	8.820
	July 05	3.480	5.370	4.270	0.262	3.340	2.840	8.710	2.800	1.570	8.040
11	July 06	3.640	6.400	3.880	0.259	3.080	2.700	9.180	3.320	1.410	7.100
	July 07	4.340	5.200	3.500	0.251	2.780	2.850	9.260	3.370	1.340	6.180
	July 08	4.580	4.600	3.090	0.368	2.460	3.270	8.310	3.030	1.330	5.380
	July 09	4.110	3.640	2.770	0.339	2.280	3.530	7.790	2.790	1.190	5.200
11	July 10	3.640	3.500	2.410	0.355	2.020	3.010	6.820	2.490	1.120	4.980
	Juty 11	3.320	3.350	2.320	0.465	1.910	2.650	6.400	2.260	1.010	4.520
	July 12	3.110	3.250	2.230	0.633	1.690	2.340	5.800	2.100	0.881	4.080
11	July 13	2.870	3.190	2.160	0.535	1.550	2.170	5.370	2.400	0.797	3.780
	July 14	2.610	2.970	2.110	0.463	1.400	2.090	5.010	2.830	0.745	3.510
	July 15	2.410	2.680	2.050	0.430	1.300	1.810	4.630	2.980	0.716	3.460
11	July 16	2.230	2.480	1.940	0.423	1.220	1.510	4.370	2.980	0.658	3.380
	July 17	2.020	2.270	1.800	0.365	1.070	1.480	4.080	2.780	0.599	3.160
	July 18	1.830	2.090	1.750	0.327	0.988	1.190	3.810	2.480	0.565	2.860
	July 19	1.730	1.890	1.770	0.307	0.936	1.110	3.900	2.340	0.529	2.590
$\}$	Juty 20	1.720	1.700	1.400	0.287	0.826	1.000	3.930	2.060	0.483	2.520
	July 21	1.660	1.590	1.150	0.253	0.767	0.948	3.600	1.970	0.440	2.490
	July 22	1.560	1.500	1.030	0.279	0.659	0.883	3.350	1.790	0.427	2.360
11	July 23	1.410	1.420	1.010	0.293	0.648	0.782	3.130	1.660	0.384	2.260
	July 24	1.280	1.350	0.899	0.272	0.774	0.731	2.920	1.460	0.350	2.150
	July 25	1.170	1.280	0.803	0.281	0.806	0.672	2.700	1.300	0.322	2.050
	July 26	1.080	1.180	0.739	0.278	0.872	0.591	2.520	1.130	0.294	1.910
$[1$	July 27	0.983	1.110	0.668	0.315	0.945	0.807	2.330	0.952	0.278	1.820
	July 28	0.921	1.030	0.637	0.469	0.913	1.340	2.180	0.957	0.252	1.910
	July 29	0.850	0.958	0.588	0.663	0.855	1.690	2.020	0.911	0.246	2.470
\lfloor						0.842	1.420	1.880	0.832	0.218	7.690
	July 31	0.741	0.811	0.551	0.778	0.798	1.220	1.750	0.797	0.199	11.600
	Total July Discharge	74.269	88.372	69.054	12.055	51.349	58.624	171.600	69.159	24.153	153.730
$[$	August 01	0.686	0.661	0.535	0.695	0.780	1.040	1.630	0.748	0.178	9.550
	August 02	0.653	0.667	0.467	0.591	0.666	0.940	1.530	0.673	0.170	7.850
	August 03	0.608	0.684	0.450	0.472	0.611	0.843	1.430	0.574	0.149	6.710
1	August 04	0.614	0.691	0.443	0.459	0.537	0.746	1.330	0.489	0.145	5.880
	August 05	0.714	0.687	0.471	0.436	0.524	0.683	1.240	0.493	0.152	5.100

$\lceil 1$	Station Number Station Name Latitude Longitude PARAMETER=	1984	1985	1986	1987	1988	1989	1990	1991	1992	$\begin{array}{r} 1993 \\ 31.419 \end{array}$
	Total September Discharge	0.000	12.330	12.122	13.013	17.433	16.153	6.307	6.696	11.808	
1	October 01		0.365	1.440	0.422	3.430	0.380	0.198	0.177	1.350	0.786
	October 02		0.350	1.600	0.445	2.910	0.416	0.315	0.193	1.270	0.785
$[1$	October 03		0.335	2.200	0.434	2.440	0.436	0.260	0.179	1.210	0.701
	October 04		0.323	2.200	0.417	2.160	0.408	0.439	0.181	1.170	0.729
	October 05		0.310	1.980	0.425	1.930	0.462	0.464	0.170	1.090	0.788
	October 06		0.300	1.860	0.420	1.720	0.472	0.423	0.156	0.959	0.827
11	October 07		0.290	1.760	0.453	1.560	0.595	0.405	0.164	0.867	0.851
	October 08		0.285	1.730	0.455	1.420	0.551	0.413	0.168	0.812	0.838
	October 09		0.287	1.670	0.445	1.370	0.532	0.482	0.321	0.763	0.819
11	October 10		0.300	1.530	0.429	1.330	0.475	0.581	1.090	0.801	0.803
	October 11		0.320	1.380	0.452	1.240	0.478	0.815	2.230	1.080	0.769
	October 12		0.348	1.280	0.427	1.170	0.531	0.764	2060	1.220	0.771
11	October 13		0.360	1.260	0.418	1.200	0.557	0.684	1.570	1.160	0.756
	October 14		0.370	1.180	0.441	1.320	0.680	0.628	1.300	1.050	0.649
	October 15		0.420	1.140	0.410	1.440	0.693	0.596	1.570	0.882	0.637
	October 16		0.820	1.100	0.412	1.430	0.791	0.532	1.610	0.922	0.724
11	October 17		0.825	1.060	0.415	1.350	0.747	0.553	1.460	0.819	0.701
	October 18		0.840	1.010	0.440	1.320	0.853	0.591	1.310	0.773	0.683
	October 19		0.825	0.993	0.424	1.280	1.550	0.594	1.220	0.977	0.718
$1!$	October 20		0.820	0.956	0.431	1.280	1.750	0.605	1.150	1.210	0.701
	October 21		0.815	0.955	0.417	1.620	1.530	0.623	1.630	1.570	0.692
	October 22		0.820	0.924	0.401	2.330	1.410	0.581	1.860	2.030	0.563
	October 23		0.760	0.894	0.387	2.580	1.350	0.589	1.510	2.630	0.636
11	October 24		0.710	0.895	0.380	2.410	1.260	0.741	1.330	4.260	0.863
	October 25		0.655	0.896	0.317	2.500	1.230	0.983	1.210	4.550	0.930
	October 26		0.620	0.854	0.314	2.590	1.330	1.360	0.901	4.000	0.960
$1!$	October 27		0.590	0.950	0.312	2.600	1.470	1.330	0.835	3.410	1.080
	October 28		0.570	0.957	0.356	2.550	1.480	1.270	0.780	3.040	1.180
	October 29		0.575	0.978	1.210	2.420	1.350	1.090	0.725	2.880	1.230
	October 30	0.959	0.570	1.020	4.080	2.340	1.300	1.170	0.699	2.770	1.160
$[1$	October 31	0.910	0.535	1.020	4.780	2.230	1.240	0.996	0.680	2.680	1.090
	Total Oclober Discharge	1.869	16.313	39.672	21.569	59.470	28.307	21.075	30.439	54.205	25.420
$[1$	November 01	0.860	0.485	1.010	4.330	2.180	1.180	0.924	0.665	2.630	1.060
	November 02	0.810	0.470	1.070	3.560	2.100	1.140	0.920	0.660	2.630	2.500
	November 03	0.780	0.460	1.150	3.100	2.030	1.210	0.910	0.650	2.530	7.320
	November 04	0.750	0.448	1.390	2.840	1.970	1.900	0.900	0.645	2.590	6.980
$]$	November 05	0.720	0.438	1.430	2.580	1.920	2.500	0.900	0.780	2.460	5.220
	November 06	0.690	0.423	1.380	2.490	1.880	2.310	0.910	0.760	2.490	4.300
	Novernber 07	0.660	0.419	1.320	2.610	1.830	2.100	0.915	0.755	2.390	3.760
$[1$	Novernber 08	0.640	0.390	1.310	4.160	1.780	1.970	0.920	0.762	2.290	3.400
	November 09	0.610	0.365	1.240	8.540	1.720	2.070	0.910	0.800	1.720	3.090
	November 10	0.590	0.343	1.180	8.350	1.680	1.950	0.890	0.980	1.460	2.770
	November 11	0.565	0.325	1.110	7.100	1.620	1.880	0.885	1.500	1.300	2.610
$[]$	November 12	0.550	0.310	0.980	6.150	1.580	1.780	0.885	1.350	1.240	2.510
	November 13	0.535	0.295	0.910	5.660	1.530	1.720	0.895	1.210	1.250	2.170
	November 14	0.515	0.280	0.860	5.110	1.490	1.730	0.905	1.150	1.280	1.600
11	November 15	0.500	0.290	0.820	4.310	1.470	1.780	0.905	1.140	1.300	1.250
	November 16	0.490	0.285	0.805	3.710	1.420	2.100	0.905	1.110	1.310	1.150
	November 17	0.480	0.278	0.795	3.040	1.400	2.260	0.905	1.090	1.290	1.060
1	November 18	0.470	0.265	0.780	2.800	1.380	3.580	0.900	1.150	1.260	0.960
	November 19	0.465	0.258	0.775	2.600	1.350	9.850	0.860	1.300	1.230	0.900
	November 20	0.455	0.245	0.772	2.480	1.320	10.200	0.810	1.280	1.200	0.860
	November 21	0.455	0.224	0.775	2.410	1.290	7.710	0.780	1.250	1.180	0.830
11	November 22	0.455	0.208	0.780	2.370	1.260	7.680	0.715	1.190	1.140	0.810
	November 23	0.460	0.188	0.773	2.320	1.240	7.940	0.670	1.120	1.090	0.790

Station Number

Station Name

Latitude

Longitude
PARAMETER $=$

Station Number
Station Name
LATIMUDE=
LONGITUDE=
PARANETER=

08EE018

MAZAN CREER ABOVE BULKLEY LAKE

54:21:25N

126:10:12W
PARAMETER= Flow m3/s
February 21
February 22
February 23
February 24
February 25
February 26
February 27
February 28
February 29
Total February Discharge

March 01
March 02
March 03
March 04
March 05
March 06
March 07
March 08
March 09
March 10
March 11
March 12
March 13
March 14
March 15
March 16
March 17
March 18
March 19
March 20
March 21
March 22
March 23
March 24
March 25
March 26
March 27
March 28
March 29
March 30
March 31
Total March Discharge
April 01
April 02
April 03
April 04
April 05
April 06
April 07
April 08
0.198
0.198
0.198
0.198
0.198
0.198
0.195
0.195
0.195
0.193
0.193
0.193
0.193
0.195
0.195
0.195
0.195
0.198
0.198
0.198
0.198
0.201
0.201
0.204
0.204
0.207
0.210
0.210
0.212
0.215
0.218
6.199
0.221
0.235
0.246

