RECONNAISSANCE (1:20,000) FISH AND FISH HABITAT INVENTORY IN THE UPPER MORICE WATERSHED

WSC 460-600600

Prepared for:

Northwood Pulp and Timber Ltd.

PO Box 158 Houston, BC V0J 2N0

January 2000

Prepared by:

PROJECT REFERENCE INFORMATION

FDIS Project Number: 06-MORR-0103-0103-1999 **MELP Project Number:** NWD_C151_010_2000

FRBC Project Number: 10448

FRBC Region: Skeena-Bulkley Region

MELP Region:06MELP District:SkeenaFW Management Unit:6-9

Fisheries Planning Unit: North Coast

DFO Sub-district: 4D

Forest Region: Prince Rupert

Forest District: Morice

Forest Licensee and Tenure #: Northwood Pulp and Timber Ltd.,

Morice TSA 20

First Nation Traditional Area: Wet'suwet'en Nation, Broman Lake

Band, Skin Tyee Band

WATERSHED INFORMATION

Watershed Group: Morice River

Watershed Code: 180-600600-00000-00000

UTM at Mouth:NAWatershed Area:644 km²Total of All Stream Lengths:986.49 km

Stream Order: NA

NTS Map: 93L/02, 93L/03, 93L/04, 93L/13,

93L/14

TRIM Map: 93L.003, 93L.004, 93L.005,

93L.006, 93L.014, 93E.095, 93L.013, 93L.015, 93E.094, 93L.016, 93E.092, 93E.093, 93E.082, 93E.083, 93L.024

BGC Zone: SBS

Air Photos: BCC96050 #91-105, #171-185

BCC96071 #66-79 BCC96123 #162-184

BCC96138 #29-53, #180-202 BCC96156 #53-72, #134-156

BCC96148 #60-83

SAMPLE DESIGN SUMMARY

Total number of Reaches:1421Random Sampling Sites:61Biased Sampling Sites:157Fish Sampling Sites:10Total Sampling Sites:228

Field Sampling Dates: August 10 - October 6, 1999

Fish Species Captured During Survey: BT; CAL; CAS; CH; CO; CT; DV;

LKC; LNC; LSU; MW; NSC; PL;

RB; RSC; WSU

CONTRACTOR INFORMATION

Project Manager: Jason Harris, Fisheries Technician

Triton Environmental Consultants Ltd. (Terrace)

P.O. Box 88, Terrace, BC, V8G 4A2

Courier: #300-4546 Park Avenue, Terrace, BC, V8G 1V4

(250) 635-1494 fax (250) 635-1495 e-mail: jharris@triton-env.com

Field Crew: J. Dorey, J. Harris, J. Pegg, E. Lem, E. Miyagi, J. Anaka

Data Entry by: K. Graf, D. Graf Report Prepared by: J. Dorey, J. Harris

GIS Services: Triton Environmental Consultants Ltd. (Richmond)

Technicians: E. Lem; K. Kennes 120-13511 Commerce Parkway Richmond, BC V6V 2L1

Phone: (604) 279-2093 Fax: (604) 279-2047

Fish Aging: AMC Technical Services

5953 Vermillion Plc.

Nanaimo, B.C., V9V 1K2

North/South Consultants Inc.

2-1475 Chevrier Blvd.

Winnipeg, Manitoba, R3T 1Y7

Phone: (204) 284-3366 Fax: (204) 477-4173

DISCLAIMER

"The Province has not accepted the contents of this product* for the purposes of the Forest Practices Code, and reserves the right to dispute the validity of summarized results. The province does not necessarily agree with the classification assigned to any individual stream reach, for use in logging plans, silviculture prescriptions or any other application."

* Product refers to the information detailed in the following pages of this report.

TABLE OF CONTENTS

	Page
PROJECT REFERENCE INFORMATION	ii
WATERSHED INFORMATION	
SAMPLE DESIGN SUMMARY	
CONTRACTOR INFORMATION	
DISCLAIMER	
LIST OF TABLES	V
LIST OF FIGURES	
LIST OF APPENDICES	
LIST OF ATTACHMENTS AVAILABLE AT MELP REGIONAL OFFICE	vi
ACKNOWLEDGMENTS	vii
1.0 INTRODUCTION	1
1.1 Study Objectives	1
2.0 STUDY AREA	1
2.1 Location	1
2.2 Access	2
3.0 RESOURCE INFORMATION	2
4.0 METHODS	4
4.1 Phase 4: Field Data Collection	5
4.1.1 Pre-field Preparation	5
4.1.2 Field Procedures	5
4.1.3 Field Data Compilation	6
5.0 RESULTS	7
5.1 Existing Information	7
5.2 Survey Information	7
5.3 Field Data	8
5.3.1 Site Cards	8
5.3.2 Fish Collection Cards	8
5.4 Survey Comments	8
5.4.1 Logistics	8
5.4.2 Fish Comments	8
5.4.3 Fish Habitat	20
5.4.4 Rehabilitation Opportunities	27
5.4.5 Fisheries Sensitive Zones	
5.4.6 Additional Sampling Recommendations	
5.4.7 Non-Fish Bearing Status	
6.0 STREAM CLASSIFICATION SUMMARY	
7.0 REFERENCES	61

LIST OF TABLES

Table/Tab		Page
Table 1	Survey Summary Information	7
Table 2	Fish Capture Locations within the Study Area	9
Table 3	Fish-Bearing Reaches in the Study Area	22
Table 4	Features in the Study Area	28
Table 5	Additional Sampling Recommendations for the Study Area	31
Table 6	Non Fish-Bearing Reaches in the Study Area	35
Table 7	Stream Sampling Summary	52
	LIST OF FIGURES	
Figure 1	Morice South Study Area Location Map	3
Figure 2	Length Frequency Distribution for Rainbow Trout	11
Figure 3	Length Frequency Distribution for Cutthroat Trout	11
Figure 4	Length Frequency Distribution for Bull Trout	12
Figure 5	Length Frequency Distribution for Dolly Varden	12
Figure 6	Length Frequency Distribution for Chinook	13
Figure 7	Length vs Age for Rainbow Trout	13
Figure 8	Length vs Age for Cutthroat Trout	14
Figure 9	Length vs Age for Dolly Varden	14
Figure 10	Length vs Age for Bull Trout	15

LIST OF APPENDICES

Appendix I Reach Cards/Site Cards/Fish Collection Forms and Photographs

Appendix II Project Overview Map

Appendix III Project Maps

Appendix IV Fisheries Interpretive Maps

LIST OF ATTACHMENTS AVAILABLE AT MELP REGIONAL OFFICE

Attachment I Planning Document

Attachment II Field Notes

Attachment III Collected Fish Aging Structures

Attachment IV Voucher DNA Sample Table

Attachment V Photodocumentation

Attachment VI Digital Data

Attachment VII Hardcopy FISS Update Data Forms

ACKNOWLEDGMENTS

Funding for this inventory was provided by Forest Renewal BC - a partnership of forest companies, workers, environmental groups, First Nations, communities and government. Forest Renewal BC funding - from stumpage fees and royalties that forest companies pay for the right to harvest timber on Crown lands - is reinvested in the forests, forest workers, and forest communities.

1.0 INTRODUCTION

Triton Environmental Consultants Ltd. (Triton, Terrace) was retained by Northwood Pulp and Timber Ltd. (Northwood) to conduct a Reconnaissance (1:20,000 scale) Fish and Fish Habitat Inventory in Northwood's Morice South operating area which is located within the Morice Timber Supply Area (T.S.A. 20).

This project commenced as a result of BC Fisheries and Ministry of Environment Lands and Parks (MELP) initiatives to gather information about fish distribution, population status, and the condition and capability of stream habitats (Anonymous, 1998). Forest Renewal of British Columbia (FRBC) funding and MELP supervision facilitated the commencement of this sample-based survey of the sub-basins outlined within the study area. The inventory provides information regarding the characteristics, the distribution and the relative abundance of fish species, as well as information on biophysical lake and stream data. This information can be used for the interpretation of habitat sensitivity and fish production capability (Anonymous, 1998). The results of the inventory may be applied to initial Riparian Management Area (RMA) and lake classification under the Forest Practices Code for forest development planning, watershed restoration, and for the establishment of some landscape-level biodiversity objectives (Anonymous 1998).

1.1 Study Objectives

Fish and fish habitat values were the primary components of the inventory:

- Fish
 - identify and map fish-bearing stream reaches and lakes using existing information and new field information (field inventory).
- Fish Habitat
 - identification and coding of all waterbodies.
 - identification and characterization of stream reaches utilizing topographic maps and aerial photographs, with confirmation via field sampling.

The results of the inventory are presented on 1:20,000 scale TRIM based maps, BC Ministry of Environment, Lands and Parks (MELP) Field Data Information Summary (FDIS) data forms, and in the body of this report.

2.0 STUDY AREA

2.1 Location

Northwood's Morice South operating area is comprised of 3 major watersheds and smaller tributaries to the Morice River (WSC 460-600600); Nanika River, (WSC 460-600600-64400), Lamprey Creek (WSC 460-600600-36400), and McBride Creek (WSC 460-600600-63200). The study area includes tributaries entering from the south bank of

the Morice River (between Lamprey Creek and the Nanika River) which is part of the Skeena River drainage. The Morice Study Area is outlined in Figure 1, and is located approximately 40 km southwest of Houston, B.C.

The Study Area is situated in the Central Interior Ecoprovince. The watershed lies in the broad rolling plateau that comprises the Fraser Plateau Ecoregion, in the Bulkley Ranges, and Nechako Plateau Ecosections.

Demarchi (1996) describes the climate within the Central Interior Ecoprovince:

The area has a typically continental climate: cold winters, warm summers, and a precipitation maximum in late spring or early summer. The area lies in a rainshadow leeward of the Coast Mountains. There is intense surface heating and convective showers in summer and in winter there are frequent outbreaks of Arctic air.

The biogeoclimatic zonation for the Study Area is predominantly Sub-boreal Spruce (Demarchi, 1996). Engelmann Spruce - Subalpine Fir zones occur on the middle slopes and Alpine Tundra Zones occur on the upper mountain slopes (Demarchi, 1996).

2.2 Access

Houston, the closest community to the study area, is situated approximately 40 km to the northeast of the study area. Sampling sites within the watershed were accessed by both road and air.

Directions from Houston to the Study Area are as follows:

- From Houston drive south 27 km on the Morice River Forest Service Road (FSR). At 27 km turn right (west) and stay on the Morice River FSR.
- Drive 17 km west on the Morice River FSR into the Study Area.
- Sample sites were accessed off the Morice West FSR, Morice River FSR, Nanika FSR, Bill Nye FSR and associated spur roads.

Sites located in the study area that did not possess road networks were accessed by helicopter.

3.0 RESOURCE INFORMATION

Resource values within the Sub-boreal Spruce (SBS) biogeoclimatic zone include forest harvesting. Northwood has current logging operations within the study area. Most of the SBS has low capability for agriculture due to adverse climate, topography, bedrock,

Fig.1

stoniness or poor drainage. Fur harvest from this zone is among the highest in the province.

The traditional area of the Wet'suwet'en Nation, Broman, Lake Band, and Skin Tyee Band lie in and adjacent to the study area. Culturally modified trees have been identified within the study area adjacent to Con Lake at the base on Nadina Mountain (Norcan, 1998).

In addition, the surrounding forested areas are used for hunting, hiking, snowmobiling, camping, and cross-country skiing (Meidinger & Pojar, 1991). The Nanika-Kidprice canoe route starts and finishes within the study area. Short portage trails, starting at Lamprey Lake, link 4 lakes (Lamprey, Anzac, Stepp, and Kidprice) together. The route can be finished by traveling down the Nanika River to Morice Lake.

The study area is located within the Central Interior ecoprovince which supports moose (Alces alces), caribou (Rangifer tarandus), mule deer (Odocoileus hemionus hemionus), whitetail deer (O. virginianus) and mountain goat (Oreannos americanus) habitats. In addition, black bears (Ursus americanus), wolves (C. lupis), fisher (Martes pennanti), and lynx (Lynx canadensis) are widely distributed throughout the ecoprovince. Common herptiles include the western garter snake (Thannophis elegans), the spotted frog (Rana pretiosa) and the western toad (Bufo boreas) (Campbell et al., 1990).

No existing water quality data was identified during the pre-field planning stages.

4.0 METHODS

The 1:20,000 Scale Fish Stream Identification inventory was completed in six phases:

- Phase 1: Existing Data Review
- Phase 2: Map and Air Photo Analysis
- Phase 3: Sampling Design and Project Plan
- Phase 4: Field Data Collection
- Phase 5: Data Compilation
- Phase 6: Report and Map preparation.

The methods employed for each phase of the project followed those outlined in the *Reconnaissance* (1:20,000) Fish and Fish Habitat Inventory: Standards and Procedures, April 1998 (Anonymous 1998). Alterations were made to the project plan in Phase 4 and are outlined in the sections below.

4.1 Phase 4: Field Data Collection

The following sections describe the methods and approaches taken to complete field sampling and data collection.

4.1.1 Pre-field Preparation

Stream reaches to be inventoried were identified by two methods: random sites generated by the FDIS planning tool and biased sites identified by Northwood and Triton. The latter sites are selected to address gaps in the random sampling plan, fish distribution and stream reaches potentially affected by forest planning and harvesting activities. The final sample sites incorporated into the contract were reviewed by John Brockley (Northwood), Todd Mahon (FRBC Coordinator), Paul Giroux (FIS, MELP Skeena Region 6), and Triton (Terrace) to ensure the sample sites meet the requirements of Northwood, MELP and the FDIS planning model.

Required fish collection permits were obtained from MELP and DFO prior to the commencement of field activities.

4.1.2 Field Procedures

All sampling procedures followed those outlined in the *Reconnaissance* (1:20,000) Fish and Fish Habitat Inventory: Standards and Procedures, April 1998 (Anonymous 1998) and the Forest Practices Code Fish Stream Identification Guidebook, (Anonymous 1995).

Field work was conducted by three field crews each consisting of two people. In watersheds where road access was available, the crews used 4X4 pick-up trucks or ATV's to travel from site to site. In watersheds where road access was unavailable transportation was provided by Westland Helicopter's Bell Jet Ranger helicopter.

Prior to the commencement of field activities each crew was equipped with the following:

- Smith-Root Model 12A backpack electrofisher
- electrofisher safety gear (leak proof waders, wading belts, Linesman's gloves, hat with a brim, polarized sunglasses)
- minnow traps and bait
- backpacks
- clinometer
- compass
- hip chain
- 50 m tape

- meter stick
- VHF radio
- first aid kit
- water quality kit (hand held pH and conductivity meters)
- thermometer
- Canon waterproof camera and slide film
- voucher specimen container
- MELP Site cards
- MELP Fish collection forms
- MELP Individual fish data cards
- field maps

Fish sampling within stream reaches was conducted using three primary sampling techniques: electrofishing, minnow trapping, and visual observation. Electrofishing is the most efficient method of sampling in shallow stream habitats and was the preferred sampling method for all habitat types in small streams and shallow water habitats. In these habitats and where using an additional sampling method would not provide additional information (i.e. species, relative abundance), it was the only fish sampling technique employed. In a few cases, minnow traps baited with salmon roe were employed in streams of greater depth and in ponded habitats. Visual observation was also used when other methods failed to catch fish. A combination of techniques were employed where the use of only one method would not have effectively sampled all habitats and in areas that were not suited to electroshocking (deep pools, wetlands, etc.). Where appropriate, and where return visits were practical, minnow traps baited with salmon roe were set and allowed to soak for a 24 hour period.

4.1.3 Field Data Compilation

Following each field day, field crews met to compile field notes, review field data and summarize the field findings onto hard copy maps. This system ensured that all information was thoroughly documented, allowing for preliminary stream classifications and changes to the sampling plan to be made. Field crews were in constant contact with Paul Giroux (Fisheries Inventory Specialist) and Andy Witt (Forest Ecosystem Specialist) when the originally proposed plan needed modifications. In most cases sites downstream of known fish bearing reaches were moved to reduce sampling redundancy, address potential barriers, identify species composition, establish fish distribution and provide additional sampling data.

5.0 RESULTS

5.1 Existing Information

FISS (1995a) records indicate that rainbow trout (*Oncorhynchus mykiss*), cutthroat trout (*O. clarkii*), coho (*O. kisutch*), pink (*O. gorbuscha*), chinook (*O. tshawytscha*), sockeye (*O. nerka*), lake chub (*Couesius plumbeus*), longnose sucker (*Catostomus columbianus*), longnose dace (*Rhinichthys cataractae*), Dolly Varden (*Salvelinus malma*), lake trout (*Salvelinus namaycush*), and Rocky Mountain whitefish (*Prosopium williamsoni*) are present in the Nanika River drainage. FISS (1995a) records indicate that the McBride Creek drainage contains: redside shiner (*Richardsonius balteatus*), prickly sculpin (*Cottus asper*), Burbot (*Lota lota*), Largescale sucker (*Catostomus macrocheilus*), peamouth chub (*Mylocheilus caurinus*), Rocky Mountain whitefish, longnose dace, lake whitefish (*Coregonus clupeaformis*), lake trout, chinook, coho, cutthroat trout, and Dolly Varden. FISS (1995a) also indicates that the Lamprey Creek drainage contains: cutthroat trout, rainbow trout, coho, chinook, Dolly Varden, Rocky Mountain whitefish, prickly sculpin, lake chub, redside shiner, burbot, peamouth chub, longnose dace, and longnose sucker.

MoELP Skeena Region 6 Smithers files support the species identified in the FISS (1995a) records and include white sucker (*Catostomus commersoni*) and Pacific lamprey (*Lampetra tridentata*) as being present within the Study Area.

5.2 Survey Information

Table 1 provides an overview of the survey information compiled for the Morice Study Area.

Table 1. Summary Survey Information for the Study Area.

Major Watershed Code:	180-600600-00000-00000-0000-0000-000-000-							
Watershed Name:	Morice River							
Drainage:	Morice River→ Bulkley River→Skeena River							
NTS Maps:	93L/02, 93L/03, 93L/04, 93L/13, 93L/14							
TRIM Maps:	93L.003	93L.013	93E.092	93E.082				
	93L.004	93L.014	93E.093	93L.024				
	93L.005	93L.015	93E.094	93E.083				
	93L.006	93L.016	93E.095					
Total Number of Lakes:	25							
Total Number of Reaches:	1421							
Stream Field Sampling Dates:	August 10 -	October 6, 1999						
Number of Random Sites Sampled:	61							
Number of Bias Sites Sampled:	157							
Number of Fish Sampling Sites:	10							
Total Number of Sampling Sites:	228							

5.3 Field Data

5.3.1 Site Cards

Site Cards and Reach forms were entered into MELP's FDIS database following the completion of the Phase 4 field inventory. Hard copy versions of the Reach/Site Cards are presented in Appendix I.

5.3.2 Fish Collection Cards

The Fish Collection Cards were entered into MELP's FDIS database following the completion of the Phase 4 field inventory. A hard copy of the Fish Collection Forms are presented in Appendix I following the Reach/Site cards.

5.4 Survey Comments

5.4.1 Logistics

Weather conditions were variable over the field sampling dates. Heavy rain caused some turbidity and high water in several sample sites. Field crews often made the decision to sample streams which were not affected by the high runoff. The turbid streams were then revisited when sampling conditions were favorable. Frequent precipitation over the sampling dates helped reduce the number of dry/intermittent streams. The number of dry intermittent streams was relatively low for this time of year (43 of 218 sample sites were classified as dry/intermittent). Poor driving conditions were encountered on secondary roads and crews often had to use winches to make it through muddy sections of road. The use of an ATV was employed when road conditions were not drivable or walking distances were too great. No sites were dropped from the sample plan due to lack of access.

5.4.2 Fish Comments

Fish were captured in 81 of 228 sample locations. Table 2 provides a summary of the of the reaches in which fish were captured. Rainbow trout, bull trout (*Salvelinus confluentus*), coastrange sculpin (*Cottus aleuticus*), prickly sculpin, chinook, coho, cutthroat trout, Dolly Varden, lake chub, northern squawfish (*Ptycheilus oregonesis*), mountain whitefish, longnose sucker, pacific lamprey, white suckers, redside shiner, and longnose dace were captured in the study area. Length frequency distributions are provided in the figures below for sport species with adequate numbers for graphic representation. Length vs age is also demonstrated in the following figures for the sport species from which ageing data was collected.

Tab 2

Table 2. Fish Capture Locations with the Upper Morice

Site	WSC/ILP	Reach	Order	Species	Stage	Number	Minimum Length (mm)	Maximum Length (mm)
131	1071	2	1	RB	F	5	20	30
132	39700-0440	1	2	DV	J	3	80	110
133	36400-39700	3	4	RB	J	5	60	110
136	36400-26300	2	2	DV	A	3	100	110
152	36400-39700	5	4	WSU	J	16	50	60
153	36400-39700	7	4	WSU	J	38	40	90
156	36400-39700	4	4	RB	10	10	50	110
159	36400-39700	17	3	WSU	J	2	60	65
161	36400-39700	11	4	LKC	J	6	40	80
				WSU	J	29	50	90
164	1454	3	2	DV	J	7	50	90
165	1453	3	1	DV	F	4	30	35
				DV	J	4	80	95
232	1031	2	2	CT	F	6	25	30
233	1033	1	1	CT	F	3	25	30
238	1427	6	1	CT	F	9	25	30
239	1489	3	2	DV	A	9	135	168
240	64400-28100	4	3	DV	A	12	110	154
241	64400-28100	5	3	DV	A	8	110	150
243	64400-28100	11	2	DV	A	8	115	168
246	1419	3	3	DV	A	12	110	195
250	64100-2380	4	2	RB	F	3	25	30
256	600600-53900	1	2	CT	A	7	80	120
266	36400-26300	2	2	DV	J	1	101	101
279	50200-0640	1	3	CT	J	3	53	60
301	1401	1	2	DV	F	1	28	28
				DV	J	14	54	126
				DV	A	1	189	189
302	64400-22700	2	3	DV	J	7	48	86
304	1500	3	4	RB	J	3	63	93
				RB	A	3	100	156
				DV	F	3	36	39
				DV	A	1	111	111
305	64400-18300	4	4	RB	J	2	65	72
				DV	A	2	149	196
				CO	J	4	36	47
				CH	J	2	49	56
				LSU	J	3	41	66
307	1276	3	1	RB	J	4	58	87
314	11700-5110	3	3	CT	J	1	72	72
315	1011	1	1	CAS	J	1	86	86
				LSU	J	1	64	64
316	600600-63200	8	4	CT	J	1	121	121
				RB	F	3	39	44
				RB	J	5	58	165
				CAS	A	3	82	118
				MW	J	1	85	85
				LSU	J	5	49	87
				PL	J	2	87	92
319	11700-5660	4	2	DV	J	3	62	81
326	62200-2180	3	2	RSC	A	1	132	132
331	600600-57600	5	2	RB	F	12	35	46
				RB	J	6	80	170
				RB	A	2	96	120
332	1180	5	2	CAS	A	2	62	76
336	57600-31800	3	1	NSC	J	1	129	129
340	66200-1840	4	1	CT	J	3	65	92
341	63200-66200	2	3	CT	F	10	22	32
				CT	J	8	89	126
				DV	J	1	90	90
342	66200-3100	2	1	CT	F	4	24	36
				CT	J	2	67	76

Table 2. Fish Capture Locations with the Upper Morice

Site	WSC/ILP	Reach	Order	Species	Stage	Number	Minimum Length (mm)	Maximum Length (mm)
344	63200-75900	1	2	CT	F	1	31	31
				CT	J	3	120	137
348	36400-88900	2	1	CT	F	4	34	46
				CT	J	2	71	89
350	600600-36400	24	1	RB	J	7	79	100
				CT	F	5	31	39
				CT	J	2	71	89
351	600600-63200	13	2	CT	J	7	64	86
392	36400-72600	6	1	CT	F	4	29	33
20.4	52 500 5 0 5 0			CT	J	5	48	57
394	72600-5970	6	1	CT	J	6	42	73
398	63200-66200	3	2	CT	J J	7	59	123
399	1405	1	2	DV CT	F	3 2	125 31	142 33
				CT	J	3	46	69
405	1393	1	2	DV	J	3	98	121
405	1278	1	2	CO	F	1	42	42
422	62200-2180	2	2	CT	J	9	48	95
425	36400-00800	5	2	CT	F	20	35	46
423	30400 00000	3	2	CT	J	4	69	82
466	36400-39700	17	3	LKC	J	3	27	67
100	30100 37700	17	5	WSU	J	6	75	161
475	36400-39700	1	4	RB	J	8	78	152
.,.				DV	J	4	78	92
				CT	J	2	150	155
				PL	J	20	45	83
668	36400-64100	16	3	RSC	A	2	55	71
				CAL	A	1	86	86
				LKC	J	4	15	82
669	1034	1	2	LKC	J	6	24	27
670	1038	1	1	CT	J	4	42	66
672	36400-64100	9	3	CT	J	3	38	73
				RSC	J	2	42	47
674	36400-64100	13	3	RB	F	8	41	51
675	64400-18300	6	4	CT	J	4	87	123
				CH	J	12	54	114
				RSC	Α	8	80	105
				LNC	J	1	55	55
				CAL	J	1	86	86
677	1269	2	3	CT	J	5	35	67
				DV	J	1	61	61
678	64400-18300	9	3	CT	J	2	65	71
679	1268	1	2	CT	F	2	25	29
601	1072	2	1	CT	J	2	59	70
681	1273	3	1	CT	J	4	60	69
682	1221 1500	2	4	CT DV	J J	8	120 43	120 183
685	1300	2	4	CT	J	4	120	143
690	1246	1	1	DV	J	1	85	85
090	1240	1	1	CT	J	1	85	85
691	18300-3800	2	3	DV	J	10	85	145
071	10300-3000		,	CT	J	7	30	128
692	63200-09800	1	2	DV	J	1	70	70
693	63200-09800	3	2	DV	J	1	75	75
900	64400-28100	2	3	RB	J	8	86	221
2.50		_		BT	J	14	42	172
				MW	A	4	256	415
901	64400-28100	9	3	DV	J	9	122	177
		•		•	•			•

Figure 2. Length frequency distribution for rainbow trout captured in the study area (n=97).

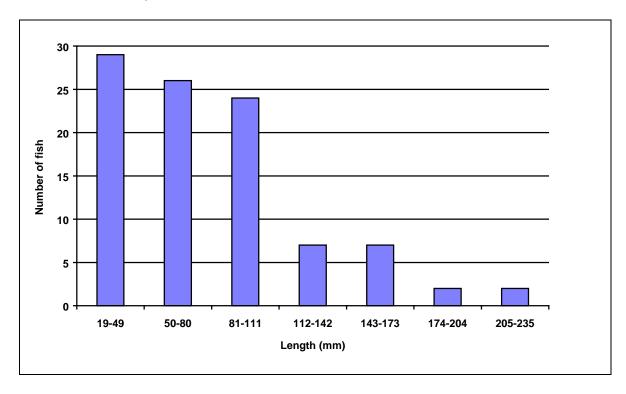


Figure 3. Length frequency distribution for cutthroat trout captured in the study area (n=186).

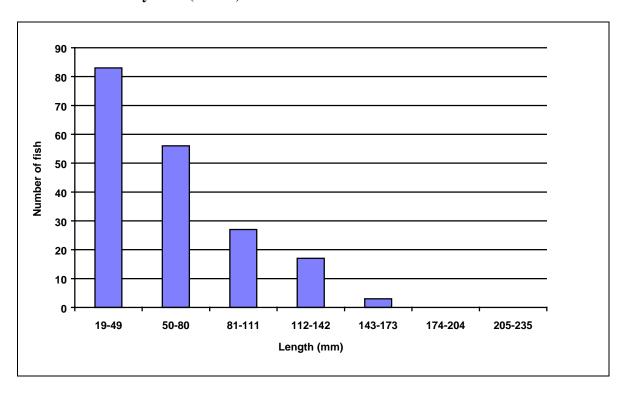


Figure 4. Length frequency distribution for bull trout captured in the study area (n=14).

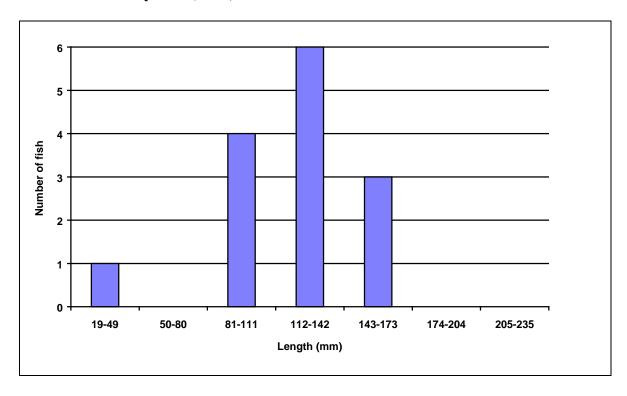


Figure 5. Length frequency distribution for Dolly Varden captured in the study area (n=151).

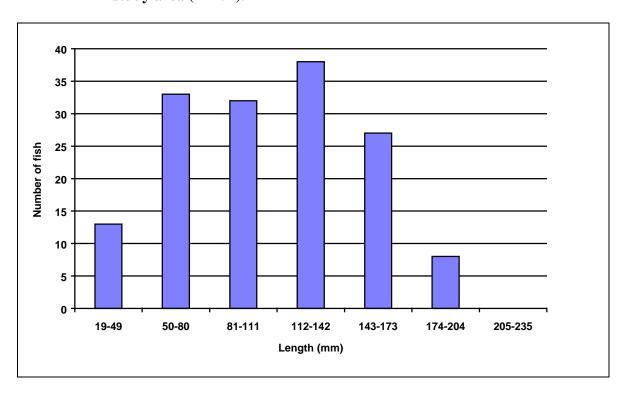


Figure 6. Length frequency distribution for chinook captured in the study area (n=14).

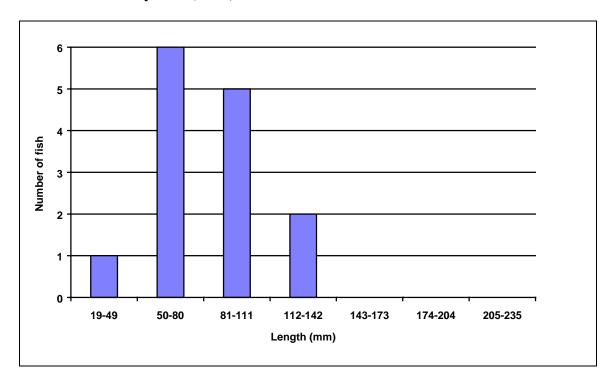


Figure 7. Length vs Age for rainbow trout captured within the Study Area (n=34).

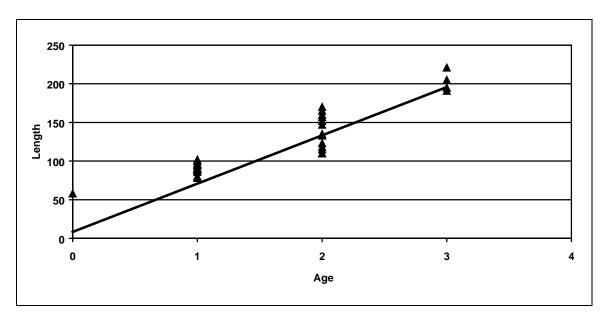


Figure 8. Length vs Age for cutthroat trout captured within the Study Area (n=16).

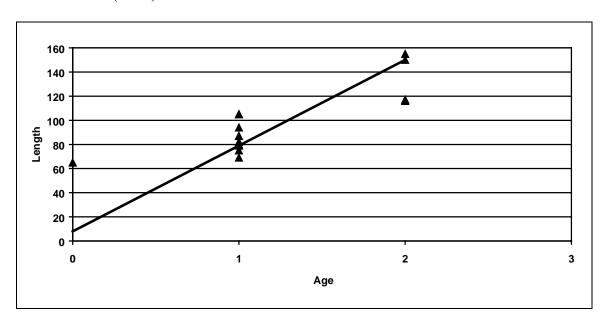
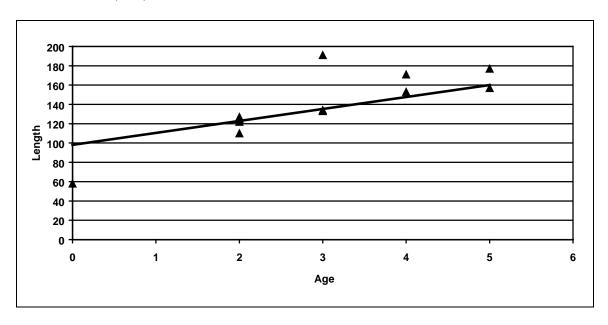



Figure 9. Length vs Age for Dolly Varden captured within the Study Area (n=9).

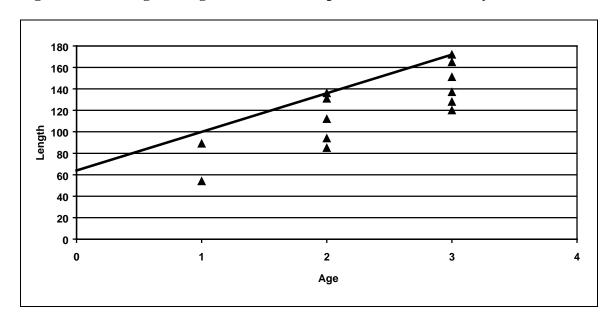


Figure 10. Length vs Age for bull trout captured within the Study Area (n=13).

Rainbow trout

Rainbow trout, captured during this survey, were found to utilize small to moderately large streams, which have moderate flows, gravel substrates, riffle pool morphology and shallow depths. Spawning for rainbow trout usually occurs from mid-April to late June with fry emergence occurring from mid-June to mid-August (Scott & Crossman 1985).

White sucker

The white sucker captured within the Morice study area were all associated with the resident lake populations within the Pimpernel Creek drainage. The highest concentrations of white sucker were found adjacent to overwintering habitats provided by large wetlands and lakes. No white sucker were captured in any of the tributary streams to Pimpernel Creek, which suggests that the white sucker are confined to areas adjacent to the perennial fish habitat provided by the lakes and wetlands.

White sucker are generally characterized as inhabiting shallow warm lakes and some slower stream habitats. White sucker reach sexual maturity between 5 and 8 years and tend to spawn in slow shallow water with gravel substrates during the spring (early May to June). Adults do not create redds and deposit their eggs freely to adhere to gravel substrates or to drift downstream to suitable substrates in slower water. The eggs hatch in about 2 weeks with the fry emerging from the gravel in another 1-2 weeks. White sucker have been known to live for up to 17 years (Scott & Crossman 1985).

Redside shiner

The redside shiner captured within the Morice study area were captured in stream habitats immediately below small shallow lakes. Although the lake habitats were not sampled it would be safe to infer that the stream residents likely downseed from upstream headwater lakes. All of the redside shiner captured within the streams were found to be adults which were most likely taking advantage of the adjacent stream habitats during the summer months.