0.479	0.439
0.476	0.436
0.467	0.436
0.464	0.433
0.462	0.433
0.459	0.433
0.453	0.430
0.447	0.430
0.442	0.430
0.436	0.430
0.430	0.428
0.425	0.425
0.416	0.425
0.411	0.422
0.402	0.422
0.396	0.419
0.391	0.419
0.385	0.416
0.379	0.413
0.377	0.413
0.371	0.411
0.368	0.408
0.365	0.405
0.360	0.399
0.354	0.396
0.354	0.394
0.351	0.391
0.351	0.388
0.348	0.385
0.345	0.385
0.345	0.396
12.509	12.890
0.360	0.453
0.399	0.442
0.439	0.524
0.479	0.631
0.484	0.736
0.603	0.830
0.682	0.994
0.750	1.200

0.232	0.292	
0.227	0.294	[!
0.224	0.297	
0.218	0.300	
0.215	0.300	!
0.212	0.306	
0.210	0.311	
0.207	0.314	,
0.204	0.317	
0.201	0.323	
0.198	0.328	
0.195	0.331	
0.193	0.334	
0.190	0.337	
0.187	0.340	
0.184	0.340	$1 ;$
0.181	0.343	
0.178	0.345	$1!$
0.176	0.345	$1!$
0.176	0.345	
0.173	0.343	
0.170	0.343	
0.170	0.343	
0.167	0.340	
0.167	0.340	
0.164	0.337	
0.164	0.334	
0.161	0.328	
0.161	0.326	
0.159	0.320	
0.159	0.317	
5.823	10.113	1
0.159	0.314	
0.159	0.311	!
0.159	0.309	
0.159	0.309	!
0.159	0.309	Li
0.159	0.309	
0.159	0.309	I'
0.159	0.311	[i.

11	Stätion Number Station Name LATITUDE=	08Es018 maxan creex 54:21:25N	ove buld					
$\\|$	LONGITUDE=	126:10:12w						
	PARAMETER=	Flow m3/s						
		1974	1975	1976	1977	1978	1979	
$!1$	April 09		0.252	0.782	1.520	0.159	0.311	
	April 10		0.258	0.634	2.050	0.159	0.314	
	April 11		0.263	0.671	2.550	0.161	0.317	
1	April 12		0.269	0.912	3.060	0.161	0.326	
	April 13		0.275	1.080	3.600	0.164	0.340	
	April 14		0.283	1.310	3.910	0.164	0.368	
	April 15		0.294	1.500	4.280	0.167	0.396	
11	April 16		0.303	1.780	4.250	0.167	0.487	
	April 17		0.314	2.010	4.130	0.170	0.538	
	April 18		0.328	2.260	3.960	0.283	0.623	
	April 19		0.343	2.510	3.770	0.521	0.708	
	April 20		0.357	2.750	3.480	0.796	0.821	
	April 21		0.377	2.920	3.370	1.230	0.949	
1	April 22		0.396	2.920	3.510	1.760	1.080	
	April 23		0.413	3.060	4.450	2.100	1.300	
	April 24		0.436	3.140	6.710	2.920	1.460	
	April 25		0.459	3.230	11.000	5.210	1.750	
	April 26		0.481	3.370	22.000	8.070	2.260	
	April 27		0.513	3.680	31.100	10.600	2.920	
	April 28		0.538	4.420	31.100	13.300	4.220	
	April 29		0.575	5.580	28.600	14.800	7.620	
	April 30		0.600	7.480	25.100	15.400	13.300	
	Total April Discharge		10.179	62.195	213.310	79.734	44.889	
	May 01		0.813	11.300	22.700	15.400	19.500	
	May 02		1.220	17.100	21.700	15.000	23.900	
	May 03		2.100	21.800	20.900	14.100	28.300	
	May 04		3.540	26.600	19.500	12.700	29.700	
	May 05		5.410	33.100	17.500	11.500	29.200	
	May 06		6.680	36.200	17.600	10.500	27.400	
i	May 07		7.140	35.700	18.000	10.400	25.100	
	May 08		7.530	34.300	19.500	11.600	23.000	
	May 09		8.380	33.100	17.700	13.000	21.000	
	May 10		10.900	33.700	16.100	13.400	18.900	
	May 11		15.400	34.300	14.800	12.900	17.000	
	May 12		17.200	31.100	13.000	12.600	15.600	
	May 13		17.000	27.300	11.100	11.800	14.400	
	May 14		16.600	24.400	9.680	12.200	13.300	
	May 15		16.500	22.900	8.670	14.000	13.000	
	May 16		16.000	23.100	8.780	14.300	14.000	
11	May 17		14.300	24.100	8.750	13.800	14.800	
	May 18		12.700	22.700	8.130	13.400	15.100	
11	May 19		11.100	20.800	7.760	14.000	14.200	
11	May 20		10.500	19.300	7.480	14.800	13.900	
	May 21.		9.850	18.100	6.850	14.200	13.500	
1	May 22		9.320	17.400	6.430	12.600	14.100	
[1]	May 23		8.470	16.700	6.090	12.100	16.300	
	May 24		7.530	16.400	6.200	11.800	18.700	
	May 25		7.480	16.400	5.690	10.900	18.100	
	May 26	,	7.500	15.700	5.520	10.600	19.300	
	May 27		8.440	16.000	5.800	11.000	17.600	
	May 28		10.300	15.500	5.300	11.200	14.100	
	May 29		11.300	14.300	4.930	9.570	13.200	

\prod	Station Number Station Name LATITUDE=	08EE018 maxan creek above bulktey lake $54: 21: 25 N$						
Π	LONGITUDE= PARAMETER=	126:10:12W						
		Flow m3/s						
		1974	1975	1976	1977	1978	1979	
$\\|$	July 18		0.796	2.220	2.440	0.368	1.270	
	July 19		0.765	2.020	2.310	0.351	1.120	
	July 20		0.728	2.280	2.050	0.331	0.985	
11	July 21		0.660	2.700	1.870	0.294	0.923	
	July 22		0.592	2.290	1.670	0.280	0.986	
	July 23		0.515	2.000	1.460	0.258	0.830	
	July 24		0.456	1.930	1.270	0.244	0.588	
$\\|$	July 25		0.385	1.820	1.170	0.235	0.306	
	July 26		0.408	1.680	1.030	0.227	0.235	
	July 27		0.388	1.560	0.895	0.218	0.215	
1	July 28		0.379	1.970	0.835	0.212	0.191	
	July 29		0.362	2.430	1.280	0.207	0.169	
	July 30		0.326	2.010	1.210	0.207	0.143	
1	July 31		0.303	1.840	1.120	0.204	0.145	
,	Total July Discharge		24.261	112.870	53.271	26.442	54.976	
1	August 1		0.286	1.870	0.926	0.201	0.142	
	August 2		0.328	1.760	0.801	0.204	0.136	
	August 3		0.371	2.140	0.671	0.210	0.129	
	August 4		0.450	2.060	0.578	0.215	0.124	
	August 5		0.538	1.780	0.433	0.221	0.133	
	August 6		0.459	1.560	0.357	0.204	0.137	
	August 7		0.504	1.550	0.351	0.198	0.114	
1	August 8		0.606	1.670	0.309	0.221	0.104	
	August 9		0.524	1.520	0.283	0.241	0.088	
	August 10		0.575	1.440	0.246	0.255	0.077	
	August 11		0.600	1.410	0.207	0.227	0.066	
1	August 12		0.547	1.300	0.170	0.793	0.061	
	August 13		0.442	1.370	0.159	0.566	0.054	
11	August 14		0.394	1.510	0.153	0.510	0.045	
	August 15		0.365	1.590	0.133	0.300	0.041	
	August 16		0.385	1.420	0.110	0.269	0.038	
	August 17		0.547	1.310	0.099	0.244	0.036	
	August 18		0.665	1.250	0.099	0.221	0.088	
	August 19		0.629	1.270	0.088	0.204	0.102	
	August 20		0.535	1.720	0.088	0.227	0.085	
	August 21		0.484	1.610	0.085	0.283	0.068	
	August 22		0.470	1.420	0.198	0.368	0.051	
	August 23		0.436	1.370	0.195	0.991	0.049	
	August 24		0.425	1.440	0.144	1.270	0.053	
	August 25		0.481	1.710	0.119	0.566	0.052	
	August 26		0.564	1.510	0.108	0.297	0.047	
	August 27		1.210	1.460	0.099	0.255	0.039	
	August 28		1.320	1.420	0.108	0.227	0.028	
	August 29		1.320	1.360	0.184	0.204	0.039	
$\\|$	August 30		1.350	1.390	0.286	0.190	0.030	
	August 31		1.250	1.420	0.244	0.176	0.043	
	Total August Discharge		19.060	47.610	8.031	10.558	2.299	
	September 1		1.120	1.310	0.176	0.176	0.043	
	September 2		0.985	1.210	0.159	0.178	0.037	
	September 3		0.841	1.200	0.303	0.176	0.042	
	September 4		0.779	1.290	0.507	0.178	0.056	

Station Number	08EE018					
Station Name	MAEAN CREER	ABOVE BULKLEY	LAKE			
LATITUDE=	54:21:25N					
LONGITUDE=	126:10:12W					
PARAMETER=	Flow m3/s					
	1974	1975	1976	1977	1978	1979
December 14	0.204	1.070	0.708	0.564	0.294	0.051
December 15	0.210	1.060	0.691	0.552	0.294	0.051
December 16	0.212	1.050	0.680	0.544	0.294	0.051
December 17	0.215	1.030	0.665	0.535	0.294	0.054
December 18	0.221	1.030	0.651	0.527	0.292	0.057
December 19	0.224	1.020	0.646	0.518	0.292	0.059
December 20	0.227	1.020	0.637	0.510	0.289	0.065
December 21	0.232	1.010	0.626	0.504	0.289	0.071
December 22	0.235	1.010	0.620	0.498	0.289	0.079
December 23	0.238	1.010	0.609	0.490	0.286	0.088
December 24	0.241	1.010	0.600	0.487	0.286	0.102
December 25	0.244	1.010	0.592	0.479	0.283	0.108
December 26	0.249	1.010	0.580	0.473	0.283	0.113
December 27	0.252	1.000	0.572	0.467	0.283	0.119
December 28	0.252	1.000	0.564	0.464	0.280	0.127
December 29	0.255	0.997	0.558	0.459	0.280	0.130
December 30	0.255	0.991	0.555	0.456	0.278	0.136
December 31	0.255	0.977	0.552	0.453	0.278	0.136
Total December Disch	6.634	34.895	21.838	17.497	9.195	2.317

STANUM=	08EE019		
STANAME=	MAXAN CREEK AT OUTLET OF MAXAN LAKE		
LATITUDE=	64:19:10N		
LONGITUDE=	126:06:59W		
PARAMETER=	Flow m3/s		
	1976		
February 18	0.368	August 18	0.496
February 19	0.368	August 19	0.479
February 20	0.365	August 20	0.473
February 21	0.362	August 21	0.459
February 22	0.357	August 22	0.450
February 23	0.354	August 23	0.436
February 24	0.351	August 24	0.428
February 25	0.345	August 25	0.419
February 26	0.348	August 26	0.411
February 27	0.343	August 27	0.402
February 28	0.340	August 28	0.396
February 29	0.340	August 29	0.394
Total February Discharge	9.644	August 30	0.385
		August 31	0.379
March 1	0.337	Total August Discharge	17.092
March 2	0.334		
March 3	0.331	September 1	0.374
March 4	0.328	September 2	0.368
March 5	0.328	September 3	0.365
March 6	0.326	September 4	0.360
March 7	0.323	September 5	0.354
March 8	0.320	September 6	0.351
March 9	0.317	September 7	0.345
March 10	0.317	September 8	0.340
March 11	0.317	September 9	0.331
March 12	0.317	Seplember 10	0.331
March 13	0.314	September 11	0.328
March 14	0.314	September 12	0.328
March 15	0.311	September 13	0.326
March 16	0.311	September 14	0.323
March 17	0.309	September 15	0.323
March 18	0.309	September 16	0.320
March 19	0.306	September 17	0.317
March 20	0.306	September 18	0.314
March 21	0.306	September 19	0.314
March 22	0.303	September 20	0.311
March 23	0.303	September 21	0.311
March 24	0.300	September 22	0.309
March 25	0.300	September 23	0.306
March 26	0.297	September 24	0.306
March 27	0.294	September 25	0.300
March 28	0.292	September 26	0.300
March 29	0.289	September 27	0.300
March 30	0.292	September 28	0.297
March 31	0.294	September 29	0.297
Total March Discharge	9.645	September 30	0.297
		Total September Discharg	9.746
April 1	0.300		
April 2	0.306	October 1	0.294
April 3	0.311	October 2	0.294

$\begin{aligned} & 11 \\ & 11 \end{aligned}$	STANUM $=$ STANAME= LATITUDE $=$ LONGITUDE= PARAMETER=	08EE019 MAXAN CRE 64:19:10N 126:06:69W Flow m3/s 1976	OUTLET OF MAXAN LAKE	
	April 4	0.314	October 3	0.297
	Aprit 5	0.323	October 4	0.297
1 !	April 6	0.337	October 5	0.300
	April 7	0.354	Octaber 6	0.303
!	April 8	0.368	October 7	0.306
:	Aprill 9	0.394	October 8	0.309
	April 10	0.416	October 9	0.311
	April 11	0.453	October 10	0.317
:	April 12	0.481	October 11	0.317
	April 13	0.538	October 12	0.320
	April 14	0.609	October 13	0.323
-	April 15	0.674	October 14	0.323
	April 16	0.779	October 15	0.326
	April 17	0.906	October 16	0.326
.	April 18	1.090	October 17	0.323
	April 19	1.560	October 18	0.323
	April 20	1.930	October 19	0.323
	April 21	2.320	October 20	0.320
	April 22	2.550	October 21	0.317
	April 23	2.690	October 22	0.317
	April 24	2.790	October 23	0.314
	April 25	2.830	October 24	0.314
	April 26	2.970	October 25	0.311
:	April 27	3.140	October 26	0.314
	April 28	3.450	Oclober 27	0.314
	April 29	3.680	October 28	0.317
	April 30	4.250	October 29	0.320
	Total April Discharge	35.250	October 30	0.326
			October 31	0.328
-	May 1	5.660	Total October Discharge	9.744
	May 2	8.210		
	May 3	14.200	November 1	0.334
(1)	May 4	17.600	November 2	0.334
	May 5	24.500	November 3	0.337
$!$	May 6	26.900	November 4	0.337
11	May 7	28.300	November 5	0.337
	May 8	31.100	November 6	0.337
1	May 9	29.400	November 7	0.337
15	May 10	27.800	November 8	0.334
	May 11	25.800	November 9	0.331
I	May 12	24.500	November 10	0.328
II	May 13	22.700	November 11	0.328
	May 14	21.500	November 12	0.326
1	May 15	20.400	November 13	0.331
1	May 16	19.300	November 14	0.337
	May 17	18.400	November 15	0.351
!	May 18	17.300	November 16	0.368
I,	May 19	16.600	November 17	0.396
	$\text { May } 20$	15.900	November 18	0.453
1	May 21	15.300	November 19	0.552

STANUME
STANAME $=$
LATITUDE
LONGITUDE=
PARAMETER=

1976			
May 22	14.600	November 20	0.906
May 23	13.900	November 21	0.878
May 24	13.500	Novernber 22	0.864
May 25	13.000	November 23	0.835
May 26	12.500	November 24	0.821
May 27	12.200	November 25	0.813
May 28	11.800	November 26	0.801
May 29	11.500	November 27	0.793
May 30	11.300	November 28	0.782
May 31	11.000	November 29	0.770
Total May Discharge	556.670	November 30	0.765
		Total November Discharg	15.816
June 1	10.900		
June 2	11.000	December 1	0.742
June 3	11.200	December 2	0.733
June 4	11.300	December 3	0.725
June 5	11.600	December 4	0.716
June 6	12.000	December 5	0.708
June 7	12.700	December 6	0.694
June 8	13.600	December 7	0.680
June 9	13.000	December 8	0.671
June 10	11.600	December 9	0.660
June 11	10.800	December 10	0.648
June 12	10.400	December 11	0.643
June 13	10.500	December 12	0.634
June 14	10.900	December 13	0.629
June 15	11.600	December 14	0.623
June 16	10.800	December 15	0.617
June 17	9.910	December 16	0.609
June 18	9.060	December 17	0.600
June 19	8.350	December 18	0.589
June 20	7.650	December 19	0.580
June 21	7.220	December 20	0.578
June 22	6.650	December 21	0.572
June 23	6.230	December 22	0.566
June 24	5.780	December 23	0.561
June 25	5.380	December 24	0.558
June 26	5.040	December 25	0.552
June 27	4.730	Dacember 26	0.549
June 28	4.470	December 27	0.544
June 29	4.160	December 28	0.538
June 30	3.910	December 29	0.535
Total June Discharge	272.440	December 30	0.530
		December 31	0.524
		Total December Discharg	19.108

Appendix B

Analysis of Climate and Hydrological Data Trends Outside of the Upper Bulkley, by Eero Karanka

NOTE DE SERVICE

Brenda Donas
Community Advisor

Eero Karanka

Habitat Management Unit Prince Rupert, B.C.

Historical Data Review on the Upper Bulkley Watershed

The main limitation of this report is its confinement to analysis of hydrological and climatological data within the Upper Bulkley Watershed. As the report correctly points out, those data are fragmentary in extent. While they provide hints of trends and changes, it is difficult to interpret them in the context of continuous long-term records. To place the basin's climate and hydrology in a long term context, the study boundaries have to be expanded outside the confines of the Upper Bulkley Watershed.

I may be able to provide some of the long-term context. Several years ago, I acquired temperature and precipitation data from a number of Atmospheric Environment Service (AES) climate stations with the intent of looking at regional long-term climate trends. (The HYDAT CD-ROM provides the same capability for Water Survey of Canada (WSC) streamflow records). Among the AES records that I acquired were the monthly summary records for Quick, Burns Lake Airport, Burns Lake Decker Lake, Ootsa Lake Skins Lake Spillway, and Nadina River. I also acquired the daily records for wistaria, which has the longest continuous records closest to the Upper Bulkley Watershed, dating back to 1926. I didn't get around to analyzing the data from those stations, partly because the Bulkley and Nechako Rivers weren't within my direct habitat responsibilities.

As my main contribution to this review, I decided to start on the analysis of these long-term records, beginning with long-term precipitation and streamflow records from the nearby stations outside the Upper Bulkley Watershed. It provides some interesting contexts for the fragmentary data from the Upper Bulkley stations.

For analysis of climate and hydrological data trends, I am a proponent of the use of cumulative departures from the long-term mean. A full discussion of this analytic method is contained in: Trends and Fluctuations in Precipitation and Stream Runoff in the Queen Charlotte Islands. Land Management Report \#40. B.C. Ministry of Forests (E.J. Karanka and Associates, 1986).

I have done the cumulative departures from the mean analysis for the following:

- April/May to September runoff volume, Bulkley River at Quick (Figure 1).
- October to April precipitation at Quick, Wistaria, Nadina River, Ootsa Lake, and the 2 Burns Lake stations (Figure 2).

The interpretation of these graphs is quite straightforward:

- If the cumulative deviation from the mean fluctuates around a horizontal line, there is no long term trend.
- If the cumulative deviation from the mean shows an increasing tendency, the individual data points during that period tend to be above the long term mean for the data set.
- If the cumulative deviation from the mean shows a decreasing tendency, the individual data points during that period tend to be below the long term mean for the data set.

The analysis, in itself, does not say anything about the cause of any trends: it simply identifies them as being present in the data.

Both the April to September and May to September runoff volumes for the Bulkley River at Quick (Figure l) show the following:

- A period from 1930 to approximately 1963 during which there are no strong trends.
- A period from 1964 to 1976 during which the runoff volumes were generally above the long-term mean.
- A period from 1977 to 1990/1993 during which runoff volumes were generally below the long-term mean.

The mean runoff volumes for the period of record, pre-1964, 19641976, and post-1976 are compared in Table 1. The post-1976 runoff volume for the April/May to September periods has decreased about 15 to 17% from the preceding 1964 to 1976 period, and is about 6-7\% below the long-term mean.

It is interesting to note that at the Bulkley River near Houston stream gauge, the $1980-1990$ May to September runoff volume is about 18\% lower than during 1944-1952.

The October to April total precipitation index at Wistaria (Figure 2) shows the following:

- A period from 1926 to 1940 during which the precipitation was generally above the long-term mean.
- A period from 1941 to 1975 during which the precipitation has no strong trends.
- A period from 1976 to 1992 during which the precipitation is generally below the long-term mean.

The combined all-station precipitation index (Figure 2) was compiled by summing the deviations from the mean at individual stations. This index does not begin until the 1949-50 winter, when data from at least three regional long-term stations becomes available. This index shows the following trends:

- A period before 1965 during which there are no strong trends in regional October to April precipitation.
- A period from 1965 to 1976 during which the regional precipitation is generally above the long-term mean.
- A period since 1976 during which the regional precipitation is generally below the long-term mean.