Redside shiner can tolerate a wide range of temperatures and trophic conditions and area generally known inhabit lakes, small ponds, and moderately fast streams. Redside shiner live up to 7 years and reach sexual maturity in approximately 3 years. Spawning takes place in streams or lakes in the early summer (May to early August). No nest is built and the eggs are released to adhere to gravel, vegetation or other suitable substrates. The eggs hatch in 1-2 weeks and the fry emerge from the gravel 1-2 weeks later (Scott & Crossman 1985).

Cutthroat trout

Cutthroat were captured in a variety of habitats throughout the study area. They were most often found in the smaller streams adjacent to overwintering habitat provided by larger mainstems and lakes. The majority of the cutthroat captured were fry and juveniles which indicates they likely utilizing the small stream habitat for juvenile rearing and, or refuge. Adults were only captured in the larger mainstems (usually third order or larger).

Cutthroat live to a maximum of 10 years and can reach sexual maturity in as little as 2 years. Spawning takes place in the spring (February to May) in streams with adequate gravel substrates. Redds are constructed and the eggs hatch within 6-7 weeks. Fry emerge from the redds in 1-2 weeks (Scott & Crossman 1985).

Pacific lamprey

Pacific lamprey ammocoete's were captured in two locations (Lamprey Creek and McBride Creek) within the study area. In both cases the lampreys were captured in the sandy/muddy substrates occurring in the back eddies of moderate sized pools. The lamprey captured, responded poorly to electrofishing effort and often settings on the electrofisher needed to be changed to draw them out of the fine substrates.

The ammocoete's stream habitat usually consists of sandy or muddy substrates adjacent to riffles. Ammocoetes spend 5-6 years in the freshwater stream habitat before transforming into parasitic adult lampreys and migrating downstream to the sea in the spring or early summer. After 12-20 months as parasites they migrate back to freshwater in the summer to early fall (July to September). The lampreys hide under rocks resting until spawning in the spring (April to July) (Scott & Crossman 1985).

Dolly Varden

Within the Morice study area Dolly Varden were found in habitats ranging from high energy glacial streams to low gradient stagnant pools. Fry and juvenile Dolly Varden were found to inhabit the smaller secondary streams adjacent to overwintering habitat (larger mainstems and lakes), and the larger (mature) Dolly Varden were found in mainstem and larger tributary habitats.

Dolly Varden reach sexual maturity in 3-6 years and spawn in streams with cobble/gravel substrates and moderate flows. The fry hatch in the spring and reside (3-4 years) in the stream they were spawned until reaching a size large enough to move downstream into larger bodies of water. Northern and high elevation populations are often stunted and rarely exceed 30 cm. Dolly Varden are a relatively long lived species reaching ages of 10-12 years (Scott & Crossman 1985).

Mountain whitefish

The mountain whitefish captured within the study area were found in two different habitats types. One capture location was located immediately upstream of the Nanika River in a high energy glacial stream. This capture location produced large adult whitefish that may have come up from the Nanika River to spawn in the smaller tributary stream. The second capture location was McBride Creek which is characterized by low gradient sections with abundant beaver activity. This McBride Creek fish likely downseeded from the upstream population in McBride Lake.

Within the Skeena drainage mountain whitefish are most abundant in shallow eutrophic lakes. Mountain whitefish reach sexual maturity in 3-4 years and are late fall to early winter spawners. Spawning takes place over gravel or cobble substrates and no nest is built. The maximum age for mountain whitefish is reported at 17 or 18 years (Scott & Crossman 1985).

Longnose sucker

Longnose suckers were captured in several locations within the study area. They are common throughout the Skeena drainage occurring in lakes and streams. Longnose sucker reach sexual maturity at 5-7 years and spawn in the spring in streams or on shallow lakeshore habitat. The fry hatch in approximately 2 weeks and remain in the gravel for an additional 1-2 weeks before emerging into the stream habitat (Scott & Crossman 1985). Within the McBride Creek drainage longnose sucker were captured in the slow water adjacent to beaver dams and ponds. Longnose sucker were also found in the slower stream habitat below a large wetland complex located on a large tributary to the Nanika River. No adult longnose sucker were captured which indicates they are most likely utilizing the lake and pond habitats within these systems.

Longnose dace

Longnose dace are know to inhabit swift flowing streams with boulder or gravel substrates and are often present near inshore habitats of lakes containing boulder and gravel bottoms. Relatively little is known about the spawning characteristics of the longnose dace although spawning is considered to take place in the spring or early summer (May to July) within stream riffles containing gravel substrates (Scott & Crossman 1985). One longnose dace was captured below a small lake located on a tributary to the Nanika River. This fish was a juvenile found to be utilizing the rearing habitat adjacent to the lake.

Coastrange sculpin

Two (2) streams located directly below lakes contained coastrange sculpins. These fish are most likely from the lake population and are utilizing the available habitat adjacent to the lake. The coastrange sculpin is known to inhabit the fast water of streams containing gravel/cobble substrates and the shallow inshore areas of lakes. Coastrange sculpin spawn in the spring (February to mid June) underneath rocks. The eggs are attached to rock's surface in an adhesive mass (Scott & Crossman 1985).

Prickly sculpin

Prickly sculpin were captured in stream habitats within the study area. The prickly sculpin is known to inhabit the quiet, slower flowing portions of streams and the shoreline areas of lakes. Spawning takes place in the spring from mid March to mid July. Streams containing boulder/cobble and flat rock substrates seem to be the preferred habitat for spawning. The eggs are attached in an adhesive mass to the underside of a boulder or flat rock. Prickly sculpin were captured in a small tributary immediately upstream of Collins Lake and within McBride Creek. Both fish were found rearing in slow stagnant water containing woody debris.

Northern squawfish

One (1) northern squawfish was captured at the outlet of a small lake. This fish was most likely associated with an upstream lake population. Northern squawfish are mainly a lake species but are often found in the slower moving water of streams and sloughs. Sexual maturity is reached in approximately 6 years and spawning takes place in the shallows on gravely lake shore substrates and in stream habitats adjacent to lakes (May to July). Northern squawfish are a long lived species with a life expectancy of 15-20 years.

Coho salmon

Coho juveniles were captured in the Nanika River drainage. Coho are fall to early winter (October to January) spawners and spawning habitat can be characterized as smaller rivers and tributaries containing gravely substrates. Coho fry emerge from the gravel in

the spring and early summer (March to July) and juveniles usually remain in freshwater habitat for 1-2 years before migrating (downstream) to the ocean for 1 to 3 years. Coho juveniles were captured in a side channel to the Nanika river. These fish were observed and captured while rearing in this channel at the mouth of a small tributary. Coho were also captured below a large wetland complex in a larger tributary to the Nanika River. Both capture locations had good cover and provide good rearing habitat for these juveniles. It is unlikely that mature coho are spawning at these capture locations due to fine substrates. These coho juveniles likely moved upstream to these habitats, from the mainstem, to rear until outward migration.

Chinook Salmon

Chinook juveniles were captured in the Nanika River drainage. Chinook salmon are late summer to late fall spawners (August to October). Spawning habitat can be characterized as the larger rivers and tributaries containing moderate to large gravels. The fry emerge from the gravel in the spring and rear for up to 1 year in the freshwater before migrating to the ocean for 2-5 years. Chinook juveniles were captured in a larger tributary to the Nanika River. It is most likely that the adult chinook are spawning in the Nanika River and the juveniles are rearing within this smaller tributary until outward migration.

Bull trout

Bull trout were captured in a large tributary to the Nanika River. Bull trout are known to occupy a wide spectrum of habitat types. Bull trout often occupy unproductive habitats where rainbow and cutthroat do not thrive. Within the study area there is the possibility of 3 different bull trout life histories:

- the stream resident that spends its entire life within small headwater streams, often above physical barriers;
- the large river type which spends its adult life within large rivers and spawns in smaller tributaries. The large river offspring rear in these smaller tributaries until they grow large enough to compete within the large river habitat; and,
- the lake type, which spends its adult life in a lake habitat and uses the tributary streams for rearing and spawning.

Bull trout are fall spawners and reach maturity in 3 to 7 years. It is believed that the bull trout captured within the glacial tributary to the Nanika River are of the large river type. In this tributary (WSC 64400-28100) only juvenile bull trout were captured immediately upstream of the Nanika River. Further sample sites upstream of Reach 3, indicated that only Dolly Varden were present. Bull trout adults most likely use the lower reaches of this stream for spawning and the juveniles rear in this stream until large enough to survive in the Nanika River mainstem.

Lake chub

Several lake chub were captured within the study area. Lake chub were found within the Pimpernel Creek drainage below "Con Lake" and below another small lake within a large tributary to Lamprey Creek. This species was associated with low gradient habitat adjacent to suitable overwintering areas (i.e. upstream or downstream of small lakes and ponds). The lake chub is a large minnow, commonly reaching sizes in excess of 102 mm. Studies indicate that the fish mature in their third or fourth year and probably seldom survived beyond 5 years, females lake chub are known to grow faster and live longer than the males. Lake chub usually undergo a spawning migration from lakes to tributary streams early in the spring. In British Columbia, the lake chub range extends from the Columbia and Fraser to the Skeena, Peace and Liar (Scott & Crossman 1985).

Quantitative abundance figures were not generated in this study as sampling methods to determine abundance were not utilized.

Field crews were constantly on the lookout for high value sport fishing opportunities within the study area. Sport fishing is conducted within the study area on several of the lakes and in the mainstem Morice and Nanika Rivers. High value sport fishing exists just outside the study area on the Morice and Bulkley Rivers, which are world famous for steelhead angling.

5.4.3 Fish Habitat

Fish were captured in 1st to 4th order streams and fish distribution was generally associated with perennial fish habitat. Perennial habitat includes the presence of overwintering, spawning, and rearing habitat. Instream overwintering habitat was identified as containing residual pool depths greater than 0.5 m. Other overwintering habitat included wetlands and lakes with depths greater than 0.5 m. Spawning habitat was characterized by the presence of suitable spawning substrates and adequate flows. Rearing habitat was characterized as containing water where fish can live and grow.

Fish bearing 1st order streams were not located far from perennial fish habitat. Habitat quality within these 1st order reaches was generally poor with smaller average channel widths and low water flows. Field observations indicated that the small channel widths and ephemeral nature of these streams likely limit or prevent their ability to sustain fish populations, particularly throughout the year. It is unlikely that these reaches are used by fish, unless they flow into a major system (i.e. 3rd or 4th order), due to the short duration of water flows and lack of suitable fish habitat.

No fish were captured in reaches with an average channel width of less than 0.57 m, or with an average gradient greater than 11.3%. Fish bearing 1st order streams had an average channel width of 1.58 m. Fish-bearing 2nd order streams had an average channel width of 3.18 m. Fish-bearing 3rd and 4th order streams had average channel widths of 7.91 m and 6.74 m respectively.

Significant fisheries values within the project area are largely associated with the limited occurrence of high quality spawning and rearing habitats for rainbow trout. Nanika River, Lamprey Creek, Nado Creek (WSC 460-600600-57600), and McBride Creek provide these high quality spawning and rearing habitats. The prevalence of very shallow stream habitat and low overall habitat complexity, appear to be the primary limiting factors for spawning and rearing habitats. The general lack of deep pool habitats and perennial flow in tributary streams limits the occurrence of suitable habitats for resident trout.

In 2 cases non sport fish species were captured above a physical barrier to upstream fish migration. One (1) northern squawfish was captured in a lake outlet above a 3.5 m falls on a tributary (WSC 460-600600-57600-31800, Site 336) to Nado Creek. Extensive electrofishing within this stream produced only 1 northern squawfish although numerous fish were observed in the small lake located upstream of the site. Lake chub and white sucker were also captured above a 25 m falls on Pimpernel Creek (WSC 460-600600-36400-39700). Pimpernel Creek is a moderately large 4th order drainage containing 2 small lakes. No sport fish species were captured above these falls with adequate stream sampling and a secondary lake survey of Con Lake (Reach 18 of Pimpernel Creek). Lake chub and white sucker are primarily found in lake habitats although they will inhabit larger streams and ponds. The lake chub and white sucker within this system were only captured in the mainstem of Pimpernel Creek and in Con Lake. Several tributary streams to Pimpernel Creek above the falls were sampled and in all cases no fish were caught.

Fish species were captured in 81 of the 124 reaches classified as fish-bearing (Table 3). Fifty-six (56) reaches in the fish bearing classification table were classified as fish bearing by default. Twenty-eight (28) of these reaches were identified as accessible from downstream fish bearing waters and could be utilized for a portion of the year. It was determined that fish can access these reaches (from downstream fish bearing waters) and further sampling is not recommended.

The fish bearing status of streams may be directly supported by sampling data or indirectly inferred based on fish captures in associated reaches, or habitat quality and the occurrence or lack of barriers to fish passage. For example, if the habitats within a given reach are suitable for rearing and/or spawning but no fish were captured and no barriers were observed, the reach would be classed as fish bearing. If the habitats were inadequate to provide suitable rearing habitat, or where barriers prevent fish from accessing and utilizing the reach, it would be classified as non-fish bearing.

Inferred fish bearing status was given to reaches not sampled with the following criteria:

1) The average stream gradient was less than 20 % (through map interpretation) and access to fish bearing waters is present.

Site WSC/ILP Reach Width (m) (%) Species Class Stream Sampling (y or n) Comments	overwintering
Site WSC/ILP Reach Width (m) (%) Species Class Or n Good spawning and rearing habitat. No over habitat. No	overwintering
131 1071 2 1.65 4.5 RB S3 n Good spawning and rearing habitat. No over habitat. 39700 139700 3 7.15 5.5 RB S2 n Good spawning, rearing habitat. No over habitat. No over habitat present. No permanent barriers to upstream fish migration. Non sport fish captured. No permanent barriers to upstream sport fish captured. No permanent barriers to upstre	overwintering
131 1071 2 1.65 4.5 RB S3 n habitat.	overwintering
132	
132	
133 39700 3 7.15 5.5 RB S2 n Good spawning, rearing and overwintering between the parties of	overwintering habitat
133 39700 3 7.15 5.5 RB S2 n Good spawning, rearing and overwintering b No permanent barriers to upstream fish migr identified. Fish captured in the upstream po reach at Site 266. 138 1148 3 0.32 12.2 NS S4*/S6 n Fish may access the lower portion of this reach at Site 266. 138 1148 3 0.32 12.2 NS S4*/S6 n Fish may access the lower portion of this reach at Site 266. 141 1152 1 1.35 16.5 NS S4/S6 n Doint habitat becomes too poor to sustain fish not point habitat point habitat pose to point habi	overwintering natitat.
No permanent barriers to upstream fish migridentified. Fish captured in the upstream poreach at Site 266.	ing hahitat
36400- 136 26300 2 2.85 5.8 DV S3 n identified. Fish captured in the upstream poreach at Site 266.	
136	
138	a portion of this
141	s reach.
141	
147	n fish.
148	migration were
148	
152 39700 5 5.73 4.5 WSU S5 n Falls (25 m) in Reach 4 prevent upstream sp migration. Non sport fish captured.	migration were
152 39700 5 5.73 4.5 WSU S5 n migration. Non sport fish captured.	
Saction Sact	n sport fish
153 39700 7 4.58 4.5 WSU S5 n migration. Non sport fish captured. Falls (25 m) are a barrier to upstream sport for Adequate sampling indicates only non sport above the falls. No permanent barriers to upstream fish migration. Section 156 39700 17 2.59	
Falls (25 m) are a barrier to upstream sport f Adequate sampling indicates only non sport above the falls. No permanent barriers to upstream fish migr identified. Fish stream based on access. Fish captured in upstream reach. Fish bearin access. Falls (25 m) are a barrier to upstream sport f Adequate sampling indicates only non sport above the falls. No permanent barriers to upstream fish migr identified. Fish stream based on access. Fish captured in upstream reach. Fish bearin access. Falls (25 m) in Reach 4 prevent upstream sp migration. Non sport fish captured. Falls (25 m) in Reach 4 prevent upstream sp migration. Non sport fish captured. Good spawning and rearing habitat. No over habitat present. Good rearing habitat. Spawning habitat pres overwintering habitat. No permanent barriers to upstream fish migr	n sport fish
36400- 156 39700 4 7 7.5 RB S2/S5 n above the falls. No permanent barriers to upstream fish migr identified. Fish stream based on access. 36400- 158 00800 2 2.43 4.5 NFC S3 n access. 36400- 159 39700 17 2.59 4.5 WSU S6 n migration. Non sport fish captured. 36400- 161 39700 11 6.58 1.5 WSU S5 n migration. Non sport fish captured. 162 1453 3 3.67 11.3 DV S3 n overwintering habitat. Spawning habitat preson overwintering habitat. No permanent barriers to upstream fish migration. Non sport fish captured. Good rearing habitat. Spawning habitat preson overwintering habitat. No permanent barriers to upstream fish migration. Non sport fish captured. Good rearing habitat. Spawning habitat preson overwintering habitat. No permanent barriers to upstream fish migration.	
156 39700 4 7 7.5 RB S2/S5 n above the falls.	
No permanent barriers to upstream fish migr identified. Fish stream based on access. Sa6400- Sa6400-	port fish are present
157	
36400- 158 00800 2 2.43 4.5 NFC S3 n access. 36400- 159 39700 17 2.59 4.5 WSU S6 n migration. Non sport fish captured. 161 39700 11 6.58 1.5 WSU S5 n migration. Non sport fish captured. 164 1454 3 3.05 10.5 DV S3 n habitat present. 165 1453 3 3.67 11.3 DV S3 n overwintering habitat. No permanent barriers to upstream fish migration.	
158 00800 2 2.43 4.5 NFC S3 n access. Falls (25 m) in Reach 4 prevent upstream sp	
36400- 159 39700 17 2.59 4.5 WSU S6 n migration. Non sport fish captured. 161 39700 11 6.58 1.5 WSU S5 n migration. Non sport fish captured. 162 1453 3 3.67 11.3 DV S3 n overwintering habitat. 163 39700 17 2.59 4.5 WSU S5 n migration. Non sport fish captured. 164 1454 3 3.05 10.5 DV S3 n habitat present. 165 1453 3 3.67 11.3 DV S3 n overwintering habitat. 166 1458 1.5 WSU S5 n migration. Non sport fish captured. 170 Good spawning and rearing habitat. No overwintering habitat. 180 No permanent barriers to upstream fish migration. No permanent barriers to upstream fish migration.	earing based on
159 39700 17 2.59 4.5 WSU S6 n migration. Non sport fish captured.	n enort fich
36400- 161 39700 11 6.58 1.5 WSU S5 n migration. Non sport fish captured. 164 1454 3 3.05 10.5 DV S3 n habitat present. 165 1453 3 3.67 11.3 DV S3 n overwintering habitat. No permanent barriers to upstream fish migration. Non sport fish captured. Good spawning and rearing habitat. No overwintering habitat. Spawning habitat present. No permanent barriers to upstream fish migration. Non sport fish captured. Good spawning and rearing habitat. No overwintering habitat. Spawning habitat present.	ii sport iisii
161 39700 11 6.58 1.5 WSU S5 n migration. Non sport fish captured. Good spawning and rearing habitat. No over habitat present. Good rearing habitat. Spawning habitat present. Good rearing habitat. Spawning habitat present. No permanent barriers to upstream fish migration. Non sport fish captured. Good spawning and rearing habitat. No over habitat present. No permanent barriers to upstream fish migration. Non sport fish captured. Good spawning and rearing habitat. No over habitat present.	n sport fish
Good spawning and rearing habitat. No over habitat present. 164 1454 3 3.05 10.5 DV S3 n habitat present. 165 1453 3 3.67 11.3 DV S3 n overwintering habitat. No permanent barriers to upstream fish migration.	ii sport iisii
164 1454 3 3.05 10.5 DV S3 n habitat present. 165 1453 3 3.67 11.3 DV S3 n overwintering habitat. No permanent barriers to upstream fish migr	overwintering
Good rearing habitat. Spawning habitat pres overwintering habitat. No permanent barriers to upstream fish migr	
165 1453 3 3.67 11.3 DV S3 n overwintering habitat. No permanent barriers to upstream fish migr	present. No
	•
166 1452 2 2.8 16 NS S3* v identified Fish stream based on access	migration were
No permanent barriers to upstream fish migr	migration were
167 1469 2 2.27 8 NFC S3* y identified. Fish stream based on access.	
Lower 100 m of this reach is fish bearing ba	
The remainder of this stream is non fish bear	bearing based on
168 1467 1 0.62 17.8 NFC S4*/S6 n gradient and channel characteristics.	
Moderate spawning and rearing habitat. No	No overwintering
232 1031 2 1.35 4.5 CT S4 n habitat.	
Poor spawning and rearing habitat. No ove	overwintering
233 1033 1 0.57 4 CT S4 n habitat. No permanent barriers were identified. Fish	Fish stream based so
1 225 50000 2 0.00 0.5 1775 544	1 1511 SUCAIII DASCU ON
236 59800 2 0.82 3.5 NFC S4* y access.	Fish stream based on
237 36400 28 1 4 NS S4* n access.	i isii sucaiii bascu Oli
Moderate spawning and rearing habitat. Poc	Poor overwintering
238 1427 6 1.72 5.5 CT S3 n habitat.	
Cascade (30 m) prevents upstream fish migr	nigration. Sampling
239 1489 3 10.43 5 DV S2/S5 n upstream of the cascade confirms non fish to	
64400-	-
\(\frac{4+400}{2} \)	
240 28100 4 36.1 7.5 DV S1 n Moderate spawning, rearing, and overwinter	intering habitat.