Comparison of the individual station long term means and the periods from 1965 to 1976 and since 1976 (Table 2) suggest that the regional October to April precipitation has decreased about 15 to 21\% since 1976 from the preceding 1965 to 1976 period, and is about 7 to 10% below the long-term mean.

Thus the October to April regional precipitation index and the Bulkley River April/May to October runoff volume index have coincident trends since the mid 1940's.

TABLE 1: BULKLEY RIVER AT QUICK LONG TERM TRENDS

TIME PERIOD	MAY-SEPT. MEAN RUNOFF VOLUME	APR-SEPT. MEAN RUNOFF VOLUME
RECORD (1931-1993)	3046465	3258869
$1931-1963$	3015355	3242467
$1964-1976$	3412793	3557148
$1977-1993$	2826723	3048141

TABLE 2: REGIONAL PRECIPITATION
LONG TERM TRENDS, MEAN OCT.-APR. (MM)

TIME PERIOD	WISTARIA	QUICK	OOTSA LAKE
RECORD	256.1	259.0	233.7
$1926-1940$	297.2	N.A.	N.A.
$1941-1963$	247.8	N.A.	224
$1964-1975$	272.2	283.8	268.6
$1976-1990 / 92$	219.6	242.3	210.9

- - MAY-SEPT RUNOFF - - APR-SEPT RUNOFF
BULKLEY RIVER AT QUICK APRIL/MAY-SEPTEMBER RUNOFF INDICES

NECHAKO-UPPER BULKLEY PRECIPITATION INDEX FOR OCTOBER-APRIL PDT.

\rightarrow WISTARIA INDEX \rightarrow ALL STATION INDEX

Appendix C

Effects of Harvesting on Streamflow and Directions in Calculating Equivalent Clearcut Areas (ECA)

Appendix 8. Effects of harvesting on stream flow and directions on calculating equivalent clearcut area (ECA)

Peak flows

Abstract

Most hydrologic impacts occur during periods of the peak stream flow in a watershed. Stream flow is defined as the channelized flow of water at the earth's surface. Peak flow is the maximum flow rate that occurs within a specified period of time, usually on an annual or event basis. In the interior of British Columbia, peak flows occur as the snowpack melts in the spring. Occasionally, periods of high stream flow can be caused by rainstorms and rain-on-snow events, particularly in the coast transition zone.

Snow melts from a watershed in a predictable pattern. Melt begins earlier in the season at lower clevations and proceeds upslope. Snow has generally disappeared from the lower elevations some time before the spring stream flows peak. During peak flow, snow is beginning to disappear from the mid-elevations and is actively melting at the higher elevations of a watershed.

After an area has been harvested, both winter snow accumulation and spring melt rates increase. This effect is less important at lower elevations, since the snow disappears before peak flow. At mid-elevations, the additional melt may or may not be important. depending on seasonal variations. Harvesting at high elevations will have the greatest impact and is, therefore. of most concern.

The changes in snow accumulation and melt brought about by forest harvesting are reduced as new forests grow. This is commonly referred to as hydrologic recovery.

Hydrologic recovery

Second-growth forests are said to be hydrologically recovered when snowpack conditions approximate those prior to logging and. as a result, any impact on stream flow is minimized. The most important influence of vegetation on snow accumulation is the interception of snow by the forest canopy and the subsequent loss of this snow to the atmosphere. This interception effect is a result of the combined effects of tree height and canopy closure. The rate at which the snowpack melts is affected by the extent to which the snowpack is exposed to solar radiation which. like interception, is also controlled by the canopy. Consequently, canopy closure is one of the main stand characteristics affecting snow accumulation and melt.

The degree of canopy closure is determined by tree species, height. and stocking density. Since tree height data is readily available and is closely correlated with canopy closure, it is the variable used to evaluate hydrologic recovery.

The first approximation of hydrologic recovery (Table 8-1) for the southern interior is based on theoretical estimates of the effects of canopy closure on radiation penetration and snow interception. stand growth curves relating tree height and canopy closure, and snow data from studies in the Okanagan and Kootenays. The recovery estimates apply to fully stocked stands that reach a maximum crown closure of $50-70 \%$ and height of $20-30 \mathrm{~m}$ when mature. The growth curves used to convert crown closure to tree height assume a stand density of 1500 stems per hectare when the main canopy is 3 m in height. Tree heights refer to the average height of the main canopy (that is, co-dominant and intermediate trees. not dominant and suppressed stems).

Table 8-1. First approximation of snow recovery in the southern interior for fully stocked stands in the snow zone that reach a maximum crown closure of $50-70 \%$

Average height of the main canopy (m)	\% Recovery
$0-<3$	0
$3-<5$	25
$5-<7$	50
$7-<9$	75
$9+$	90

Low flow

In the interior of British Columbia, the lowest stream flows normally occur in late summer. Summer low flows are significant to both human use and fish habitat. During late summer, water demands for irrigation and domestic use tend to be high and supply limited.

Low flows in summer or winter can harm fish populations by reducing the amount of available habitat. During the summer, this is exacerbated by the added stress of higher oxygen needs of fish and lower dissolved oxygen concentrations when the water is warmer. During the winter, low flows cause less oxygen stress, but overwintering eggs can be damaged by freezing or ice movement.

Both summer and winter low flows result from long periods during which the water being discharged from soils and bedrock is not replenished by rain or snowmelt. Trees alfied low llows by intercepting rain and snow, by reducing the allmount of water entering the soil and. through transpiration. by removing water from the soil.

Transpiration, however, is directly related to moisture availability. Consider what happens in a clearcut under different conditions. During a wet summer. interception loss in a clearcut is low. resulting in more water entering the soil than would occur under a forest canopy. In addition. the water that would have been transpired from the soil by trees is available for groundwater recharge and stream flow. As a result, under wet conditions. the summertime low flow after clearcutting is greater than the low flow that would have occurred in the forest.

In contrast, during a summer without rain, water input to the soil is zero regardless of whether the site is forested or not. Transpiration losses in the clearcut would probably be less than in the forest. but the forested site would have very low transpiration losses anyway. Consequently, stream flow from both sites would be very low and clearcutting would have little effect on the water balance.

There is a general public perception that clearcutting dries out soils. This is probably because the top layers of soil do. in fact. become drier upon exposure to stronger sunlight and wind. However. the deeper soil layers in the rooting zone of trees have been shown to have higher moisture content after clearcutting. The net effect is that total soil moisture tends to increase after clearcutting. This effect diminishes as a site becomes revegetated until there is no detectable difference within 10 to 15 years after logging.

Low flows may occasionally also be observed to decrease as a result of channel aggradation. In some cases, water continues to be discharged from a basin. However, it moves below the surface through the stream bed where channel aggradation has occurred.

Watershed studies have shown that tree removal tends to result in increasing mean monthly flows in August, September, and October by a moderate amount during the $10-1015$-year revegetation period. This is probably beneficial in cases where water can be impounded for human use or for delayed release downstream. However, in most cases, there may be no benefit to fish, since the very lowest flows are not increased by harvesting.

In summary, timber harvesting appears to have a negligible, or slightly positive, effect on summer low flows in most cases. Winter low flows are probably not affected by forestry activities.

Annual water yield

In the United States, where most forestry-related watershed runoff studies have been done, harvesting has been found to increase annual water yield by $100-500 \mathrm{~mm}$ per year. The smallest increases have occurred on warmer. drier sites where soil moisture is limited. In these areas, the removal of trees does not
make much more water available to streams. The largest increases have been observed in the Oregon Cascades where rainfall is high. Under these conditions, trees intercept a considerable portion of rainfall, allowing it to evaporate. The high rainfall also enables trees to take up and transpire large amounts of soil water. Timber harvesting reduces these large water losses and makes more available to streams.

In the Alberta Rockies and the interior of British Columbia, research has also shown increases in water yield after timber removal. In an Alberta study, harvesting 50% of the forested area resulted in a water yield increase of 27%, or 40 mm . In a paired watershed study in British Columbia's southern interior, clearcutting 30% of a watershed resulted in a 21% increase in yield.

The 1973 Eden fire near Salmon Arm burned 50% of a watershed and caused a $\mathbf{2 4 \%}$ increase in the April to August runoff. The effects of this fire on water yield are assumed to be similar to those that would result from timber harvesting.

One difference between the studies in the U.S. and the ones in western Canada is that most runoff in the British Columbia interior and Alberta Rockies occurs during spring snowmelt. Because of the snow-dominated regime in these areas, tree removal effects on the annual water balance are not limited to changes in evapotranspiration, but include increases in snow accumulation and spring discharge levels.

In summary, timber harvesting can be expected to produce the largest increases in water yield in areas that have an ample supply of moisture during the growing season. In areas where runoff is dominated by snowmelt, a large part of the annual yield increase can be associated with increased snow storage in openings, faster snowmelt, and thus an increase in spring runoff volume.

Filling in the peak flow index tables

ECA below the H_{60} line (column A): The equivalent clearcut area (ECA) is defined as the area that has been clearcut. with a reduction factor to account for the hydrological recovery due to forest regeneration. To estimate this value, determine the height of regeneration in each logged polygon below the H_{60} line on the 1:20 000 forest cover map. Heights may need to be extrapolated if reference material is not up-to-date. The area of each opening will then have to be reduced by the appropriate percent hydrological recovery, as shown below.

The following assumptions can be made for the ECA calculations:

$$
\begin{aligned}
& \text { NSR (not sufficiently restocked): - clearcut with } 0 \% \text { recovery } \\
& \text { Partial cutting: } \\
& <30 \% \text { basal area removal - expect } 100 \% \text { recovery } \\
& 30-60 \% \text { basal area removal - clearcut } \times 0.5 \\
& >60 \% \text { basal area removal - clearcut with } 0 \% \text { recovery } \\
& \text { clusters of trees . - apply appropriate recovery to area } \\
& \text { occupied by clusters }
\end{aligned}
$$

Tally all opening information (as shown in Table 8-2) and summarize it in columns A and D in Form 2.

[^3]Example ECA calculation:
Q: What is the ECA for a $0.85 \mathrm{~km}^{2}$ fully stocked stand with an average canopy height of 4 m ?

A: ECA $=$ area of opening $\times(1-$ appropriate percent hydrological recovery $)$
$E C A=0.85 \mathrm{~km}^{2} \times(1-0.25)$
$\mathrm{ECA}=0.64 \mathrm{~km}^{2}$
ECA below the H_{60} line total sub-basin area (column B): Divide the value obtained for ECA below the H_{60} line (column A) by the area of the entire sub-basin.

Weighted ECA below the H_{60} line (column C): After an area has been harvested, both winter snow accumulation and spring melt rates increase. This effect is less important at lower elevations, since the snow disappears before peak flow. Directly transfer results from column B into column C (ECA weighting is equal to 1).

ECA above the H_{60} line (column D): To estimate this value, determine the height of regeneration in each polygon above the H_{60} line on the $1: 20000$ forest cover map. Heights may need to be extrapolated if reference material is not up-to-date. The area of each opening will then have to be reduced by the appropriate percent hydrological recovery (see Table 8-1 and ECA assumptions listed above). Tally all opening information and summarize in Form 2.

ECA above the \mathbf{H}_{60} line total sub-basin area (column E): Divide the value obtained for ECA above the H_{60} line (column A) by the area of the entire sub-basin.

Weighted ECA above the \mathbf{H}_{60} line (column E): During peak flow, snow is beginning to disappear from the mid-elevations and is actively melting at the higher elevations of a watershed. Therefore, harvesting at high elevations will have the greatest impact and is, hence, of greater concern than at lower elevations. This value can be oblained by multiplying column E by an ECA weighting factor of 1.5 .

Peak flow index (Indicator \#1): The peak flow index is derived from estimates of the area which are equivalent to clearcut (ECA). Add the weighted ECAs from column C and column F to obtain the peak flow index in Indicator \#1.

Appendix D

Spot Water Temperature Data at Sites 08EE009, 08EE013, and 08EE018

sput doservarians uf waien iemperardites liv deigatis lelsius

 \title{

 \title{

 \exists x!puədd \forall
}

	Wikikikikis,		NiS Goppticet	Sisuodrume		Ewortics	RHCHES	D；㧒行 exteatres		Esing	Prutity yeto
0031863	B3．L． 049 A	IRRIGATION	093L8	Watson Creek	20 AF	ANAKA HAROLD P \＆SANDRAL	BOX 116 TOPLEYEC VOJ2YO	HAZ．S	268257	O／I	1966／03／16
C031863	93．L．049 B	DOMESTIC	093L8	Watson Creek	1000 GD	ANAKA HAROLDP \＆SANDRAL	BOX 116 TOPLEY BC VOJ2Y0	HAZ．S	268257	$0 / 1$	1966／03／16
C032882	93．L059 A	IRRIGATION	093L19	Richfield Creek	100 AF	GROOT BROS CONTRACTING LTD	BOX 95 HOUSTON BC VOJ120	HAZ．S	273468	$0 / 1$	1967／05／23
C0328822	93．L059 日	IRRIGATION	093L19	Richifield Creek	100 AF	GROOTBROS CONTRACTING LTD	BOX 95 HOUSTON BC VOJ1Z0	HAZ．S	273468	OII	1967／05／23
C033128	93．L． 059 F	DOMESTIC	0931－9	Widey Brook	2500 GD	GROOT BROS CONTRACTING LTD	BOX 95HOUSTON BC VOJ1ZO	HAZ．S	273469	O／I	1967／05／23
0039089	93．L．050 A	DOMESTIC	0931／78	Burlidey River	500 GD	JOHNSON J P ROLF	RR 1 BURNS LAKE BC VOJIEO	HAZ．S	296036	011	1970／02／16
C039659	93．L．050 B	DOMESTIC	093L8	Bulikley River	500 GD	STRIMBOLD AGNES V	RR 1 BURNS LAKE BC VOJIEO	HAZ．S	290654	OII	1869／12／04
C039853	93．L．037 E	DOMESTIC	093L／7	Boyd Creek	3000 GD	HAMBLIN FARMSLTD	BOX 4000 HOUSTON BC VOJ1zO	HAZ．S	300644	OII	1971／01／12
C039853	93．L．037 E	IRRIGATION	09317	Boyd Creek	75 AF	HAMBLIN FARMSLTD	BOX 40000 HOUSTON BC VOJİZ	HAZ．S	300644	OII	1971／01／12
C039854	93．L．037 E	STORAGE	093L7	Boyd Creek	60 AF	HAMBLIN FARMSLTD	B0X 4000 HOUSTON BC VOJ1zO	HAZ．S	300644	011	1971／01／12
C042782	83．L．048 C	DOMESTIC	093L8	Aitken Creek	1500 GD	PRINS CHARLES E \＆H SUSANNA	BOX 365 HOUSTON BCD VOJ1ZO	HAZ．S	296232	011	1970／03／31
C042782	93．L．048 C	DOMESTIC	093L8	Aitken Creek	1500 GD	SPLETZER STANLEYP	MORICE RV RDBOX 1413 HOUSTONBC VO	HAZ．S	296232	$01 /$	1970／03／31
0042782	93．L．048 C	IRRIGATION	093 ${ }^{\text {18 }}$	Aitken Creek	200 AF	PRINS CHARLES E．HSUUSANNA	BOX 365 HOUSTON BCD V0J120	HAZ．S	298232	$0 / 1$	1970／03／31
0042782	$93 . \mathrm{L} 048 \mathrm{C}$	IRRIGATION	093L8	Aitken Creek	200 AF	SPLETZER STANLEYP	MORICE RV RD BOX 1413 HOUUSTON BC VO	HAZ．S	296232	O1／	197003／31
C042782	93．L．048 D	IRRIGATION	093L8	Aitken Creek	200 AF	PRINS CHARLES E \＆H SUSANNA	BOX 365 HOUSTON 8 CD VOJ1ZO	HAZ．S	296232	O／I	1970／03／31
0042782	93．L．048 D	IRRIGATION	0931．18	Aitken Creek	200 AF	SPLETZER STANLEYP	MORICE RV RD BOX 1413 HOUSTONBC VO	HAZ－S	296232	O／I	1970／03／31
0043425	93．L．047 C	DOMESTIC	0931／7	Sioden Spring	500 GD	S．ODEN CARL	BOX 802 HOUSTON B CO VOJ120	HAZ－S	322011	O／I	1973／10／16
0045380	93．L．050 D	DOMESTIC	0931－8	Taman Creek	1000 GD	REYNOLDS DONALOS \＆ELIZABETHL	BOX 645 BURNS LAKE BC VOJ1EO	HAZ－ S	322881	O／I	1974／03／01
C045384	93．L． 027 C	DOMESTIC	0931／7	Campbell Brook	1000 GD	WERNER RESECCA M	BOX 243 HOUSTON BCIVOJizo	HAZ．S	316031	（1）	1972／10／08
C045384	93．L027 C	IRRIGATION	093L／7	Campbell Brook	1 AF	WERNER REBECCA M	BOX 243 HOUSTONBC VOJ1ZO	HAZ－S	316031	O／1	1972／10008
C045708	93．L．048E	DOMESTIC	093L7	Barren Creek	1000 GD	BAMSEY BRIANW \＆TANDRAR	BOX 39 MOUSTON BC VOIIZO	HAZ－S	328871	O／I	1975／04／17
C045708	93．L． 048 E	LAND IMPROVE	093E］	Barren Creek	500 GD	BAMSEY BRIANW ${ }^{\text {B }}$ TANDRAR	80×39 HOUSTON $8 C 0$ VOJ1ZO	HAZ－S	328871	$0 / 1$	1975／04／17
0045709	93．L．053 A	DOMESTIC	093L／9	Perow Creek	1000 GD	PATRICK ALEERT W	BOX 1344 HOUSTONBC VOJ1ZO	HAZ．S	329826	O／I	1975／04／04
0045710	93．L．058 A	DOMESTIC	093L19	Perow Creek	1000 GD	PATRICK NORRIS	BOX 435 HOUSTON BC VOJIZO	HAZ．S	328495	OII	1975／0404
0046919	93．L．048 F	DOMESTIC	093L	Mcinnes Creek	600 GD	PEDERSON GORDONP	BOX 3 HOUSTON BC VOJ120	HAZ．S	270501	$0 / 1$	1966／09／06
C046920	93．L． 048 B	DOMESTIC	093L ${ }^{\text {a }}$	Winch Creek	500 GD		BOX 72 HOUSTONBC VOJIZO	HAZZ． S	323317	$0 / 1$	1974／06／27
C046921	93．L． 048 G	STORAGE	093 ${ }^{\text {LIV }}$	Wineh Creek	4 AF	HIMECH JOHIN \＆MYRNA	BOX 72 HOUSTON BC VOJ1ZO	HAZ．S	323317	O／1	1974／06／27
C047099	93．L．058 B	DOMESTIC	0931㕿	Hitchcock Spring	1000 GD	BROWN SHIRLEYA	BOX 7 TOPLEY BC VOJ2YO	HAZ．S	329794	O／I	1975／10／24
C047327	93．L027 D	DOMESTIC	093LП	Hall Brook	1000 GD	HALL REGINALD S 8 barbara J	BOX 1031 HOUSTON BCEVOJ1ZO	HAZ．S	329299	O1／	1975／08／06
0047690	93．L．047 D	DOMESTIC	093 ${ }^{\text {L }} 7$	Jonn Creek	500 GD	HIMECH STEPHEN	BOX 191 HOUSTON BCO VOJ1ZO	HAZ－S	322870	O／I	197410405
0048349	93．L． 067 B	DOMESTIC	0931510	Annabelle Creek	1000 GD	WILLITS GORDON E	SITE 9 COMP 8 RR 1 TELKWA BC VOJ2X0	HAZ．S	340351	$0 / 1$	1976／1007
C053083	93．L． 0298	LAND IMPROVE	0931－11	Lu Creek	0 TF	PLACER DOME（CLA）－ECUITY MINE	PLACER DOME CANADA DIV BOX 1450 HOU	HAZ－S	330336	$0 / 1$	1976／03／28
C053889	93．L．047P	DOMESTIC	093 LT	Flarey Creek	500 GD	PEDERSEN BRIAN J 8 ROSANNL	BOX 126 HOUSTON BCOVOJIZO	HAZ．S	365967	O／I	1979107108
0053918	93．L． 027 B	DOMESTIC	093L67	Campbell Brook	500 GD	GATZKE BRIANW 8 V VERNELLE R	BOX 1057 HOUSTONBC VOJ1Z0	HAZ．S	385219	W1	1979102／20
0054164	93．L． 019 A	LAND IMPROVE	093L1	Bessemer Creek	0 TF	PLACER DOME（CLA）－EQUITY MINE	PLACER DOME CANADA DIV BOX 1450 HOU	HAZ－S	330340	O／	1976／03／26
C054594	93．L．058 C	DOMESTIC	093519	Perow Creek	500 GD	JAMES DOUGLAS P	POBOX 75 HOUSTONBC VOJ1ZO	HAZ．S	385265	O11	1979／03／05
0055785	93．L．047 S	WATER DELIVERY	093 L 7	Bulldey River	20000 GD	JACKSON VENTURES LTD	BOX 2473 SMITHERS BC VOJ2NO	HAZ．S	355294	OII	1979／08／28
0055913	93．L． 038 A	DOMESTIC	093LI7	Herry Creek	500 GD	BELL HUGH\＆JOCELYN	BOX 730 HOUSTON B COVOJIZO	HAZ．S	366876	$0 / 7$	1980．07\％3
C056498	93．L048 C	DOMESTIC	$0931 / 7$	Mckilitigan Creek	1000 GD	MCKILLIGAN CARL G	BOX 98 HOUSTON BCD VOJIZO	HAZ－S	387733	O／I	1981／01106
C056498	93．L． 048 T	DOMESTIC	093L／7	Mckililigan Creek	1000 GD	MCKILLIGAN CARL 6	BOX 98 HOUSTON BCO VOJ1ZO	HAZ．S	367733	$0 / 1$	1981／01／06
C056888	93．L． 047 V V	DOMESTIC	093LT	Barneveld Creek	1500 GD	VANDENBERG WILLIAM	BOX 261 HOUSTON EC VOJ1ZO	HAZ．S	367944	Oil	1980108／25
C056888	93．L．047 X	DOMESTIC	093L／7	Bameveld Creek	1500 GD	VANDENSERG WILLIAM	BOX 261 HDUSTON BC VOS1ZO	HAZ－S	367144	O／	1980／08／25
0057174	93．L． 059 H	PONDS	093L19	MaCracken Sprtn	OTF	MCCRACKEN ALVINO\＆ANNE E	BOX 36 TOPLEY BC VOJ2YO	HAZ．S	387426	$0 / 1$	198005／30
C057174	93．L． 059 K	PONDS	093L9	Holiman Sping	OTF	MCCRACKEN ALVINO\＆ANNE E	BOX 36 TOPLEY BCD VOJ2YO	HAZ－S	367426	O11	198000530
0057174	93．L．059L	PONDS	093L19	Hogarth Spring	OTF	MCCRACKEN ALVINO \＆ANNE E	BOX 36 TOPLEY BCD VOJ 2 YO	HAZ．S	367426	OII	1980／05／30
0057526	93．L． 058 E E	PONDS	093L19	Trueman Lake	OTF	DECKER ANDREW	1138 HAYS COVE AVE PRINCE RUFERT BC	HAZ－S	388160	Q／I	1981／03／27
C058266	93．L． 047 CC	DOMESTIC	093LИ	Wall Brook	500 GD	BOYCE HOWNARD J	BOX 782 HOUSTONBC VOJ12O	MAZ．S	369058	$0 / 1$	1981／08／18
C058545	83．L． 027 G	DOMESTIC	093L石	Campbell Brook	500 GD	WELOWOOD OF CANADA LTD	CIO PROPERTY MGMT DEPT PO BOX 2179 V	HAZ．S	368323	$0 / 1$	1981／04／01
0058547	93．L． 050 E	DOMESTIC	093U8	Walson Creek	100060	SAUNDERS ROBIN Q ELIZABETH	80×208 MONTGOMERY RD TOPLEY BC VO	HAZ．S	369057	O／I	1981／08／97
C059078	93．L． 027 H	IRRIGATION	093L7	Buck Creet	5 AF	RAPP EGONR	BOX 1033 HOUSTON B CO VOJ1ZO	HAZ．S	6000011	$0 / 1$	1982\％5104
C059586	93．L027 AA	WATERWORKS LOCAL AUT	093	Mathewr Lake	10950000 GY	HOUSTON DISTRICT MUNICIPALITY OF	BOX 370 HOUSTSTON BCOVOJIZO	HAZ－S	6000006	O／I	1982504／16
0080180	93．L． 037 J	DOMESTIC	093 L／	Buek Creak	500 GD	BANMAN GARYO	BOX 1233 HOUSTON BCD VOJ120	HAZ．S	6000078	$0 / 7$	1983／05／12
0060180	93．L．037 J	DOMESTIC	093込	Buck Creek	500 GD	DUNGATE DRIVE WUC	CIOLEE NUSTAD BOX 1568 HOUSTON BC	HAZ． 5	6000078	$0 / 1$	1983／05／12
0050182	93.1037 J	DOMESTIC	093 L／7	Buck Creak	1000 GD	DUNGATE DRIVE WUC	COLLEE NUSTAD BOX 1568 HOUSTÓN BC	HAZ－S	6000070	0 II	1983／04／21
0060182	93.2037 J	DOMESTIC	093LИ	Buck Creek	1000 GD	MCKENZIE KEVIND\＆TRACYL	POBOX 485 HOUSTON BCO VOJ120	HAZ．S	6000070	0／1	1983／04／21
C050183	93.2037 J	DOMESTIC	093L 7	Buck Creek	500 GD	COMPARELLIPAULA \＆GERALDINEM	POBOX 46 HOUSTON BC VOJIZO	HAZ．S	6000071	$0 / 1$	1983／04／21
C060183	93.2037 J	DOMESTIC	093L7	Buek Croek	500 GO	DUNGATE DRIVE WUC	CIOLEE NUSTAD BOX 1568 HOUSTONBC	HAZ．S	6000071	OH	1983／04／21
C080184	93.1 .037 J	DOMESTIC	093	Buck Creek	500 GD	DUINGATE DRIVE WUC	C／OLEE NUSTAOBOX 1568 HOUSTONBC	MAZ．S	6000074	II	1983／04／26