							Follow-up	
a.	W1000W P	ъ.	*******	Gradient		Stream	Sampling (y	
Site	WSC/ILP	Reach	Width (m)	(%)	Species	Class	or n)	Comments Falls (4 m) and a cascade (3 m) prevent upstream fish
	64400-							migration. Sampling upstream of the falls confirms non fish
243	28100	11	14.1	8	DV	S2/S5	n	bearing status.
246	1.410	2	2.02	0	DV	60/65		Cascade (6 m) prevents upstream fish migration. Sampling
246	1419 64100-	3	3.02	8	DV	S3/S5	n	upstream of the cascade confirms non fish bearing status.
250	2380	4	0.82	1.5	RB	S4	n	Poor rearing. No spawning or overwintering habitat.
	39700-							No permanent barriers identified. Fish stream based on
251	0440	2	0.89	5	NFC	S4*	n	access.
253	1169	2	1.3	4.5	NFC	S4*		No permanent barriers identified. Fish stream based on access.
233	600600-		1.3	4.3	NIC	34	У	access.
256	53900	1	2.75	7	CT	S3/S5	n	Falls (20 m) prevent upstream fish migration.
	5020-							No permanent barriers to upstream fish migration were
258	0640	5	1.38	7	NFC	S4*	у	identified. Fish bearing based on access.
261	1180	9	1.18	3	NEC	S4*		No permanent barriers to upstream fish migration were identified. Fish stream based on access.
201	36400-	9	1.16	3	NFC	34"	У	Cascade (2 m) prevents upstream fish migration. Fish were
266	26300	2	3.37	8	DV	S3/S6	n	captured below the cascade.
270	1150		0.02	20.2) TEG	a titi (a c		Lower 50 m of this reach is fish bearing based on access.
270	1150	1	0.92	20.3	NFC	S4*/S6	n	Gradient prevents fish access to the remainder of the stream. Lower 20 m of this reach is fish bearing based on access.
								The remainder of this reach is non fish bearing (high gradient
271	1158	2	0.65	26.5	NS	S4*/S6	n	prevents access).
273	1442	1	0.72	5.8	NS	S4*	n	Fish stream based on access.
	50200-							Good rearing habitat. No spawning habitat or overwintering
279	0640	1	1.72	4.3	CT	S3	n	habitat. Excellent spawning habitat. Moderate rearing habitat. No
301	1401	1	1.98	1.9	DV	S3	n	overwintering habitat. Woderate learning habitat. No
	64400-						-	Good spawning and rearing habitat. Overwintering habitat
302	22700	2	3.77	3	DV	S3	n	present.
20.4	4.500	•	- - 0	4.0	DD D11			Excellent spawning habitat. Moderate rearing habitat.
304	1500	3	6.58	1.3	RB, DV CO, CH,	S2	n	Overwintering habitat present.
	64400-				DV, RB,			Excellent rearing habitat. Poor spawning habitat.
305	18300	4	3.57	2.8	LSU	S3	n	Overwintering habitat present.
								Falls (1.9 m) prevent upstream fish migration into this reach.
207	1076	2	1.20	21.5	D.D.	04/06		The portion of stream below the falls is fish bearing based on
307	1276 11700-	3	1.39	21.5	RB	S4/S6	n	access. Fair rearing habitat. Poor spawning habitat. No
314	5110	3	3.42	6.5	CT	S3	n	overwintering habitat.
315	1011	1	1.45	1	CAS, LSU	S4*	n	Non sport fish captured. Sport fish access is possible.
					CT, RB, CAS,			
	600600-				MW, LSU,			Excellent spawning and rearing habitat. Overwintering
316	63200	8	5.38	1.3	PL	S2	n	habitat present.
	63200-							No permanent barriers identified. Fish stream based on
317	29100	3	0.96	4	NFC	S4*	у	access.
318	1420	2	2.62	13	NFC	S3*	v	Fish stream based on access. Gradient is low enough to allow fish access.
210	11700-		2.02	1.0	1110	55	у	Above road crossing the gradient becomes too steep to allow
319	5660	4	2.38	21.25	DV	S3/S6	n	fish passage.
	4190-							
320	1340	1	1.15	1.8	NFC	S4*	n	Fish may access this reach during high flows. Fish stream based on access.
325	1485 62200-	1	1.58	3.3	NS	S3*	n	Non sport fish captured. Upstream lake may contain sport
326	2180	3	2.4	1.3	RSC	S3*	y	fish. Fish stream based on access.

							F-11	
				Gradient		Stream	Follow-up Sampling (y	
Site	WSC/ILP	Reach	Width (m)	(%)	Species	Class	or n)	Comments
Dite	WBC/IEI	Reach	widii (iii)	(70)	bpecies	Ciass	Of II)	The lower 100 m of stream is fish bearing based on access.
								Above that point the fish habitat deteriorates until there is no
329	1185	1	0.86	11	NS	S4*/S6	n	possibility of fish use.
330	1478	2	1.49	3.5	NFC	S4*	у	Fish stream based on access.
	600600-							Excellent spawning and rearing habitat. Overwintering
331	57600	5	3.89	2.5	RB	S3	n	habitat present.
								Fish may access this reach from Collins Lake. Non sport
332	1180	5	4.01	2.8	CAS	S3*	у	fish captured.
22.5	57600-	2	4.40		2700	G 4.1		Non sport fish were captured within reach. Fish stream based
336	31800 66200-	3	1.48	4	NSC	S4*	у	on access. Fair spawning and rearing habitat. Poor overwintering
340	1840	4	1.33	1.3	CT	S4		habitat.
340	63200-	4	1.33	1.5	CI	54	n	Excellent spawning habitat. Moderate rearing habitat.
341	66200	2	5.28	1.3	CT, DV	S2	n	Overwintering habitat present.
	66200-		0.20	1.0	01, 2 ,	~		o vor wintering machine presents
342	3100	2	1.01	2.5	CT	S4	n	Poor rearing and spawning habitat. No overwintering habitat.
	63200-							Moderate spawning and rearing habitat. No overwintering
344	75900	1	3.61	4	CT	S3	n	habitat.
	63200-							Fish stream based on access. Culvert in Reach 1 may block
345	75900	3	1.45	5.5	NFC	S4*	у	fish access.
	36400-							Good rearing habitat. Fair spawning habitat. No
348	88900	2	1.44	4.8	CT	S4	n	overwintering habitat.
240	1054		1.16	2.2	NEC	G 4 **		Fish stream based on access. Beaver activity downstream
349	1054 600600-	1	1.16	3.3	NFC	S4*	n	may have temporarily blocked access to this reach.
350	36400	24	2.82	3.5	RB, CT	S3		Excellent rearing habitat. Moderate spawning habitat. No overwintering habitat.
330	600600-	24	2.02	3.3	KB, C1	33	n	Excellent spawning habitat. Moderate rearing habitat. No
351	63200	13	2.14	3.5	CT	S3	n	overwintering habitat.
	00200	10	2.11.	5.5				400 m upstream of road crossing the gradient becomes too
	36400-							high (22%) to allow fish passage. Fish captured in lower
392	72600	6	1.21	4.4	CT	S4/S6	n	portion of reach.
	72600-							Moderate rearing habitat. Poor spawning habitat. No
394	5970	6	1.4	2.8	CT	S4	n	overwintering habitat.
	63200-							Falls (8 m) are a barrier to upstream fish migration. Fish
398	66200	3	3.49	4.3	CT	S3/S5	n	captured easily below falls.
200	4 40 5		2.1.1		D.I.I. CIT			Moderate spawning and rearing habitat. No overwintering
399	1405	1	2.14	2	DV, CT	S3	n	habitat identified.
								Moderate rearing habitat. Poor spawning habitat. No
405	1393	1	1.68	11.3	DV	S3	n	overwintering habitat. Fish caught in lower portion of this
403	1393	1	1.00	11.3	Dν	33	n	reach. The lower 20 m of this stream is fish bearing. Cascade (4 m)
406	1278	1	2.62	16.5	СО	S3/S6	n	and falls (12 m) prevent upstream fish access.
100	1270	-	2.02	10.5		53/50	11	Cascade (2.4 m) prevents upstream fish migration. Fish
407	1027	2	1.3	5.3	NFC	S4*/S6	n	bearing below the cascade based on access.
								Fish stream based on access. Beaver activity in the area has
								caused temporary barriers to upstream fish migration. Fish
								were observed rising downstream of this reach in a beaver
408	1500	9	1.53	1.3	NFC	S3*	n	pond.
								No barriers to upstream fish migration were identified. Fish
410	1196	1	1.33	2.8	NFC	S4*	у	stream based on access.
	63200-					~-:		No barriers to upstream fish migration were identified. Fish
411	62200	5	2.46	2.4	NFC	S3*	у	stream based on access.
412	63200-	2	2.26	20	NEC	62*		No barriers to upstream fish migration were identified. Fish
412	62200	3	3.36	2.8	NFC	S3*	у	stream based on access. The lower 150 m of this stream is fish bearing based on
								access. Above that point gradient prevents upstream fish
414	1239	1	1.99	20.3	NFC	S3*/S6	n	migration.
717	64400-	1	1.//	20.3	1110	55 /50	11	Fish stream based on access. No barriers to upstream fish
416	09200	1	1.5	2.5	NFC	S3*	n	migration were observed.
								1 5

							Follow-up	
				Gradient		Stream	Sampling (y	
Site	WSC/ILP	Reach	Width (m)	(%)	Species	Class	or n)	Comments
								Fish bearing stream based on access. Fish were observed
	62200-							rising in downstream lake. No barriers to upstream fish
419	2180	5	1.29	4.1	NFC	S4*	n	migration were identified.
								Fish stream based on access. No barriers to upstream fish
420	1484	1	0.75	2.5	NFC	S4*	n	migration were observed.
422	62200-	2	27.4	27.4	C/T	27.4		
422	2180	2	NA	NA	CT	NA	n	Fish sampling site.
	36400-							Fish stream based on access. Fish captured in downstream
424	00800	7	1.53	2.9	NFC	S3*	V	reach. No barriers to fish passage observed.
424	36400-	,	1.33	2.9	NIC	33	у	Moderate rearing and spawning habitat. No overwintering
425	00800	5	1.55	1.8	CT	S3	n	habitat
123	00000		1.55	1.0		55		Fish stream based on access. Fish may use this stream during
437	1275	1	1.2	4	NFC	S4*	n	higher flows.
440	1014	1	1.18	1.3	NS	S4*	n	Fish may access this reach from McBride Lake.
								Lower portion of reach below the road crossing can be
								classified as fish bearing based on access. Above the road
441	1012	1	0.59	1.9	NS	S4*/S6	n	crossing habitat is too poor to sustain fish.
								Fish bearing based on access. Upstream lake should be
442	1501	1	0.87	3	NFC	S4*	у	resampled to confirm fish absence.
								Fish bearing stream based on access. No barriers to fish
456	1204	1	1.81	9.5	NFC	S3*	n	migration were identified.
	600600-							Fish bearing stream based on access. Possible fish use during
457	54900	4	1.22	5.5	NFC	S4*	у	higher flows.
166	36400-	1.7	27.4	27.4	LKC,	27.4		
466	39700	17	NA 1.27	NA 1.0	WSU	NA S4*	n	Fish sampling site.
467	1183 36400-	1	1.37	1.8	NFC DD DV	S4*	n	Culvert has blocked fish access upstream.
475	39700	1	NA	NA	RB, DV, CT, PL	NA	n	Fish sampling site.
4/3	39700	1	NA	NA	CI, PL	INA	n	The lower 30 m of this stream is fish bearing based on access.
								Above that point the channel deteriorates and has no
667	1046	1	0.75	4.5	NS	S4*/S6	n	connectivity to the downstream portion.
			01.70			2		esimeen ity to the downstream portion
	36400-				RSC,			
668	64100	16	1.55	1.6	CAL, LKC	S3*	у	Non sport fish captured. Fish bearing based on access.
669	1034	1	1.42	0.8	LKC	S4*	y	Non sport fish captured. Fish bearing based on access.
								Moderate spawning and rearing habitat. Poor overwintering
670	1038	1	1.2	4	CT	S4	n	habitat.
	36400-					~-		Low spawning potential. Moderate rearing habitat. High
672	64100	9	3.8	1.1	CT, RSC	S3	n	quality overwintering habitat.
671	36400-	12	2.7	2.2	DD	62		Moderate spawning habitat. High quality rearing habitat.
674	64100	13	2.7	3.3	RB	S3	n	Poor overwintering habitat.
					RSC, CT,			
	64400-				CH, LNC,			High quality overwintering and rearing habitat. Spawning
675	18300	6	7.31	0.3	CAL CAL	S2	n	habitat present.
013	64400-	U	1.01	0.5	CAL	192	11	Fish stream based on access. No permanent barriers
676	18300	10	1.1	4	NFC	S4*	n	observed.
		-		-				Abundant spawning and rearing habitat. Overwintering
677	1269	2	6.73	5.3	CT, DV	S2	n	habitat present.
	64400-							Good rearing and spawning habitat. Moderate overwintering
678	18300	9	1.37	4	CT	S4	n	habitat.
679	1268	1	1.97	4.5	CT	S3	n	Moderate spawning, rearing and overwintering habitat.
	12				~-	~ .		Moderate spawning habitat. Good rearing potential. No
681	1273	3	1.32	4.5	CT	S4	n	overwintering habitat present.
692	1221	1	2.05	10.5	CT	62		Good overwintering and rearing habitat present. Moderate
682	1221	1	3.25	10.5	CT	S3	n	spawning habitat.