								Ekincos.		Ees.e.	
C060184	93．L037 J	DOMESTIC	093 ${ }^{\text {a }}$	Buck Creek	500 GD	NUSTADLEER \＆ELAINEL	POBOX 874 HOUSTONBC VOJ120	HAZ．S	6000074	OII	1983／04／28
0060185	93．L．037 J	DOMESTIC	$0931 / 7$	Buck Creek	500 GD	AATELMAESA \＆NANCY	BOX 354 HOUSTON BC VOJ120	HAZ－S	6000075	O1／	1983／04／27
0060185	93．L037 J	DOMESTIC	09317	Buck Creek	500 GD	DUNGATE DRIVE WUC	CMOLEE NUSTAD BOX 1568 HOUSTON BC	HAZ．S	6000075	$0 / 1$	1983／04／27
0060188	93．L019B	LAND IMPROV	093L1	Bessemer Creek	0 TF	PLACER DOME（CLA）－ECUITY MINE	PLACER DOME CANADA DIV BOX 1450 HOU	HAZ．S	6000098	OII	1983／08／10
0060191	93．L．087E	DOMESTIC	093 ${ }^{\text {L10 }}$	Coulson Brook	500 GD	COULSON THOMAS M \＆EVAM	SITE 3 COMP 19 RR 1 KERR RO TELKWA BC	HAZ．S	6000083	O／l	1983／06／15
0080182	93．L．087E	STORAGE	093110	Coulson Erook	10 AF	COULSON THOMAS M \＆EVAM	SITE 3 COMP 19 RR 1 KERR RD TELKWA BC	HAZ．S	6000083	OII	1983／06／15
C060204	93．L．087 D	DOMESTIC	093L10	Hartey Creek	500 GD	GEERTSEMA MARTEN	COMP 17 SITE 3 RR 1 TELKWA BCD VOJ2XO	HAZ． 5	6000060	$0 / 1$	1983／03／04
0060205	93．L． 067 D	STORAGE	093 L 10	Harley Creek	5 AF	GEERTSEMA MARTEN	COMP 17 SITE 3 RR 1 TELKWA BC VOJ2X0	HAZ－S	6000060	$0 / 1$	1983／03／04
0061954	93．L058 F	DOMESTIC	093L9	Jensen Spring	500 GD	ANDERSON ROBERT W	BOX 584 HOUSTON EC VOJ1Z0	HAZ．S	6000229	$0 / 1$	1984／08／10
0061978	93．L037 J	DOMESTIC	09315	Buck Creek	1000 GD	BRUNDIGE DAVID A 8 GLENNA	POBOX 261 HOUSTON BCD VOJIZO	HAZ．S	6000109	O／I	1983／10／20
0061978	93．L． 037 J	DOMESTIC	093L7	Buck Creek	1000 GD	DU＇NGATE DRIVE WUC	CTO LEE NUSTAD BOX 1568 HOUSTON BC	HAZ． 5	6000109	011	1983／10／20
C061995	93．L． 047 KK	IRRIGATION	093	Trickle Creek	． 5 AF	JENKS GERALD \＆DEBRA	BOX 1282 HOUSTON BC VOJ1ZO	HAZ．S	6000238	$0 / 1$	198409119
0082002	93．L．048 V	CONSERV．STORED WATER	093L18	Aitken Creek	1140 AF	DUCKS UNLIMITED（CANADA）	1925 S OGILVIE ST PRINCE GEORGE BC V	HAZ－S	6000213	0 m	1984／05／18
0062002	93．L．048 V	CONSERV．STORED WATER	0931／8	Ailken Creek	1140 AF	GREGG FRED \＆ELIZABETH	BOX 9008 HOUSTON BCD VOJ1ZO	HAZ．S	6000213	O／I	1984／05／18
0082032	93．L027 F	DOMESTIC	093	Campbell Brook	1000 GD	MASON NEIL E\＆KIMBERLLEY A	BOX 479 HOUSTON BCD VOJ1ZO	HAZ－S	384919	al	1978／11／28
0062045	93．L040 A	CONSERV．STORED WATER	093	Wiggins Creek	288 AF	DUCKS UNLIMITED（CANADA）	1925 S OGILVIE ST PRINCE GEORGE BC V	HAZ．S	6000280	017	1985／09／27
0082045	93．L040 A	CONSERV．STORED WATER	093L1／	Wiggins Creek	288 AF	STRIMBOLDEA	GDBURNS LAKE BC VOJIEO	HAZ．S	6000280	$0 / 1$	1985／09／27
0062046	93．L038日	DOMESTIC	093L ${ }^{\text {a }}$	Lansing Spring	500 GD	LUNDOUIST LOGGING INC	BOX 252 HOUSTONBC VOJ1ZO	HAZ．S	6000277	O／I	1885／09／13
0062046	93．L038日	STOCKWATERING	09317 7	Lansing Spring	1000 GD	LUNDOUIST LOGGING INC	BOX 252 HOUSTON BCD V0J120	HAZ．S	6000277	OII	1985／09／13
0062379	93．L．037 K	CONSERV．STORED WATER	09347	Boyd Creek	10 AF	HAMBLIN BRUCE E \＆GRETA J	CIO HAMBLIN FARMS LTD 80×14000 HOUST	HAZ．S	370052	O／l	1982／03／19
0062380	93．L．037 K	DOMESTIC	09317	Boyd Creek	500 GD	HAMBLIN BRUCE E \＆GRETA J	COO HAMBLIN FARMS LTD $80 \times$ 4000 HOUST	HAZ．S	370052	O／I	1982／03／11
C082380	93．L037 K	IRRIGATION	$0931 / 7$	Bond Creek	1 AF	HAMBLIN BRUCE E \＆GRETA J	COO HAMBLIN FARMS LTD 80×14000 HOUST	HAZ． 8	370052	O／I	1982／03／11
C065535	93．L．048 W	STOCXWATERING	$0931 / 7$	Raspbery Creek	500 GD	HIMECH JOHN 8 MYRNA	BOX 72 HOUSTONBC VOJ120	HAZ．S	6000383	O／／	1987705／14
C068048	83．L．027 K	DOMESTIC	093 L	Cold Creek	500 GD	BARRON MICHAEL R \＆DORA	BOX 1498 HOUSTON BC VOJ120	HAZ．S	6000448	$0 / 1$	1888／04／06
C068043	93．L027 K	IRRIGATION	$0931 / 2$	Cold Creek	1 AF	BARRON MICHAEL R 8 DORA	BOX 149B HOUSTON BC VOJ1zO	HAZ．S	6000448	O／I	1888／04／06
C068043	93．L．027 K	STOCKWATERING	093L2	Codo Creek	500 GD	BARRON MICHAEL R \＆DORA	BOX 1498 HOUSTON BCOVOJ120	HAZ．S	6000448	017	1888／04／08
0068063	93．L．047 GG	DOMESTIC	093 ${ }^{\text {L }} 7$	Florey Creek	500 GD	VAN DER WIJK GERRIITT	BOX 357 MT DAVIS WAY HOUSTON BCO VOJ	HAZ．S	6000221	$0 / 1$	1984／06／07
0068063	93．L047 GG	STORAGE	09347	Florey Creek	1．25 AF	VAN DER WIJK GERRITT D	BOX 357 MT DAVIS WAY HOUSTON BCQ VOJ	HAZ．S	6000221	$0 / 1$	1984／06／07
C068074	93．L027 A	DOMESTIC	09317	Mitchell Creek	1000 GD	FRIESEN ISAAC \＆ELEONORE	BOX 1503 HOUSTON BCD VOJ1ZO	HAZ．S	341975	O／I	1977／08／29
C070900	93．L．047．1．3 C	DOMESTIC	0931． 7	Slock Creek	500 GD	KEMPPLE WILLIAM G	BOX 328 HOUSTON BCD VOJIZO	HAZ．S	50907	O／／	1923／1023
0072049	93．L047 MM	DOMESTIC	093LI	Doppler Creek	500 GD	MERKLEY WILLIAM \＆RITA	BOX 712 HOUSTONBC VOJ120	HAZ．S	6000451	$0 / 7$	1988／08／01
0072049	$93 . L 047 \mathrm{MM}$	STORAGE	093L	Doppler Creek	． 18 AF	MERKLEY WILLIAM \＆RITA	BOX 712 HOUSTON BC VOJ120	HAZ．S	6000461	OII	1988／06／09
0072053	93．L． 047 LL	DOMESTIC	09357	Trickle Creek	500 GD	RODRIGUES AIRES	BOX 701 HOUSTONBC VOJIZO	HAZ． 3	6000403	O／I	$1887 / 07 / 15$
0072236	93．L027E	DOMESTIC	093 ${ }^{\text {L }} 7$	Holst Creek	500 GD	STOELWINDER KENNETH B \＆PAMELA	BOX 223 HOUSTONBC VOL120	HAZ． 3	341194	O／I	1877／05／02
C101211	93．L019 C	CONSERV．STOREDWATER	093L1	Sam Creek	126 AF	DUCKS UNLIMITED（CANADA）	1925 S OGILVIE ST PRINCE GEORGE BC V	HAZ－S	6000577	19924	1930／01／16
C101211	93．L．019 C	CONSERV．STORED WATER	093L11	Sam Creek	126 AF	ENVIRONMENT LANDS \＆PARKS MINISṪ	PARLIAMENT BUILDINGS VICTORIA BCG VB	HAZ－S	6000577	1992	1990\％01／16
C101211	93．L019 C	CONSERV．STORED WATER	0931／1	Sam Creek	126 AF	WILDLIFE BRANCH	BAG 50000 SMITHERS BCOVOJ2NO	HAZ－S	6000577	1892	1890／01／16
C101212	93．L020B	CONSERV．STORED WATER	093141	Maxan Creek	337 AF	DUCKS UNLMMITED（CANADA）	1925 S OGILVIE ST PRINCE GEORGE BCOV	HAZZ－S	6000581	1892	1890／02／16
C101212	93．L．020 B	CONSERV．－STORED WATER	093L1	Maxan Creek	337 AF	ENVIRONMENT LANDS \＆PARKS MINIST	PARLIAMENT BUILDINGS VICTORIA BC V8	HAZ．S	6000581	1992π	1890002／16
C101212	93．L．020日	CONSERV．STORED WATER	093L1	Maxan Creek	337 AF	WILOLIFE BRANCH	BAG 5000 SMITHERS ECD VO．S2NO	HAZ．S	6000581	1992	1990002／16
C109223	93．L047 NN	CONSERV．CONSTRUCT．WO	09317	Buildey River	OGD	FISHERIES \＆OCEANS CANADA	400－555 W HASTINGS ST VANCOUVER BCD	HAZ－S	6000593	19924	1890／04／05
C101223	$93 . L 047 \mathrm{NN}$	CONSERV．CONSTRUCT．WO	$0931 / 7$	Bulidey River	OGD	FISHERIES \＆OCEANS CANADA	4721 LAZELLEAVE TERRACE BC V8GIR5	HAZ－S	6000593	19924	1990／04／05
C101231	93．L020 A	CONSERV．STORED WATER	093U1	Macan Creek	126 AF	DUCXS UNLIMITED（CANADA）	1925 S OGILVIE ST PRINCE GEORGE BCDV	HAZ．S	6000580	18924	1990／02／16
C101231	93． 1020 A	CONSERV．STOREDWATER	093L14	Maxan Creek	126 AF	ENVIRONMENT LANDS \＆PARKS MINIST	PARLIAMENT BUILOINGS VICTORIA BC VB	HAZ．S	6000580	19824	1990／02／16
C101231	93．L020 A	CONSERV．STORED WATER	0931－1	Maxan Creek	126 AF	WILDLIFE BRANCH	BAG 5000 SMITHERS BCA VOJRNO	HAZ－S	6000580	1992，	1990022／18
C101281	93．L027 D	LAND IMPROVE	0931／7	Hall Brook	． 5 AF	HALL REGINALO S \＆BARBARAJ	BOX 1031 HOUSTON BCO V0J1ZO	HAZ．S	600：0412	1991／	1987／08／06
C102993	83．L047．1．2B	STOCKWATERING	093L产	Evath Creek	100 GD	MILLS JOHN J	BOX 988 HOUSTON BCD VOJ1ZO	HAZ－S	6000672	18924	1991／08／28
C10404B	93．L．037 J	DOMESTIC	$0931 / 7$	Buck Creek	500 GD	SIEMENS VICTOR D\＆ROBERTA L	BOX 872 HOUSTON BC VOJizo	HAZ－S	6000686	1994才	1991／12／16
C105969	93．L059 C	STOCKWATERING	093L9	Rovent Hatch Cre	1000 GD	GROOT EROS CONIRACTING LTD	B0X 95 HOUSTON ECD VO． 1120	HAZ－S	273467	1993f	1967／05／23
C105969	93．L．059D	STOCKWATERING	093L9	Robert Hatch Cre	500 GD	GROOT BROS CONTRACTING LTD	BOX 95 HOUSTON BCO VOJ120	HAZ．S	273467	1993／	1987／05／23
C105969	93．L059E	STOCKWATERING	093L9	Robert Hatch Cre	500 OD	GROOT BROS CONTRACTINGLTD	BOX 95 HOUSTON BCO VOJ120	HAZ．S	273467	1993M	1967／05／23
C107980	93．L029 A	LAND IMPROVE	093L／1	Lu Lake	100000 GD	PLACER DOME（CLA）－ECUITY MINE	PLACER DOME CANADA DIV BOX 1450 HOU	HAZ．S	330337	1995	1976／03／29
C107980	93．L029A	STORAGE	093L1	Lu Lake	680 AF	PLACER DOME（CLA）－EQUITY MINE	PLACER DOME CANADA DIV BOX 1450 HOU	HAZ－S	330337	1995，	1976／03／29
C108087	93．L．027M	DOMESTIC	09317	Horsa Creek	500 GD	MUMA ANDREWL	BOX 243 HOUSTON BCO VOJ1ZO	HAZ．S	6000831	19954	199405／03
C108178	93．L．040 B	DOMESTIC	093L8	Crow Creek	500 GD	HABERMANN EGONP	RR 1 FOREST CANYONRD BURNS LAKE BC	HAZ－S	60000333	1998	1994／05／19
C108330	93.1 .027 N	DOMESTIC	09315	Horsa Creek	500 GD	LYONS JOHN T R BEVERLYJ	BOX $1388 \mathrm{HOUSTO}{ }^{\text {N B }}$ BC VOJIZO	HAZ．S	60008339	10057	1994／06／28
C109301	93．L．047 T	DOMESTIC	093L7	Wall Brook	500 GD	ROGALSKY ELIZABETHG	BOX 1475 HOU＇STON B CO VOJ1ZO	HAZ－S	367205	1995 d	1980109／04
C110366	93．L．037 J	DOMESTIC	093 ${ }^{1 / 7}$	Buck Creek	150060	COMPARELLIPAUL A R GERALDINEM	POBOX 46 HOUSTON BC VOJIzO	HAZ．S	6000902	19974	1995／10／31

			Kiss 					OSAR Emisitit			Heting mate
C112299	93.L.037 C	DOMESTIC	093L7	Daye Sping	500 GD	DAYE KEITH C\& JUDYL	BOX 598 HOUSTON BCO VOJ1ZO	HAZ.S	330430	1997,	1976/04/22
F042594	93.L035 C	DOMESTIC	093L18	Buldidey River	500 GD	MILLER WILLIAML \& PATRICIAL	POBOX 450 BURNS LAKE BCO VOJIEO	HAZ.S	296457	$0 / 1$	197005/19
F044093	93.L.037日	DOMESTIC.	093L7	Henry Creek	1500 GD	BRIENEN JOHNC	BOX 616 HOUSTON BC VOJ1ZO	HAZ -S	287756	$0 / 1$	1968/02/12
F044094	93.L.037	STORAGE	09317	Henry Creek	1.3 AF	ERIENEN JOHNC	BOX 616 HOUSTON BCD VOJIZO	HAZ.S	267756	O/I	1966/02/12
Z104283	83.L. 0470	DOMESTIC	0931/7	John Creek	500 GD	TOMPKINS BARRY	BOX 991 HOUSTON BCO VOJIZO	HAZ-S	6000697	O/I	1892/02/25
Z108347	93.L049 C	DOMESTIC	093L/8	Z7 Sping 167521	300 GD	JOHNSON KENNETHE \& MARGARET J	BOX 74 TOPLEY BCOVOJ2YO	HAZ.S	6000799	O/I	1993 /03/17
Z108259	93.L. 047 C	DOMESTIC	093 ${ }^{\text {L/7 }}$	Sioden Spring.	500 GD	BRIE NEN JOHN C \& KLASKE	BOX 618 HOUSTONBC V0. 120	HAZ.S	6000835	O/I	199406,09
2108259	93.L.047 C	STORAGE	093L 7	Sipden Spring.	10000 AF	BRIENEN HOHN C\& KLASKE	BOX 618 HOUSTONBC VOJIZO	HAZ.S	6000835	OII	1994/06/09
Z110105	93.L. 059 M	CONSERV.-CONSTRUCTIWO	093L19	Richfieta Creek	1 AN	SALMONID ENHANCEMENT PROGRAM	323555 W HASTINGS ST VANCOUVER BCD	HAZ. 5	6000898	O17	1995/08/28
Z112416	93.L037 J	DOMESTIC	093 L/7	Buck Creek	500 GD	MARKS ANN	COO BOX 1059 HOUSTON ECD VOJ120	HAZ.S	6000935	O/1	1997708/09