Table 3. Upper Morice Fish Bearing Table

							F-11	
				Gradient		Stream	Follow-up Sampling (y	
Site	WSC/ILP	Reach	Width (m)	(%)	Species	Class	or n)	Comments
Site	WSC/ILP	Reacii	widii (iii)	(%)	Species	Class	Of II)	A small cascade (0.8 m) may prevent upstream fish
684	1221	1	2.78	4.5	NFC	S3*		migration. Fish bearing until resampling is conducted above the cascade.
685	1500		2.78 NA	NA			У	
083	1500	2	NA	NA	DV, CT	NA	n	Fish sampling site. Moderate spawning and rearing habitat. No overwintering
690	1246	1	1.50	4.9	DV CT	S3	_	habitat.
690	1246	1	1.58	4.9	DV, CT	22	n	
601	18300- 3800	2	0.2	2	DV CT	S2		High to moderate rearing habitat. Spawning and
691		2	8.3	3	DV, CT	52	n	overwintering habitat present.
602	63200-	1	1.66	0.6	DU	ga		NT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
692	09800	1	1.66	0.6	DV	S3	n	No spawning or overwintering habitat. Poor rearing habitat.
602	63200-	2	1.7		DU	ga		No spawning or overwintering habitat. Moderate rearing
693	09800	3	1.7	1	DV	S3	n	habitat.
								Fish bearing based on access. The channel dissipates to
								nothing within the top 1/3 of this reach. This section is non
								fish bearing based on channel characteristics and no available
699	1009	1	2	0.9	NFC	S3*/S6	n	fish habitat.
	64400-							Cascade (5 m) prevents fish access to the upper portion of
701	09200	2	2.17	8.3	NFC	S3*/S6	n	this reach. Fish bearing based on access below the cascade.
	4190-							Fish stream based on access. Potential fish use in upstream
702	1340	3	1.02	4.8	NFC	S4*	У	lake.
								Fish bearing based on possible fish access through adjacent
704	1447	2	1.92	3.4	NFC	S3*	n	wetland during periods of high flow.
								Fish stream based on access. Potential spawning habitat
801	1479	1	1.51	2.5	NFC	S3*	n	during high flows.
	600600-							Fish bearing based on access. No permanent barriers to
802	57600	10	1.82	5.5	NFC	S3*	у	upstream fish migration were identified.
								Cascade (4 m) prevents upstream fish migration. Fish
	600600-							bearing based on access below the cascade. Non fish bearing
806	57600	10	1.51	6.8	NFC	S3*/S6	n	above the cascade.
	64400-				RB, BT,			
900	28100	2	NA	NA	MW	NA	n	Fish sampling site.
	64400-							
901	28100	9	NA	NA	DV	NA	n	Fish sampling site.

2) Stream sections below a headwater lake.

High gradient, cascades and falls were the dominant physical barriers to upstream fish migration in the study area. Other features affecting fish habitat in the study area included beaver dams, dewatered stream sections, bridges, general crossings, fisheries sensitive zone, debris jams, and culverts (Table 4).

5.4.4 Rehabilitation Opportunities

Eleven (11) culverts (Table 4) were identified as barriers or partial barriers to upstream fish migration. In most cases a culvert outlet was perched above the outlet pool creating a barrier at low flows. One (1) culvert was placed at an angle that is too high, creating a water velocity barrier to upstream fish migration. One (1) culvert was blocked with debris blocking upstream fish migration. Removal of the debris would restore fish access through this culvert. Restoration of the natural watercourses through culvert removal is also a possible restoration option where road access is no longer needed. Culvert replacement or outflow pool modification can be used to restore access where road access is required. Outflow pools can be backflooded through the use of a water control structure or weir. Backflooding may improve fish access by raising the water levels at the outlet of the culvert. Increased water levels at the outlet will minimize jump height and allow for a greater pool and standing wave height.

A bridge crossing (Table 4) was identified as being in poor shape during the time of the survey. The use of rock armoring around this crossing site would limit the amount of sediment entering the stream during higher flows. Possible restoration for this site includes, the establishment of vegetation around the crossing site and possible bridge removal after harvesting activities.

A collapsed wooden bridge (Table 4) was identified as a partial barrier to upstream fish migration. Removal of this crossing structure would restore fish access to this reach under all flow conditions.

Beaver activity is relatively extensive in the project area and may act to limit or reduce habitat values for salmonids, however remedial action is not appropriate in this case. Trapping beaver, blowing dams etc., are short term solutions that would not generate any long-term benefits to fish.

5.4.5 Fisheries Sensitive Zones

A side channel located at the bottom of ILP 1278 (Reach 1) contains sensitive coho rearing habitat. ILP 1278 flows directly into this side channel and then into the Nanika River. Off channel rearing and cover is abundant within the side channel and juvenile coho were present in high densities in the channel and at the mouth of ILP 1278.

Feature Feat						Г (
Site ILP NSC Reach Type Height (m) Commont				F4	F	Feature	
148	Cita	II D/WCC	Danah #			0	Commont
156					U , ,		
157							
163							,
167							
239							` '
243 64400-28100							` '
243 64400-28100 11							
246							
249							1 7
253						0	
256						0	č
266 3640-26300 2							
266					20	4	
301					2	1	j j
302							
305							
305 64400-18300 4 BR 4 30 Bridge.							
307							
309							<u> </u>
311							
312							•
315							
317							
318							
319							
320							C I
325							ı
329							•
330							1
332							
332	330	14/8	2	CV	0.8	17	
332	222	1100	1	D.C.	1	7	
335							
336 57600-31800 3 F 3.5 4 Falls impassable to upstream fish migration.	332	1180	1	CV	1.1	18	wood curvert.
336 57600-31800 3 F 3.5 4 Falls impassable to upstream fish migration.	225	1200	4	Е	2		F-11 fin 1in1h Pint finhinti
338							
339							
340 66200-1840 4 CV 0.8 8 Culvert.							
341 63200-66200 2 CV 2.9 10 Slightly perched culvert. Culvert - barrier to upstream fish migration. Velocity barrier at low flows. 344 63200-75900 1 CV 1 12 flows. 1054 1 CV 1 10 Located on upper road crossing 350 600600-36400 24 CV 1 10 Old box culvert. 351 600600-63200 13 CV 1 15 Culvert Culvert Sulvert Culvert Sulvert Sul							2 71
Culvert - barrier to upstream fish migration. Velocity barrier at low 1054 1							
344 63200-75900 1 CV 1 12 flows. 349 1054 1 CV 1 10 Located on upper road crossing 350 600600-36400 24 CV 1 10 Old box culvert. 351 600600-63200 13 CV 1 15 Culvert. 392 36400-72600 6 CV 0.4 8 Culvert is blocked with debris. Barrier to upstream fish migration. 394 72600-5970 6 BD 1.5 30 Beaver dam. Temporary barrier to fish migration. 397 63200-66200 4 C 2 4 Cascade 398 63200-66200 3 F 8 2 Falls are a barrier to upstream fish migration. 406 1278 1 F 12 3 Falls are a barrier to upstream fish migration. 406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 <td< td=""><td>341</td><td>63200-66200</td><td>2</td><td>CV</td><td>2.9</td><td>10</td><td></td></td<>	341	63200-66200	2	CV	2.9	10	
349 1054 1 CV 1 10 Located on upper road crossing 350 600600-36400 24 CV 1 10 Old box culvert. 351 600600-63200 13 CV 1 15 Culvert. 392 36400-72600 6 CV 0.4 8 Culvert is blocked with debris. Barrier to upstream fish migration. 394 72600-5970 6 BD 1.5 30 Beaver dam. Temporary barrier to fish migration. 397 63200-66200 4 C 2 4 Cascade 398 63200-66200 3 F 8 2 Falls are a barrier to upstream fish migration. 406 1278 1 F 12 3 Falls are a barrier to upstream fish migration. 406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 408 1500 9 BD </td <td>244</td> <td>(2200 75000</td> <td>1</td> <td>CV</td> <td>1</td> <td>10</td> <td></td>	244	(2200 75000	1	CV	1	10	
350 600600-36400 24 CV 1 10 Old box culvert. 351 600600-63200 13 CV 1 15 Culvert. 392 36400-72600 6 CV 0.4 8 Culvert is blocked with debris. Barrier to upstream fish migration. 394 72600-5970 6 BD 1.5 30 Beaver dam. Temporary barrier to fish migration. 397 63200-66200 4 C 2 4 Cascade 398 63200-66200 3 F 8 2 Falls are a barrier to upstream fish migration. 406 1278 1 F 12 3 Falls are a barrier to upstream fish migration. 406 1278 1 C 4 4 Cascades located immediately below 12 m falls. 406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.					1		
351 600600-63200 13 CV 1 15 Culvert.					1		
392 36400-72600 6 CV 0.4 8 Culvert is blocked with debris. Barrier to upstream fish migration. 394 72600-5970 6 BD 1.5 30 Beaver dam. Temporary barrier to fish migration. 397 63200-66200 4 C 2 4 Cascade 398 63200-66200 3 F 8 2 Falls are a barrier to upstream fish migration. 406 1278 1 F 12 3 Falls are a barrier to upstream fish migration. 406 1278 1 C 4 4 Cascades located immediately below 12 m falls. Side channel located off Nanika River. Juvenile coho identified in Side channel located off Nanika River. Juvenile coho identified in 406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 438							
394 72600-5970 6 BD 1.5 30 Beaver dam. Temporary barrier to fish migration. 397 63200-66200 4 C 2 4 Cascade 398 63200-66200 3 F 8 2 Falls are a barrier to upstream fish migration. 406 1278 1 F 12 3 Falls are a barrier to upstream fish migration. 406 1278 1 C 4 4 Cascades located immediately below 12 m falls. Side channel located off Nanika River. Juvenile coho identified in Side channel located off Nanika River. Juvenile coho identified in 406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 438 1277 1	331	000000-03200	13	CV	1	15	Cuivert.
394 72600-5970 6 BD 1.5 30 Beaver dam. Temporary barrier to fish migration. 397 63200-66200 4 C 2 4 Cascade 398 63200-66200 3 F 8 2 Falls are a barrier to upstream fish migration. 406 1278 1 F 12 3 Falls are a barrier to upstream fish migration. 406 1278 1 C 4 4 Cascades located immediately below 12 m falls. Side channel located off Nanika River. Juvenile coho identified in Side channel located off Nanika River. Juvenile coho identified in 406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 438 1277 1	202	26400 72600	6	CV	0.4	0	Culvert is blooked with debuis Demin to western City and
397 63200-66200 4 C 2 4 Cascade 398 63200-66200 3 F 8 2 Falls are a barrier to upstream fish migration. 406 1278 1 F 12 3 Falls are a barrier to upstream fish migration. 406 1278 1 C 4 4 Cascades located immediately below 12 m falls. Side channel located off Nanika River. Juvenile coho identified in Side channel located off Nanika River. Juvenile coho identified in 406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.							1 0
398 63200-66200 3 F 8 2 Falls are a barrier to upstream fish migration. 406 1278 1 F 12 3 Falls are a barrier to upstream fish migration. 406 1278 1 C 4 4 Cascades located immediately below 12 m falls. 406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.							1 7 5
406 1278 1 F 12 3 Falls are a barrier to upstream fish migration. 406 1278 1 C 4 4 Cascades located immediately below 12 m falls. 406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.							
406 1278 1 C 4 4 Cascades located immediately below 12 m falls. 406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 436 1235 2 F 1.8 1 Falls are a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.							
406 1278 1 FSZ NS NS large numbers. 407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 436 1235 2 F 1.8 1 Falls are a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.							
407 1027 2 C 2.4 2 Cascade is a barrier to upstream fish migration. 408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 436 1235 2 F 1.8 1 Falls are a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.	400	12/0	1	C	4	4	·
408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 436 1235 2 F 1.8 1 Falls are a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.	406	1278	1	FSZ	NS	NS	large numbers.
408 1500 9 BD 1.2 25 Temporary barrier to fish migration. 436 1235 2 C 1.2 2 Cascade is a barrier to upstream fish migration. 436 1235 2 F 1.8 1 Falls are a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.	407	1027	2	С	2.4	2	Cascade is a barrier to upstream fish migration.
436 1235 2 F 1.8 1 Falls are a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.	408	1500		BD		25	Temporary barrier to fish migration.
436 1235 2 F 1.8 1 Falls are a barrier to upstream fish migration. 438 1277 1 CV 1.2 10 Culvert.	436	1235	2	С	1.2	2	Cascade is a barrier to upstream fish migration.
	436		2	F	1.8	1	Falls are a barrier to upstream fish migration.
	438	1277	1		1.2	10	Culvert.
	467		1	CV	0.5	12	Culvert inlet is blocked.

Table 4. Features within the Upper Morice

					Feature	
			Feature	Feature	Length	
Site	ILP/ WSC	Reach #	Type	Height (m)	(m)	Comment
668	36400-64100	16	BD	0.4	NS	Beaver dam.
678	64400-18300	9	F	1.2		Falls.
682	1221	1	C	0.8	0	Cascade.
687	64400-18300	11	FLD	NS	200	Dewatered channel.
687	64400-18300	11	X	1	NS	LWD barrier.
688	1263	1	FLD	3	20	
688	1263	1	C	0.6	0	Cascade.
688	1263	1	C	2	1	Cascade.
688	1263	1	C	4	1	Cascade.
701	64400-09200	2	C	5	5	Cascade.
701	64400-09200	2	С	0.5	0	Cascade.
806	600600-57600	10	C	4	3	Cascade.

5.4.6 Additional Sampling Recommendations

Thirty-one (31) reaches were recommended for additional sampling (Table 5). Additional sampling will clarify fish presence/absence and establish if any barriers exist in downstream reaches. No sport fish were captured in reaches recommended for additional sampling.

Many of the reaches selected for additional sampling represent small tributaries with limited habitat values, and most exhibit ephemeral flows. Based on additional sampling efforts in the past, these reaches often provide limited values for salmonids, and even under optimal conditions, fish are often present at low densities and are not always captured. The reaches selected for additional sampling were required by default due to a lack of water, or negative sampling results. The lack of barriers and gradients less than 20% also increased the additional sampling number. As it is not practical, or necessary, to resample every reach selected in the additional sampling table, additional sampling sites should be selected strategically to optimize additional sampling results.

The timing of additional sampling efforts is critical to ensuring optimal conditions and maximizing the potential for fish to occur. In particular, additional sampling should be conducted in the spring immediately following peak runoff, which usually occurs in the early part of May. Reaches classified as fish bearing and selected for additional sampling could also be deferred by accepting this default classification, however the reaches selected for additional sampling would contribute valuable information to aid in determining fish presence and distribution for future stream classification work.

5.4.7 Non-Fish Bearing Status

A non-fish bearing status was assigned to 125 of the 218 sample sites within the study area (Table 6). A non-fish bearing classification has been assigned to all sampled reaches within the non-fish bearing table. Non-fish bearing classifications are associated with reaches that lack suitable habitat to sustain salmonids or are inaccessible to fish. Non-fish bearing status was assigned to reaches where:

- The stream was labeled a non-visible channel containing no potential fish habitat;
- The stream was deemed inaccessible from fish bearing waters and did not have perennial fish habitat;
- Gradient prevented upstream fish migration and the stream did not have perennial fish habitat upstream;
- Permanent barriers (cascades, falls, etc.) prevented upstream fish migration and the stream did not have perennial fish habitat upstream;

Table 5. Upper Morice Additional Sampling Summary

			Width	Gradient		Stream		
Site	ILP/WSC	Reach	(m)	(%)	Species	Class	Comments	Additional Sampling Recommendations
317	63200-29100	ю	96.0	4	NFC	\$4×	No permanent barriers identified. Fish stream based on access.	Second pass sampling in the lower 200 m of this reach.
318	1420	2	2.62	13	NFC	83*	Fish stream based on access.	Second pass sampling to confirm fish presence or absence.
326	62200-2180	٤	2.4	1 3	PSC	*ES	Non sport fish captured. Upstream lake may contain sport fish. Fish stream based on access	Additional sampling of unnamed lake in Reach 4 to confirm presence or absence of snort fish
329	1185	-	0.86	=	NS	*4S	Fish stream based on access.	Second pass sampling to confirm fish presence or absence.
330	1478	2	1.49	3.5	NFC	\$4*	Fish stream based on access.	Second pass sampling to confirm fish presence or absence.
							Fish may access this reach from Collins Lake. Non sport fish	Second pass sampling to confirm fish presence or absence of sport
332	1180	5	4.01	2.8	CAS	S3*	captured.	fish.
336	57600 31800	'n	1 78	_	JSN	*2	Non sport fish were captured within reach. Fish stream based on	Additional sampling of unnamed lake in Reach 4 to confirm
230	0.000-31900	C	1.40	+	CM		access.	presence of absence of sport fish.
345	63200-75900	ю	1.45	5.5	NFC	S4*	Fish stream based on access. Culvert in Keach I may block upstream fish access.	Additional sampling in Reach 2 to assess fish access to this reach.
							No barriers to upstream fish migration were identified. Fish stream	
410	1196	1	1.33	2.8	NFC	S4*	based on access.	Second pass sampling to confirm fish presence or absence.
								Second pass sampling of Reach 3 to confirm fish presence or
411	63200-62200	5	2.46	2.4	NFC	S3*	based on access.	absence.
412	63200-62200	'n	3 36	8 0	VEC	%S	No barriers to upstream fish migration were identified. Fish stream based on access	Second nace campling to confirm fish presence or absence
1	0010 0010	,	0000	i	2 11	ŝ		course in course id near minutes of Sundame send pricoce
							Fish bearing stream based on access. Fish were observed rising in downstream lake. No barriers to upstream fish migration were	Additional sampling of unnamed lake in Reach 4 to confirm
419	62200-2180	5	1.29	4.1	NFC	S4*	identified.	presence or absence of fish.
							Fish stream based on access. No barriers to upstream fish	Additional sampling of unnamed lake in Reach 4 to confirm
420	1484	1	0.75	2.5	NFC	S4*	migration were observed.	presence or absence of fish.
	0		,	•	ļ		Fish stream based on access. Fish captured in downstream reach.	
424	36400-00800	7	1.53	2.9	NFC	S3*	No barriers to fish passage observed.	Second pass sampling to confirm fish presence or absence.
							Fish bearing based on access. Upstream lake should be resampled	
442	1501	1	0.87	3	NFC	S4*	to confirm fish absence.	Second pass sampling to confirm fish presence or absence.
157	600600-54900	4	1 22	v	JHN	*73	Fish bearing stream based on access. Possible fish use during higher flows	Additional sampling in Reach 1 or 2 to assess fish access to this
i c	0000000	۲	1.22	3	Cod	r 2		ולמלוו.
					KSC, CAL,		Non sport fish captured. Fish bearing based on access. Potential	Additional sampling of unnamed lake in Reach 17 to confirm the
899	36400-64100	16	1.55	1.6	LKC	S3*	sport fish use in upstream lake.	presence or absence of sport fish.
699	1034		1.42	0.8	LKC	*84	Non sport fish captured. Fish bearing based on access. Potential sport fish use in unstream lake.	Additional sampling of unnamed lake in Reach 17 (WSC 36400-64100) to confirm presence or absence of sport fish.
							A small cascade (0.8 m) may prevent upstream fish migration.	•
684	1221	1	2.78	4.5	NFC	S3*	cascade.	Second pass sampling to confirm fish presence or absence.
702	4190-1340	3	1.02	4.8	NFC	S4*	Fish stream based on access. Potential fish use of upstream lake.	Additional sampling of Reach 2 to assess fish access to this reach.
802	600600-57600	10	1.82	5.5	NFC	S3*	Fish bearing based on access. No permanent barriers to upstream fish migration were identified.	Additional sampling of Reach 9 to assess fish access to this reach.
							0	2

- No fish habitat was present;
- The stream lacked a continuous definable channel.