Appendix F

Summary of Aerial Photographs and Flightlines available on the Upper Bulkley and Surrounding Area

Aerial Photos of Upper Bulkley Mainstem from Maxan Lake to Houston

Years	Index	Scale	Flight Line
1936-40/1949-52/1953-55/1956-57	93L	1:31,680	BC1002
			BC1003
			BC1011
			BC1012
			BC1013
			BC1014
			BC1015
1950-55/1957-63	93LE	1:15,840	BC2100
			BC2531
			BC2532
			BC2675
			BC2676
			BC2677
1968/1969/1971	93L	1:31,680 (1968)	BC5296
		(1968)	BC5300
		(1968)	BC5306
		(1969)	BC5420
		(1971)	BC5440
1971 July	93L	1:15,840	BC7326
			BC7325
			BC7334
1975	93L/E	1:20,000 July $\begin{array}{r}\text { July } \\ \text { July } \\ \text { September }\end{array}$	BC7727
			BC7728
			BC7735
			BC7824
1980 September	93LE	1:10,000	BC80122
1981 July	93L/E	1:20,000	BC81049
			BC81050
1990 July	93L/E	1:15,000	BCB90061
			BCB90065
			BCB90098
1991,	93LJE		30BCB91181
			30BCB91182
1994,	93LIE	1:10,000	30BCC94036
			30BCC94057
			30BCC94062
			30BCC94072

Mid-Bulkley Photo Mosaic Index
Mackay, 1997

Waterbody	Reach	Plates	Reach Length	1
Bulkley River	1	1-19	11.30 km	[1]
	2	20-79	32.87 km	
	3	80-98	9.50 km	
	4	99-124	15.14 km	[]
Buck Creek	1	1-10	2.7 km	11
	2	11-25	4.6 km	
	3	26-33	1.3 km	1
	4	34-48	5.1 km	11
	5	49-66	6.2 km	1
	6	67-81	5.5 km	I
	7	82-94	6.3 km	
	8	95-104	4.0 km	I
	9	105-120	10.2 km	
	10	121-125	1.3 km	
Upper Buck Creek Klo Creek	11	1-16	6.2 km	$1]$
	1	1-7	2.4 km	11
	2	8-16	3.8 km	
Dungate Creek	1	1-9	1 km	$1]$
	2	10-45	5 km	1
	3	46-81	3.7 km	
	4	82-99		I
Richfield Creek	1	1-6	1 km	U
	2	7-20	3.5 km	
	3	21-28	1.6 km	1
	4	29-30	0.3 km	\checkmark
Robert Hatch Creek Johnny David Creek	1	1-16 1 1-9	$1 \mathrm{~km} \quad 1.9 \mathrm{~km}$	
	2	10-20	3.2 km	
McQuarrie Creek	1	1-9	1.65 km	
	2	10-24	8 km	,
	3	25-38	3 km	1
Byman Creek	1	1-20	4 km	
	2	21-46	6 km	I
	3	47-55	2.3 km	
Aitken Creek	1	1-6	1.8 km	1
	2	7-15	2.1 km	H
	3	16-37	6.2 km	
Barren Creek	1	1-3	0.4 km	
	2	4-21	3.3 km	U
	3	22-27	1.45 km	

$I I^{2}$

Appendix G

Major Storm and Flood Events in the Upper Bulkley Area

Historical Event Catalogue Relevant to the Upper Bulkley and Houston area

Historical Events:

Much information is recorded regarding flood and precipitation events in the Smithers area. Although tempting, unless Houston was mention (or at least Quick) no extrapolation of evidence was reported for the Upper Bulkley.

May 4, 1931:

Spring runoff/flooding
Smithers reported a week of warm weather at the end of April. On May 4, the Bulkley River near Houston recorded a maximum daily discharge of $53: 8 \mathrm{m3} / \mathrm{s}$

May 25-26, 1942 :
Precipitation
The very heavy warm rains that occurred on May 25 and 26 were described as "torrential downpours". The Skeena and Bulkley rivers reached flood levels. On May 27, the Bulkley River at Quick recorded a maximum daily discharge of $691 \mathrm{~m} 3 / \mathrm{s}$.

May 15-19, 1945:
Precipitation:
Rail traffic on the Smithers division was held up by heavy rains causing high water levels. The worst flooding conditions occurred east of Topley, where the Bulkley River overflowed the CN tracks and threatened to wash out a bridge. On May 19, the Bulkley River near Houston recorded a maximum daily discharge of $156 \mathrm{~m} 3 / \mathrm{s}$.

May-June 1947

Precipitation:
The Bulkley River at Quick and near Smithers recorded maximum daily discharges of $538 \mathrm{~m} 3 / \mathrm{s}$ and $714 \mathrm{m3} / \mathrm{s}$ respectively.

May 25-June 10, 1948

Precipitation: spring runoff/flooding
The spring runoff due to hot weather caused sever flood conditions in B.C. Flood conditions on the Bulkley River were the worst in many years causing heavy damage to the rail line between Houston and Smithers. On May 29, the Bulkley River near Houston reached record levels and the situation was described as "serious" The Bulkley River at Quick recorded a maximum daily discharge of $895 \mathrm{~m} 3 / \mathrm{s}$ on May 30.

May 10-12, 1951
Precipitation:
In the Bulkley Valley, steady rainfalls together with warm weather, created flood conditions on the creeks flowing in the Bulkley River. The Bulkley River at Quick recorded a maximum daily discharge of $634 \mathrm{~m} 3 / \mathrm{s}$ on May 13. The worst situation occurred in the Forestdale-Houston area. Flood waters threatened the new $\$ 140,000$ Houston Hotel and several houses were surrounded by water. Mile 16 of the highway was under 2 to 3 ft . of water and a number of homes were
threatened with evacuation. Flooding occurred at Houston, when the Buck River (Creek) flooded the highway. On May 12, numerous small washouts occurred because the culverts were too small to handle the abnormal runoff. The most serious washout was at a point 2 mi . west of Forestdale. On the evening of May 14 the high water started receding.

August 9-11. 1951

Precipitation:
The storm appears to have hit hardest towards Houston.

May 29-June 8, 1964

Precipitation: spring runofffflooding
Between May 29 and 31, a combination of late secondary runoff and a warm front accompanied by heavy thunderstorms triggered extensive flooding comparable to that of 1948 between Topley and Houston. Two bridges were washed out and several damaged. Four large culverts were also washed out and many badly scoured. The Houston Bridge No. 35 on the Northern TransProvincial Highway required considerable repair on the substructures as a result of driftwood damages. On June 3, the Bulkley River at Quick recorded a maximum daily discharge of 847 $\mathrm{m} 3 / \mathrm{s}$

June 8-11, 1964
Precipitation: spring runofffflooding
The second rise in the water levels of the Skeena River was described as the "worst flood since 1948".

April 8-12, 1966

Precipitation: icejam/flooding
Mostly hitting Smithers, however, the ice was also holding back in a section of the Bulkley River in the Quick-Walcott area between Telkwa and Houston.

May 20-23. 1968

Precipitation: spring runoff/flooding
Warm weather with temperatures in the high 70's F coupled with 2 days of warm rain brought rivers in the Bulkley Valley to the flood level. On May 20-21, Bulkley, Telkwa and Buck rivers went on the rampage. On May 21, the Bulkley River a Quick recorded maximum daily discharges of $861 \mathrm{m3} / \mathrm{s}$. On May 20, floods threatened four families in Houston. Late on May 20, the approach to Buck Creek was washed out. The Buck River, fed by a heavy snowpack in an area denuded by a forest fire in 1961, was at it highest level in several years. Traffic across the temporary Bailey bridge, just east of Houston was haled as the approaches were threatened. On May 23, the Buck was reported to have dropped about 2 in. in the past 24 hours. Waters was still $6-8^{n}$ deep on some of the secondary roads. Owen Lake Road south of Houston washed out.

June 12, 1972
Precipitation: spring runoff/flooding
The Houston bridge washed out making a 70 mi . detour necessary. High water washed out the foundations of the Walcott foot-bridge west of Houston. On June 13 a maximum daily discharge of $957 \mathrm{~m} 3 / \mathrm{s}$ was recorded at Quick.

December 23-28, 1984

Precipitation: icejam/flooding
An icejam on the Bulkley River near Quick, between Smithers and Houston caused flooding near the Quick bridge. Due to a long cold spell most of the channel was occupied by ice frozen to the bottom.

June 14-16, 1986
Precipitation:
On June 14-15, heavy rain occurred in the Houston to Moricetown area. The "Father's-Day Storm" Caused extensive damage. Flood waters were reported to have risen more than 25 ft . above normal levels before receding. The Bulkley River at Quick recorded a maximum daily discharge of $721 \mathrm{~m}^{3} / \mathrm{s}$.

[^0]: Sleeve A: Map of Water License Locations and Reach Breaks
 Sleeve B: \quad Aerial Photographs of the Upper Bulkley Mainstem, 1950s
 Sleeve C: Aerial Photographs of the Upper Bulkley Mainstem, 1971
 Sleeve D: Aerial Photographs of the Upper Bulkley Mainstem, 1994

[^1]: Source: AGRA, 1996

[^2]:

[^3]: 2 The IWAP has been developed to assess the impacts of land use activities on water quality and quantity. Obviously. land use impacts on private land located in the watershed above the point of interest can also have an effect on water quality and quantity. Resource development ictivities on private land are not regulaled and the information required to answer IWAP questions is usually not avaibable. However, if the amount of private land is significant (greater than 15% of the totill sub-basin area) and it is obvious that ignoring its presence is not reasonable, the prisale land should be included in the ECA calculations. It may be necessary to make estimates of development based on interpretaition of air photos and maps if landowitrs camnot be contacted.