Inferred non- fish bearing status was given to reaches with the following criteria:

- The average stream gradient was greater than or equal to 20% (through map interpretation) with no headwater lake present;
- Reaches above a stream section with an gradient greater than or equal to 20% (through map interpretation) with no headwater lake present.

Often the non fish bearing status of stream reaches with average gradients less than 20% is supported by evidence concerning the accessibility to potential fish bearing water. Obvious barriers such as falls, cascades and high gradient sections are measured and adequate sampling is conducted above the potential barrier to confirm that the portion of stream above the barrier is non fish bearing. Many of the headwater reaches and smaller streams reaches draw from such a small watershed area that they lack sufficient discharge volume required to develop significant channels and habitat complexity. These reaches are often ephemeral, containing shallow water depths, subsurface flows, lack of significant pools and have a predominance of organic and fine substrates.

Insufficient discharge often results in a lack of connectivity between the channelized portion of stream and downstream watercourses. Lack of connectivity can be described as the channelized portion of stream being isolated from downstream watercourses in which no surface connection or subsurface channel exists (joining the two at any time of the year). Evidence of no surface connection includes a lack of surface scour, no alluvial substrates, no evidence of surface ponding or seasonal flooding. These small streams with no connectivity to fish bearing waters were adequately sampled upstream of the loss of connectivity to verify fish presence or absence.

Reaches that are classified as NVC (NCD, non RIC term used by the timber industry) are not streams due to the fact that they do not posses the criteria necessary to classify them as such. The reaches classified as NVC are largely drainages that are mapped incorrectly and no stream exists where the map indicates. They may also be watercourses which lack evidence of surface scour, contain no continuous definable channel, lack alluvium deposits, and exhibit no evidence of extensive ponding. Wetlands with extensive ponding and wetlands that lack surface water are both considered NVC as they do not possess stream channels or properties of streams. It should be recognized that a NVC classification does not necessarily mean that the reach is not fish bearing unless otherwise stated. For example, a ponded wetland reach could sustain fish but be classified NVC due to the lack of a continuous definable channel and fluvial substrates. In cases where ponded wetland reaches (NVC) are identified as fish bearing they should not be treated as streams because they do not meet the criteria of a stream. They should be managed to

maintain the integrity of the fisheries resources identified within that reach. In most cases the level of concern is low with respect to protecting fish habitats sustained within NVC reaches due to the poor habitat values (for salmonids) associated with wetland habitats. However, the maintenance of fish passage is a concern.

6.0 STREAM CLASSIFICATION SUMMARY

Table 7 provides a summary of stream inventory information collected during the project.

Table 6. Upper Morice Non Fish Bearing Status

								Flects	Hiching (Flectrofishing Specifications	tione)	Other Methods	thode		
			Width	Gradient	Stream		Dist.	Time	Cond.	Stage		Temp.				
Site	WSC/ILP	Reach	(m)	(%)	Class	Date	(m)	(s)	(nS)	(vis)	(vis)	(C)	Type	Effort	Comments	Additional Rationale
		2	0.35	2.5	S6	80/66		N.A.A.	, v	Low	, AZ	, A Z	NA		nel, small lows, an an us channel cks	Spawning: None, 100% Fine substrates, no gravel accumulations, highly ephemeral and insufficient discharge. Rearing: None, no riffle, run or pool habitat during all flows. Overwintering: None, no pools, high BOD due to organic substrates.
135	1078	2	NA	6.5	NVC	99/08	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
137	1144	2	0.84	18.5	S6	80/66	NA	NA	N A	Low	NA	NA	NA	Y.	Channel is heavily braided and discontinuous. No fish habitat present and system is extremely flashy. Gradient break/cascade in downstream reach is >30%/50 m (over bedrock).	Spawning: None, high gradient. Rearing: None, high gradient, no flows, flashy with no resting pools. Overwintering: None, no pools.
138	1148	ю	0.32	12.2	\$4*/\$6	80/66	NA	, A	Ϋ́	Low	e z	, Y	, A	Ϋ́	High gradient and small channel predominantly lar, width combined with 30-40 cm and boulders. Rea substrate sizes creates numerous Limited, to a few impassable barriers at all flow cracks between bo stages. Stream flows subsurface cobbles, no open vitrough boulders for >40 m in several sections (site length 800 m). present in stream.	Spawning: None, predominantly large cobbles and boulders. Rearing: Limited, to a few interstitial cracks between boulders and cobbles, no open water habitat. Overwintering: None, no pools present in stream.
139	1150	-	0.27	20	S6	80/66	, A	NA	NA	Low	A Z	Ą Z	e Z	NA AN	Gradient prevents fish access to this accumulation of gravel. Rearing: None, channel overwintering habitat. Sampling choked with vascular pl downstream (Site 270) indicates that this section of stream is non fish bearing.	Spawning: None, 100% fine, organic substrates with no accumulation of gravel. Rearing: None, channel is choked with vascular plants, no pools and gradients >20%. Overwintering: None, no pools.
140	1151	2	0.34	20.8	Se	80/66	NA A	NA	Y Y	Low	NA A	Y Y	NA A	Y Y	Gradient prevents fish access to this Spawning: None, gradients too reach. No spawning, rearing or overwintering habitat. Heavily fifthes, runs or pools, extremely braided and vegetated channel with flashy. Overwintering: None, sections of subsurface flows.	Spawning: None, gradients too steep. Rearing: None, no riffles, runs or pools, extremely flashy. Overwintering: None, no pools.

Table 6. Upper Morice Non Fish Bearing Status

		do , do	s,	oo oo sala		oo ely
	Additional Rationale	Spawning: Possible in lower end (based on substrates only), though access and gradients do not support spawning in this stream type. Rearing: None, no pools or resting habitat present. Overwintering: None, no pools.	Spawning: Limited to a few patches of gravel. Rearing: None, small 20-30 cm2 pools, no resting/holding water, flashy and unstable. Overwintering: None, no evidence of pools.	Spawning: None, gradients too steep. Rearing: None, no riffles, runs or pools, extremely flashy. Overwintering: None, no pools.	Spawning: None, angular substrates. Rearing: None, stream is highly ephemeral. Channel has moss covered rocks and is heavily choked with vascular vegetation. Overwintering: None, no pools.	Spawning: None, gradients too steep. Rearing: None, no riffles, runs or pools, extremely flashy. Overwintering: None, no pools.
	Comments	Lower 600 m is fish bearing based on gradient only. Above that point stream becomes NVC. High gradient sections (17%) and a heavily vegetated (choked) channel limit access.	Small catchment only 200 m of mapped stream above this reach. Subsurface flows and limited connectivity throughout reach. Numerous (>20) debris jams and sediment wedges located throughout (.5 m drops).	No spawning, rearing, or overwintering habitat. Gradient prevents access to this reach.	No connectivity to fish bearing water. Gradient up to 22%/100 m and channel characteristics prevent fish access to this reach.	No spawning, rearing, or overwintering habitat. Gradient prevents access to this reach.
Other Methods	Effort	Z A A	NA	NA	NA	NA
Other M	Type	, v	NA	X	NA	N A
	Temp.	Ą Z	NA	X	NA	Z A
ations	Turb. (vis)	Ą Z	NA	X	NA	Z A
Electrofishing Specifications	Stage (vis)	Low	Low	Low	Low	Low
ofishing	Cond. (uS)	NA	NA	NA	NA	NA
Electi	Time (s)	AN AN	NA	NA	NA	NA
	Dist.	AN AA	NA	NA	NA	NA
	Date	80/66	80/66	80/66	80/66	80/66
	Stream Class	S4/S6	86	86	S6	S6
	Gradient (%)	16.5	11.5	21.8	19.3	23
	Width (m)	1.35	0.5	1.52	0.6	0.93
	Reach	-	4	3	3	4
	WSC/ILP	1152	1498	36400-27600	1499	1499
	Site	141	142	143	144	145

Table 6. Upper Morice Non Fish Bearing Status

Table 6. Upper Morice Non Fish Bearing Status

					ı	ent	ent	ols	ent
	Additional Rationale	Sampling upstream of falls confirms non fish bearing status (non-sport fish).	Sampling upstream of falls confirms non fish bearing status (non-sport fish).	Sampling upstream of falls confirms non fish bearing status (non-sport fish).	No evidence of surface scour or ponding.	Sampling upstream of gradient (700 m) confirms non fish bearing status.	Sampling upstream of gradient (200 m) confirms non fish bearing status.	Spawning: None, no significant accumulation of gravels, primarily fine substrates. Rearing: Poor, isolated, shallow stagnant pools with algae growth. Overwintering: None, no pools deep enough.	Vegetated seepage area. Sampling upstream of gradient confirms non fish bearing status.
	Comments	Falls (25 m) in Reach 4 prevent upstream sport fish migration. Non sport fish captured.	Stream does not flow into sport fish bearing waters. Falls (25 m) on Pimpernel Creek prevent upstream sport fish migration.	Falls (25 m) in Reach 4 prevent upstream sport fish migration. Non sport fish captured.	No visible channel.	Gradient break (25% & 30%/50 m) immediately upstream of the Morice River prevents upstream fish migration to this reach.	Lower 100 m of reach is fish bearing based on gradient only. The remainder of this stream is non fish bearing based on gradient >20% and channel characteristics. Isolated pools and residual pool depths <10 cm. Total stream length is 900 m.	Subsurface flows (no overland connection in areas), isolated pools, small catchment, braided channel, organic substrates, vegetated channel and no connectivity to fish bearing water.	No visible channel. Vegetated seepage area. Sampling upstream of gra Gradient prevents fish access to this confirms non fish bearing reach.
Other Methods	Effort	9	NA	15	NA	NA	X A	NA	NA AN
Other N	Type	MT	X A	MT	NA	NA	X A	NA	N N
	Temp.	41	41	14	NA	14	12	NA	NA 12
ations	Turb. (vis)	Clr	Clr	Clr	NA	Clr	Clr	NA	NA Clr
Electrofishing Specifications	Stage (vis)	Med	Med	Med	NA	Med	Med	Low	NA Med
rofishing	Cond. (uS)	08	06	08	NA	80	06	NA	NA 07
Elect	Time (s)	465	942	300	NA	655	110	NA	NA 531
	Dist.	490	850	200	NA	700	200		NA 300
	Date	80/66	80/66	80/66	80/66	80/66	80/66	80/66	80/66
	Stream Class	9S	Se	\$5	NVC	S6	\$4*/\$6	S6	NVC S6
	Gradient (%)	4.5	5.5	1.5	7.8	20.5	17.8	4.5	NA 22
	Width (m)	2.59	2.43	6.58	NA	2.6	0.62	0.51	NA 1.35
	Reach	17	2	11	4	2		1	2
	WSC/ILP	36400- 39700	39700- 6230	36400- 39700	1160	600600-	1467	1466	1463
	Site	159	160	161	162	163	168	169	170

Table 6. Upper Morice Non Fish Bearing Status

								Flects	ofiching	Flectrofishing Specifications	tione		Other Methods	thode		
			Width	Gradient	Stream		Dist.	Time	Cond.	Stage		Temp.		STORY OF THE PROPERTY OF THE P		
Site	WSC/ILP	Reach	(m)	(%)	Class	Date	(m)	(s)	(Sn)	(vis)	(vis)	(C)	Type	Effort	Comments	Additional Rationale
															Reach 1 (Site 671) of this stream	Spawning: None, no accumulation of gravels, fine
				_											has no visible channel and no	substrates mixed with organics
															connectivity to fish bearing water.	(needles). Rearing: Poor, low
				_											_	flows and subsurface sections.
				_											s this reach is non fish	Overwintering: None, no pools
234	1037	4	0.61	2.5	9S	60/66	150	180	70	Med	Clr	6	NA	NA	bearing.	in reach.
235	1068	3	NA	48.3	NVC	60/66	NA	NA	NA	NA	NA	NA	NA	NA		Vegetated seepage area.
				_											100-	Sampling upstream of cascade
															200 mm DV captured below	(1700 m) confirms non fish
239	1489	3	10.43	5	S2/S5	60/66	890	723	110	Med	Lt	3	NA	NA	cascade.	bearing status.
															Cascade (30/80 m) in Reach 3	Sampling upstream of cascade (1700 m) confirms non fish
242	1489	4	6.52	3.5	S5	60/66	800	430	120	Med	Lt	3	NA	NA	prevents upstream fish migration.	bearing status.
															Falls (4 m) and a cascade (3/4 m)	
	9														prevent upstream fish migration.	Sampling upstream of cascade
243	54400- 28100	Ę	14.1	×	58/CS	60/66	780	310	110	Med	Ė	4	ΔZ	Ν	100-200 mm DV captured below falls	(1000 m) confirms non fish bearing status
6	00107	1 1	7.1.7		0000	1000		010	011	TATOR	3	۲	1111	1711	initio.	ocaime status.
	64400														Falls (4 m) and a cascade (3/4 m)	Sampling upstream of cascade
244	28100	12	7.3	œ	\$5	60/66	200	380	110	Med	Ç	4	Z	Ϋ́	miscach 11 provent apsucant fish	bearing status.
1	20102	1	?		3	0000		200	011	TATOR	5	-	1711	T	ningi auton:	ocamb saras.
																Sampling upstream of cascade
37.0	1410	ų	0.73	20.3	20	00/00	000	400	9	Mod	ξ	0	2	MA	100-200 mm D v capured below	(4 sites) confirms non fish
C+7	1417	9	C/.0	5.0.2	000	77/07		100	011	INICA	13	0	V	WI	cascade.	Dealing status.
															Cascade (6/8 m) prevents upstream fish mioration 100-200 mm DV	Sampling upstream of cascade (4 sites) confirms non fish
246	1419	3	3.02	∞	S3/S5	60/66	400	342	110	Med	Clr	∞	NA	NA		bearing status.
															ream (Site	
															246) prevents upstream fish	Sampling upstream of cascade
248	1422	-	3.83	8.5	S5	60/66	100	210	110	Med	Ç	∞	X	NA	migration to this reach. 100-200 mm DV captured below cascade.	(4 sites) confirms non fish bearing status.
												l			his	
249	600600-	-	2.45	7	9	60/66	300	820	70	ano I	-	σ	Ž	Ž	reach prevent upstream fish	confirms non fish bearing
		•	: i	2	2	10111			2		100	`	1771			

Table 6. Upper Morice Non Fish Bearing Status

		, 9	00 , 11	00 00	7	L	_ l	Je	- e
	Additional Rationale	Spawning: None, 100% fine, organic substrates with no accumulations of gravel. Rearing: None, channel is choked with vascular plants (carex), and pools are isolated by subsurface flows. Overwintering: None, no pools.	Spawning: None, gradients too high, system is flashy and substrates are highly angular (boulders and cobbles). Rearing: None, no pools or resting areas. Overwintering: None, no pools.	Spawning: None, gradients too high, system is flashy and substrates are not suitable (too large). Rearing: None, no pools or resting areas. Overwintering: None, no pools.	Sampling upstream of falls (2 sites) confirms non fish bearing status.	No evidence of surface scour or ponding.	No evidence of surface scour or ponding.	Sampling upstream of cascade (4 sites) confirms non fish bearing status.	Sampling upstream of cascade n(4 sites) confirms non fish bearing status.
	Commente	No spawning, rearing or overwintering habitat. Isolated pools, vegetated channel and subsurface flows. No connectivity to fish bearing water.	High gradient (25%/50 m). Numerous small cascades over boulder habitat. No open water habitat. No fish captured downstream with extensive electrofishing effort.	No spawning, rearing, or overwintering habitat. Gradient prevents upstream fish migration.	Falls (20 m) prevent upstream fish migration. 100-200 mm CT captured downstream of falls.	No visible channel.	No visible channel.	Bedrock cascade (2/1 m) in Reach 2 prevents upstream fish migration. 100-200 mm DV captured downstream of barrier.	Bedrock cascade (2/1 m) Sampling upstream of casc downstream (Site 266) prevents fish (4 sites) confirms non fish access to this reach.
lethods	Fffort	N. A.	NA	NA	NA	NA	NA	NA	N A
Other Methods	Tvne	, Z	NA	NA	NA	NA	NA	NA	Z A
	Temp.	, v	NA	NA	6	NA	NA	7	6
cations	Turb.		NA	NA	Clr	NA	NA	Clr	Clr
Electrofishing Specifications	Stage	Low	NA	NA	Low	NA	NA	Med	Low
trofishin	Cond.	, v	NA	NA	110	NA	NA	30	20
Elec	Time	, A	NA	NA	1220	NA	NA	537	127
	Dist.		NA	Z	006	NA	NA	009	120
	Date		60/66	60/66	60/66	60/66	60/66	60/66	60/66
	Stream	88	98	86	83/85	NAC	NVC	98	86
	Gradient (%)	7	18	26.5	L	4	17.5	7.5	15
	Width (m)	0.41	1.53	0.65	2.75	NA	NA	1.38	6.0
	Reach	7	3	2	1	2	2	3	
	WSC/II P	1085	1169	1470	600600-	1136	1439	36400- 26300	1146
	<u>S</u>	252	254	255	256	257	259	264	265

Table 6. Upper Morice Non Fish Bearing Status

								Flectro	Hiching	Electrofishing Specifications	tions	9	Other Methods	thode		
			Width	Gradient	Stream		Dist.	Time	Cond.	Stage	-	Temp.				
Site	WSC/ILP	Reach	(m)	(%)	Class	Date	(m)	(s)	(Sn)	(vis)	(vis)	(C)	Type	Effort	Comments	Additional Rationale
266	36400- 26300	2	3.37	œ	83/86	60/66	009	437	30	Low	Clr	7	NA	NA A	Bedrock cascade (2/1 m) Sampling upstream of casc downstream (Site 266) prevents fish (4 sites) confirms non fish access to this reach. bearing status.	Sampling upstream of cascade (4 sites) confirms non fish bearing status.
267	1147	1	1.65	21.8	98	60/66	200	189	30	Low	Clr	7	NA	NA	Bedrock cascade (2/1 m) Sampling upstream of casc downstream (Site 266) prevents fish (4 sites) confirms non fish access to this reach.	Sampling upstream of cascade (4 sites) confirms non fish bearing status.
268	1446	2	0.67	38.5	9S	60/66	NA	NA	NA	Low	NA	NA	NA	NA	Gradient prevents fish access to this reach.	Dry intermittent channel.
269	41800- 41700	2	1.87	32	98	60/66	NA	NA	NA	Low	Clr	NA	NA		Gradient prevents fish access to this reach.	Dry intermittent channel.
270	1150	1	0.92	20.3	S4*/S6	60/66	200	183	30	Low	Clr	~	NA	N A	Lower 50 m of this reach is fish bearing based on access.	Gradient prevents fish access to the remainder of the reach.
271	1158	2	9.02	26.5	S4*/S6	60/66	NA	NA	NA	Low	Clr	NA	NA	NA	Lower 20 m of this reach is fish bearing based on access.	Gradient prevents fish access to the remainder of the reach.
274	1441	1	NA	2.3	NVC	60/66	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
275	1462		1.03	8 10.	S6	60/66	N.A.	NA	NA	Low	Ç	Υ _Z	A N	NA	Subsurface flows and isolated pools. No connectivity to fish bearing water, channel fans out into overland connection. Upper portion of reach below road contains a 50%/50 m gradient mo pools.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs. Overwintering: None, no pools.
276	36400-		0.87	10	S6	60/66	NA	NA	NA	Low	Cir	NA	NA	NA A	Lower section of stream is a wet boggy mat with no definable channel or overland flow. Numerous isolated pools, subsurface flows, fine organic substrates and a poorly defined channel.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs. Overwintering: None, no pools.

Table 6. Upper Morice Non Fish Bearing Status

				;			Elect	trofishing	50	ations		Other Methods	ethods		
Width Gradient Stream Di WSC/ILP Reach (m) (%) Class Date (n)	Width Gradient Stream	Width Gradient Stream (%) Class Date	Gradient Stream (%) Class Date	Stream Class Date		Dist. (m)	Time (s)	Cond.	Stage (vis)	Turb. (vis)	Temp. (C)	Type	Effort	Comments	Additional Rationale
1175 2 0.46 6.8 S6 99/09 NA	0.46 6.8 S6 99/09	8.8 September 2006	60/66 9S	60/66			, Y	, v	Low	Z A A	N A	N A N	NA AA	No spawning, rearing or overwintering habitat. Channel filled with moss and vascular plants. No connectivity to fish bearing water. Ephemeral stream reach located 1200 m from known fish bearing water.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs. Overwintering: None, no pools.
1176 3 0.35 7 S6 99/09 NA	0.35 7 S6 99/09	7 S6 99/09	60/66 9S	60/66		i	Ϋ́	NA	Low	N A	, A	NA	, A	ats present. stream, channel litter and fines. fish bearing us channel).	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs. Overwintering: None, no pools.
1406 1 0.82 2.5 S6 99/08 NA	2.5 S6 99/08	2.5 S6 99/08	80/66 9S	80/66			NA	NA	Low	NA	NA	NA	NA	No spawning, rearing or overwintering habitat. Heavily vegetated and intermittent channel with isolated pools which fan out into sphagnum filled depressions. No connectivity to fish bearing water.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs. Overwintering: None, no pools.
95959 1 NA NA NVC 99/08 NA	1 NA NA NVC 99/08	NA NVC 99/08	NVC 99/08	80/66			NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
1276 3 1.39 21.5 S4/S6 99/08 400	1.39 21.5 S4/S6 99/08	21.5 S4/S6 99/08	84/86 99/08	80/66			294	50	Low	Clr	8	NA	NA	Falls (1.9 m) prevent upstream fish migration into this reach. The portion of stream below the falls is fish bearing based on access.	Sampling upstream of falls (300 M) confirms non fish bearing status.
18300- 0720 2 2.36 27.3 S6 99/08 200	2 2.36 27.3 S6 99/08	27.3 S6 99/08	80/66 9S	80/66			145	50	Low	Clr	∞	NA	NA	Gradient prevents access to this reach.	Sampling upstream of gradient confirms non fish bearing status.
1231 2 11.8 S6 99/08 NA	11.8 S6 99/08	11.8 S6 99/08	80/66 98	80/66			NA	NA	Low	Clr	NA	NA	NA	Gradient (42%/60 m) prevents upstream fish migration to this reach.	No fish habitat present upstream of gradient section. Highly ephemeral stream.
1227 2 NA NA NVC 99/08 NA	NA NVC 99/08	NA NVC 99/08	NVC 99/08	80/66		-	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.

Table 6. Upper Morice Non Fish Bearing Status

								Electr	ofishing.	Electrofishing Specifications	tions)	Other Methods	thods		
Site	WSC/ILP	Reach	Width (m)	Gradient (%)	Stream Class	Date	Dist. (m)	Time (s)	Cond.	Stage (vis)	<u>.</u>	Temp.	Type	Effort	Comments	Additional Rationale
311	1220	67	0.89	10.5	S6	80/66	300	236	40	Med	Ç		, v		No connectivity to fish bearing water (discontinuous channel with no surface or subsurface connection). Channel fans out at the toe of the slope becoming heavily vegetated with accumulations of detrital materials. Sampling confirms non-fish status.	Spawning: None, channel is heavily vegetated and highly ephemeral. Rearing: Poor, lack of channel development, no riffle, run habitat, isolated pools. Overwintering: None, no pools.
312	7121	8	0.48	3.4	86	80/66	300	269	50	рем	Lt	10	A N	AN AN	No connectivity to fish bearing water. Channel fans out into a vegetated depression. Downstream reach (Reach 1) is classified as non fish bearing. Sampling confirms non-fish status (300 m site length).	Spawning: None, channel is heavily vegetated and highly ephemeral. Rearing: Poor, lack of channel development, no riffle, run habitat, isolated pools. Overwintering: None, no pools.
313	63200- 09800	7	NA	NA	NVC	80/66	NA	NA	NA	AN	NA	N A	NA	NA	No visible channel.	No evidence of surface scour or ponding.
319	11700-	4	2.38	21.25	83/86	80/66	300	363	06	Med	Clr	10	NA	NA AN	Above road crossing the gradient becomes too steep to allow fish passage.	Sampling upstream of gradient confirms non fish bearing status.
321	1007	2	NA	NA	NVC	80/66	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
322	1006	2	NA	NA	NVC	80/66	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
323	1002	1	NA	NA	NVC	80/66	NA	NA	NA	NA A	NA	NA	NA		No visible channel.	No evidence of surface scour or ponding.
324	1013	1	NA	NA	NVC	80/66	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
327	1193	1	NA	NA	NVC	80/66	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
328	1188	1	NA	NA	NVC	80/66	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
333	57600-	п	0.99	1.3	86	80/66	NA	NA	NA	Low	NA	A N	N A	NA L 1 1 1	No spawning, rearing, or overwintering habitat. No access or suitable fish habitat. Downstream meadow prevents upstream fish passage. No possible fish passage through dry sedge filled meadow.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs. Overwintering: None, no pools.

Table 6. Upper Morice Non Fish Bearing Status

								Flect	rofiching	Flectrofishing Specifications	atione		Other Methods	athode		
			Width	Gradient	Stream		Dist.	Time	Cond.	Stage		Temp.		carous .		
>	WSC/ILP	Reach	(m)	(%)	Class	Date		(s)	(Sn)	(vis)		(C)	Type	Effort	Comments	Additional Rationale
	1208	-	0.72	3.5	80	80/66		, and z	, v	Low	CIr	, Z	, v	N. A.	ore	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: None, no pools.
	1209	4	1.33	20.3	98	80/66	NA	NA	NA	Low	NA	NA	NA	NA	Gradient and falls (2 m) prevent fish access.	Highly ephemeral stream with no fish habitat.
	1211	2	NA	NA	NVC	80/66	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
	1213	61	0.78	1.8	86	80/66	NA	N	Z A	Low	Y.	N A	Y Z	NA	No connectivity to fish bearing water (discontinuous channel). No spawning, rearing or overwintering habitat. Downstream site (339) is non fish bearing.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: None, no pools.
	1213	Т	0.73	1.8	86	80/66	A A	, A	Ϋ́Z	Low	NA	NA	A'A	NA	to fish bearing tous channel). into sphagnum s (bog) with no connection. Il stream with a sl and fine	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: None, no pools.
~ .	63200- 66200	9	0.89	2.5	S6	99/09	400	297	09	Low	Clr	10	NA	NA	Falls (8 m) in Reach 3 prevent upstream fish migration. 100-300 mm CT/DV captured downstream of falls.	Sampling upstream of falls (5 sites) confirms non fish bearing status.
_	66200- 5580		1.6	1.5	S6/ NVC	80/66	400	421	50	Med	Clr	10	NA	NA	Falls (8 m) downstream prevent upstream fish migration.	Sampling upstream of falls (5 sites) confirms non fish bearing status.

Table 6. Upper Morice Non Fish Bearing Status

		oʻ	nt					
	Additional Rationale	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: None no pools.	Sampling upstream of gradient confirms non fish bearing status.		No evidence of surface scour or ponding.	Sampling upstream of falls confirms non fish bearing status.	Sampling upstream of falls confirms non fish bearing status.	Sampling upstream of falls confirms non fish bearing status.
	Comments	Spawning: None, no accumulations of gravels, No connectivity to fish bearing insufficient discharge and water. Habitat not suitable for fish. highly ephemeral. Rearing: Subsurface flows and sections of None, lack of channel discontinuous channel covered with development, no pools, riffles sphagnum moss. Highly ephemeral or runs, heavily vegetated stream with a vegetated channel and channel. Overwintering: None, no pools.	400 m upstream of road crossing gradient becomes too high (22%/100 m) to allow fish passage.	The lower 100 m of this reach has a definable channel (barely classifiable) with no connectivity to fish bearing water. Channel flows into a sphagnum filled depression (bog) becoming a seepage. The remainder of the reach is classified as NVC.	No visible channel.	Stream does not flow into fish bearing water. Downstream falls (8 Sampling upstream of falls m) in mainstem prevents upstream confirms non fish bearing fish migration.	Stream does not flow into fish bearing water. Downstream falls (8 m) in mainstem prevents upstream fish migration.	Stream does not flow into fish bearing water. Downstream falls (8 m) in mainstem prevents upstream fish migration.
fethods	Effort	N A	NA	, A	NA	NA	NA	N A
Other Methods	Type	Z A A	NA	, v	NA	NA	NA	NA
	Temp. (C)	01	8	∞	NA	8	6	∞
ations	Turb. (vis)	Ç	Cir	Clr	NA	Clr	Clr	Clr
Electrofishing Specifications	Stage (vis)	Med	Med	Low	NA	Low	Low	Med
rofishing	Cond. (uS)	09	09	50	NA	70	09	70
Elect	Time (s)	467	316	315	NA	431	727	1123
	Dist. (m)	400	400		NA	400	009	500
	Date	80/66	80/66	60/66	60/66	60/66	60/66	60/66
	Stream Class	S6	S4/S6	S6/ NVC	NAC	98	9S	S3/S5
	Gradient (%)	2.1	4.4	1.8	1.3	1.8	4.9	4.3
	Width (m)	1.4	1.21	0.84	NA	1.49	2.8	3.49
	Reach	2	9		9	5	4	ю
	WSC/ILP	1050	36400- 72600	1028	1039	66200- 5930	63200-	63200-
	Site	347	392	393	395	396	397	398

Table 6. Upper Morice Non Fish Bearing Status

								Elect	ofishing	Electrofishing Specifications	ations		Other Methods	spods		
			Width	Gradient	Stream		Dist.	Time	Cond.	Stage	Turb.	Temp.				
Site	WSC/ILP	Reach	(m)	(%)	Class	Date	(m)	(s)	(uS)	(vis)	(vis)	(C)	Type	Effort	Comments	Additional Rationale
400	1237	ю	0.56	8.5	9S	60/66	300	237	09	Low	CIr	7	NA	NA	Highly ephemeral stream with small accumulations of gravels, catchment. No spawning or overwintering habitat. Sections of highly ephemeral. Rearin subsurface flow, isolated pools, for, lack of channel fine substrates and sphagnum filled development, small isolat depressions (discontinuous). Reach pools, heavily vegetated is located 600 m from known fish no pools.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: Poor, lack of channel development, small isolated pools, heavily vegetated channel. Overwintering: None, no pools.
401	1287	1	NA	20.5	NVC	60/66	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
402	64400- 27000	2	3.03	10.3	85	60/66	400	420	30	Low	Clr	7	NA	NA	A high gradient section (25% for 100 m) immediately above the Nanika River prevents fish access to this reach.	Sampling upstream of gradient confirms non fish bearing status.
403	64400-	2	2.81	11.1	98	60/66	200	328	30	Low	Clr	9	NA	NA	A high gradient section (25% for 100 m) in Reach 1 prevents fish access to this reach.	Sampling upstream of gradient confirms non fish bearing status.
404	1394	1	1.28	11.8	S6	60/66	300	353	40	Low	Clr	7	NA	NA	A high gradient section (26% for 100 m) prevents fish access to this reach.	Sampling upstream of gradient confirms non fish bearing status.
406	1278	1	2.62	16.5	83/86	60/66	200	209	30	Med	Cir	∞	N A	NA	The lower 20 m of this stream is fish bearing. A cascade (4/4 m) and falls (12 m), prevent upstream fish access. Juvenile coho, captured downstream of falls.	Sampling upstream of barrier confirms non fish bearing status.
407	1027	2	1.3	5.3	\$4*/\$6	60/66	200	131	50	Low	Clr	7	NA	NA	Bedrock cascade (2.4/2 m) prevents upstream fish migration. Fish bearing below the cascade based on Sampling upstream of barrier access (Habitat suitable for 100-200 (150 m) confirms non fish mm salmonids).	Sampling upstream of barrier (150 m) confirms non fish bearing status.
409	<i>5</i> 7600- 31800	8	NA	1.8	NVC	60/66	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
414	1239	1	1.99	20.3	83%/86	60/66	300	609	09	Low	Cir	٢	N A	NA	The lower 150 m of this stream is fish bearing based on access. Above that point gradient prevents upstream fish migration.	Sampling upstream of gradient confirms non fish bearing status.
415	1278	2	2.62	10.5	9S	60/66	400	415	70	Low	Clr	7	NA	NA	Falls (12 m) in Reach 1 prevent upstream fish migration.	Sampling upstream of barrier (2 sites) confirms non fish bearing status.

Table 6. Upper Morice Non Fish Bearing Status

		g: fles None,	our	g: fles Vone,	rier	onr	our	thin	ner	g: Eles one,
	Additional Rationale	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: None, no pools.	No evidence of surface scour or ponding.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: None, no pools.	Sampling upstream of barrier confirms non fish bearing status.	No evidence of surface scour or ponding.	No evidence of surface scour or ponding.	No fish habitat present within reach.	Sampling upstream of barrier confirms non fish bearing status.	Spawning: Poor, highly ephemeral stream. Rearing: None, lack of channel diversity, limited pools, riffles or runs. Overwintering: None,
	Comments	Habitat not suitable for fish. Highly ephemeral stream, with a heavily vegetated channel, fine substrates and no connectivity to fish bearing water (discontinuous channel). Extensive upstream and downstream electrofishing with no fish captured.	No visible channel.	No connectivity to Reach 1. Poorly defined channel with subsurface flows and isolated pools. Heavily vegetated channel with a high accumulation of fines. 300 m site in downstream reach 1 captured no fish with extensive electrofishing effort.	Falls (20 m) in Reach 1 prevent upstream fish migration.	No visible channel.	No visible channel.	Gradient is too high to allow fish access to this reach.	Falls (1.8 m) and high gradient (30%) prevent fish access to this reach.	The channel fans out into a sphagnum filled depression in the lower portion of the reach. No definable channel in this section. No evidence of surface flow at
lethods	Effort	NA	NA	A Z	NA	NA	NA	NA	NA	Ž
Other Methods	Type	NA	NA	e Z	NA	NA	ΥN	NA	NA	Ş Z
	Temp. (C)	NA	NA	e e	7	NA	NA	NA	9	v
ations	Turb. (vis)	NA	NA	e e	Clr	NA	NA	NA	Clr	Ė
Electrofishing Specifications	Stage (vis)	Low	NA	Low	Low	NA	NA	Low	Low	wol
rofishing	Cond. (uS)	Ą Z	NA	Ą Z	70	NA	NA	NA	09	0
Elect	Time (s)	X A	NA	Z S	622	NA	NA	NA	328	90
	Dist.	X X	NA	Z Y	400	NA	NA	NA	200	00
	Date	60/66	60/66	60/66	60/66	60/66	60/66	60/66	60/66	60/66
	Stream Class	SS	NVC	88	98	NVC	NAC	98	9S	8
	Gradient (%)	1.5	2.5	œ	8.4	1.8	2.3	44.5	15	un
	Width (m)	1.27	NA	0.59	2.61	NA	NA	0.51	1.41	38
	Reach	-	1	7	2	33	2	1	2	_
	WSC/ILP	1217	1000	1484	600600-	1156	1152	1157	1235	77.6
	Site	417	418	421	423	427	428	429	436	438

Table 6. Upper Morice Non Fish Bearing Status

		a5	a5	ره	aS		
	Additional Rationale	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: None no pools.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated t channel. Overwintering: None no pools.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: None, no pools.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: None, no pools.	No evidence of surface scour or ponding.	No evidence of surface scour or ponding.
	Comments	Spawning: None, no accumulations of gravels, insufficient discharge and sections of heavily vegetated discontinuous channel, and isolated hook, lack of channel pools. No connectivity to fish bearing water. Habitat too poor to sustain fish. No evidence of surface channel. Overwintering: None, no pools.	Spawning: None, no accumulations of gravels, insufficient discharge and Lower portion of reach below the highly ephemeral. Rearing: road can be classified as fish bearing based on access. Above the development, no pools, riffles road, habitat is too poor to sustain or runs, heavily vegetated fish. No evidence of surface flow at channel. Overwintering: None, discontinuous sections.	Upper portion of reach can be classified as no visible channel. Lower portion of reach has no connectivity to the Morice River. Channel fans out into a vegetated depression. Ephemeral stream with only 150 m of definable channel.	The lower 50 m is fish bearing based on access. Above that point the channel deteriorates and has no connectivity to fish bearing water. Fine substrates, sphagnum filled depressions with no evidence of surface flow at discontinuity.	No visible channel.	No visible channel.
lethods	Effort	NA	NA	N.	NA	NA	NA
Other Methods	Type	NA	NA	χ	NA	NA	NA
	Temp.	N. A.A.	NA	, A	NA	NA	NA
ations	Turb. (vis)	Z A A	NA	Ϋ́Z	Clr	NA	NA
Specific	Stage (vis)	Low	Low	Low	Low	NA	NA
Electrofishing Specifications	Cond.	NA	NA	X A	NA	NA	NA
Elect	Time (s)	NA	NA	A A	NA	NA	NA
	Dist.		NA	N. A.	NA	NA	NA
	Date	60/66	60/66	60/66	60/66	60/66	60/66
	Stream Class	S6	\$4*/86	S6/ NVC	S4*/S6	NAC	NVC
	Gradient (%)	w	1.9	16	5.4	4.5	1.3
	Width (m)	0.44	0.59	1.1	0.75	NA	NA
	Reach	2	1	-	1	1	3
	WSC/ILP	1228	1012	1475	1046	1037	1039
	Site	439	441	455	<i>1</i> 99	671	673

Table 6. Upper Morice Non Fish Bearing Status

Width		Gradient	Stream		Diet	Electro	Septimble S	Electrofishing Specifications		Temn	Other Methods	ethods		
	(%)		Class	Date	(m)		(uS)			(C)	Type	Effort	Comments	Additional Rationale
0.28 13.5	13.5		86	60/66	, A	, A	NA AN	Low	Ϋ́	Y Y	A X	, A	High gradient and small channel accumulations of gravels, size. Highly ephemeral stream with insufficient discharge and heavily vegetated channel, 100% highly ephemeral. Rearing organic substrates and no spawning, None, lack of channel rearing or overwintering habitat present. Discontinuous, or runs, heavily vegetated intermittent channel with no pools.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: None, no pools.
0.35 13.5	13.5		S6	60/66	100	200	20	Low	Clr	7	NA	NA	f	Sampling upstream of gradient confirms non fish bearing status.
7.15 13.5	13.5		S5	60/66	150	311	06	Med	Clr	9	NA	NA	Channel is dewatered for 200 m in the downstream portion of this reach. Sampling above the dewatered section confirms non fish reaches upstream of this site presence.	No fish were captured in one site 500 m downstream. All reaches upstream of this site have gradient >20%.
18	18		SS	60/66	200	257	40	Med	Clr	9	NA	NA	Cascades (4/1 m, 2/.5 m and .6/.3 m) and downstream dewatered section, prevent fish migration c upstream into this reach.	Sampling upstream of cascades confirms non fish bearing status.
1.33 23.5	23.5		S6	60/66	100	327	40	Med	Clr	9	NA	NA	Sampling upstream of gradient prevents fish access to this confirms non fish bearing reach.	Sampling upstream of gradient confirms non fish bearing status.
0.9	0.9		83*/86	60/66	200	717	20	Med	Clr	∞	NA	NA	Channel becomes discontinuous is within the top 1/3 of this reach. This section is non fish bearing (based on channel characteristics (heavily vegetated channel with organic substrates). The lower section is fish bearing based on access only.	Spawning: None, no accumulations of gravels, insufficient discharge and highly ephemeral. Rearing: (ws of 100 m) None, lack of channel development, no pools, riffles or runs, heavily vegetated channel. Overwintering: (u/s of 100 m) None, no pools.
1.75 6.1	6.1		98	60/66	100	198	30	Low	Clr	9	NA	NA	Sampling upstream casc Cascade (5/5 m) in reach 2 prevents sites) confirms non fish fish access to this reach. bearing status.	Sampling upstream cascade (2 sites) confirms non fish bearing status.

Table 6. Upper Morice Non Fish Bearing Status

								Flectro	fishing!	Electrofishing Specifications	tions		Other Methods	athods		
			Width	Gradient	Stream		Dist.	Time	Cond.	Stage	_	Temp.				
Site	WSC/ILP	Reach	(m)	(%)		Date	(m)	(s)	(Sn)		(vis)	(C)	Type	Effort	Comments	Additional Rationale
701	64400-	2	2.17	8.3	83*/86	60/66	002	556	30	Med	Clr	9	Z Y	X A	Cascade (5/5 m) prevents fish access to the upper portion of this reach. Fish bearing based on access Sampling upstream of cascade below the cascade. Habitat suitable confirms non fish bearing for 100-200 mm salmonids.	Sampling upstream of cascade confirms non fish bearing status.
703	600600- 41800	5	NA	1.8	NVC	60/66	NA	NA	NA	NA	NA	NA	NA	NA	No visible channel.	No evidence of surface scour or ponding.
908	600600-	10	1.51	6.8	83*/86	99/10	300	530	40	Med	Clr	9	NA	NA	Cascade (4/3 m) prevents upstream fish migration. Fish bearing based on access below the cascade. Habitat suitable for 100-200 mm salmonids.	Sampling upstream of cascade confirms non fish bearing status.
2340	1065			4.5	86	60/66	N A	NA	, A	, A	N A	, A	, A	N A	No spawning, rearing or 30-40, .5/1m cascades over overwintering habitat. Subsurface debris jam and piles create flows, isolated pools discontinuous numerous impassable barriers. 30-40, 10-20 m subsurface small cascades downstream of sections. Substrates are moss reach.	30-40, .5/1 m cascades over debris jam and piles create numerous impassable barriers. 30-40, 10-20 m subsurface sections. Substrates are moss and debris covered.

			Map	Width	Gradient		Stream	
Site	ILP/WSC	Reach	Number	(m)	(%)	Species	Class	Comments
					. ,			Good spawning and rearing habitat. No overwintering
131	1071	2	93L.005	1.65	4.5	RB	S3	habitat.
122	20700 0440	1	021 015	2.00	7.5	DV	62	Poor spawning and rearing habitat. No overwintering
132	39700-0440 36400-39700	3	93L.015 93L.015	2.08 7.15	7.5 5.5	DV RB	S3 S2	habitat. Good spawning, rearing and overwintering habitat.
133	30400-37700		73L.013	7.13	3.3	KD	52	No spawning, rearing and overwintering habitat.
134	1079	2	93L.015	0.35	2.5	NS	S6	Subsurface flows and limited connectivity.
								No visible channel. No evidence of surface scour or
135	1078	2	93L.015	NA	6.5	NA	NVC	ponding.
								Cosco do (2 m) musyanto vinetrosmi fish mismetian. Fish
								Cascade (2 m) prevents upstream fish migration. Fish were captured below the cascade at Site 266. Sampling
136	36400-26300	2	93L.015	2.85	5.8	DV	S3	upstream of cascade confirms non fish bearing status.
								Subsurface flows. Vegetated channel. No fish habitat
137	1144	2	93L.015	0.84	18.5	NS	S6	present.
138	1148	3	93L.015	0.32	12.2	NS	S4*/S6	Fish may access the lower portion of this reach. No fish habitat and no connectivity in upper portion of reach.
130	1140	3	93L.013	0.32	12.2	140	34 730	Gradient prevents fish access to this reach. No spawning,
139	1150	1	93L.015	0.27	20	NS	S6	rearing or overwintering habitat.
								Gradient prevents fish access to this reach. No spawning,
140	1151	2	93L.015	0.34	20.8	NS	S6	rearing or overwintering habitat.
141	1152	1	93L.015	1.35	16.5	NS	S4*/S6	Lower 600 m is fish bearing based on access. Above that point habitat becomes too poor to sustain fish.
141	1132	1	93L.013	1.33	10.5	1/13	34./30	No fish habitat present. Subsurface flows and no
142	1498	4	93L.015	0.5	11.5	NS	S6	connectivity to fish bearing water.
								No spawning, rearing, or overwintering habitat. Gradient
143	36400-27600	3	93L.015	1.52	21.8	NS	S6	prevents access to this reach.
								No comparison to Colon beautiful and Constitution of
144	1499	3	93L.015	0.6	19.3	NS	S6	No connectivity to fish bearing water. Gradient and channel characteristics prevent fish access to this reach.
144	1477	3	73L.013	0.0	17.3	145	50	No spawning, rearing, or overwintering habitat. Gradient
145	1499	4	93L.015	0.93	23	NS	S6	prevents access to this reach.
								No spawning, rearing, or overwintering habitat. Small
	1155		007 045	0.45		3.70	9.5	catchment, ephemeral stream, and intermittent channel.
146	1177	2	93L.015	0.47	4.5	NS	S6	No connectivity to fish bearing water. No permanent barriers to upstream fish migration were
147	50200-0640	3	93L.015	2.05	4	NS	S3*	identified. Fish stream based on access.
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- 1.0		No permanent barriers to upstream fish migration were
148	1154	1	93L.015	1.38	4	NFC	S4*	identified. Fish stream based on access.
149	1087	2	93L.005	NA	6	NA	NVC	No visible channel. Vegetated seepage area.
								Stream does not flow into sport fish bearing waters. Falls
150	1086	1	93L.005	0.42	6	NFC	S6	(25 m) on Pimpernel Creek prevent upstream sport fish migration.
130	1000	1	751.003	0.72	3	111 (50	Stream does not flow into sport fish bearing waters. Falls
								(25 m) on Pimpernel Creek prevent upstream sport fish
151	1089	2	93L.005	3.02	4.8	NFC	S5	migration.
1.50	26400 2555	_	007 00=			****	~~	Falls (25 m) in Reach 4 prevent upstream sport fish
152	36400-39700	5	93L.005	5.73	4.5	WSU	S5	migration. Non sport fish captured. Falls (25 m) in Reach 4 prevent upstream sport fish
153	36400-39700	7	93L.005	4.58	4.5	WSU	S5	migration. Non sport fish captured.
100	32.30 27100	•	, , , , , , , , , , , , , , , , , , , ,				- 22	Stream does not flow into sport fish bearing waters. Falls
								(25 m) on Pimpernel Creek prevent upstream sport fish
154	39700-3240	3	93L.005	1.79	7.5	NFC	S6	migration.
								Stream does not flow into sport fish bearing waters. Falls
155	30700 2010	1	031 015	2.0	6.2	NEC	\$6	(25 m) on Pimpernel Creek prevent upstream sport fish
133	39700-2910	4	93L.015	2.9	6.2	NFC	S6	migration. Falls (25 m) are a barrier to upstream sport fish migration.
								Sampling indicates only non sport fish are present above
156	36400-39700	4	93L.005	7	7.5	RB	S2/S5	the falls.

			Map	Width	Gradient		Stream	
Site	ILP/WSC	Reach	Number	(m)	(%)	Species	Class	Comments
								No permanent barriers to upstream fish migration were
157	1497	2	93L.015	1.21	14.5	NFC	S4*	identified. Fish stream based on access. Fish captured in upstream reach. Fish bearing based on
158	36400-00800	2	93L.015	2.43	4.5	NFC	S3	access.
136	30400-00800		73L.013	2.43	4.5	MC	55	Falls (25 m) in Reach 4 prevent upstream sport fish
159	36400-39700	17	93L.006	2.59	4.5	WSU	S6	migration. Non sport fish captured.
								Stream does not flow into sport fish bearing waters. Falls
							_	(25 m) on Pimpernel Creek prevent upstream sport fish
160	39700-6230	2	93L.006	2.43	5.5	NFC	S6	migration.
161	36400-39700	11	93L.005	6.58	1.5	LKC, WSU	S5	Falls (25 m) in Reach 4 prevent upstream sport fish migration. Non sport fish captured.
162	1160	4	93L.015	NA	7.8	NA	NVC	No visible channel. No fish habitat present.
								· ·
								Gradient break immediately upstream of the Morice River
163	600600-38000	2	93L.015	2.6	20.5	NFC	S6	prevents upstream fish migration to this reach.
1.64	1454	2	001 014	2.05	10.5	DU	92	Good spawning and rearing habitat. No overwintering
164	1454	3	93L.014	3.05	10.5	DV	S3	habitat present. Good rearing habitat. Spawning habitat present. No
165	1453	3	93L.014	3.67	11.3	DV	S3	overwintering habitat. Spawning nabitat present. No
	- 100		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.07		<u> </u>		No permanent barriers to upstream fish migration were
166	1452	2	93L.014	2.8	16	NS	S3*	identified. Fish stream based on access.
								No permanent barriers to upstream fish migration were
167	1469	2	93L.014	2.27	8	NFC	S3*	identified. Fish stream based on access.
								Layvan 100 m of this mooch is fish bearing based on access
								Lower 100 m of this reach is fish bearing based on access. The remainder of this stream is non fish bearing based on
168	1467	1	93L.014	0.62	17.8	NFC	S4*/S6	gradient and channel characteristics.
								Subsurface flows, braided channel, and no connectivity to
169	1466	1	93L.014	0.51	4.5	NS	S6	fish bearing water.
450	1450		007 044				> T 1 G	No visible channel. Vegetated gully with no evidence of
170 171	1463 1459	2	93L.014 93L.014	NA 1.35	NA 22	NA NFC	NVC S6	surface scour. Gradient prevents fish access to this reach.
1/1	1439	1	93L.014	1.55	22	NFC	30	Moderate spawning and rearing habitat. No overwintering
232	1031	2	93L.005	1.35	4.5	CT	S4	habitat.
								Poor spawning and rearing habitat. No overwintering
233	1033	1	93L.005	0.57	4	CT	S4	habitat.
224	1025			0.54	2.5		9.5	No fish access to this reach. Reach 1 has no visible
234	1037 1068	3	93L.005 93L.005	0.61 NA	2.5 48.3	NFC NA	S6 NVC	channel and no connectivity to fish bearing water. No visible channel. Dry gully.
233	1008	3	93L.003	INA	40.3	INA	NVC	No permanent barriers were identified. Fish stream based
236	36400-59800	2	93L.005	0.82	3.5	NFC	S4*	on access.
								No permanent barriers were identified. Fish stream based
237	600600-36400	28	93L.004	1	4	NS	S4*	on access.
220	4.405	_	007 004	4.50		CIT.		Moderate spawning and rearing habitat. Poor
238	1427	6	93L.004	1.72	5.5	CT	S3	overwintering habitat. Cascade (30 m) prevents upstream fish migration.
								Sampling upstream of the cascade confirms non fish
239	1489	3	93E.092	10.43	5	DV	S2/S5	bearing status.
240	64400-28100	4	93E.093	36.1	7.5	DV	S1	Moderate spawning, rearing, and overwintering habitat.
	64400 20400		000 000	26.7		D	6.	
241	64400-28100	5	93E.093	30.5	7.5	DV	S1	Moderate spawning, rearing, and overwintering habitat. Cascade (30 m) in Reach 3 prevents upstream fish
242	1489	4	93E.092	6.52	3.5	NFC	S5	migration.
	1.07	•	, , , , , , , , , , , , , , , , , , , ,	5.02	2.3	- 1.20	20	Falls (4 m) and a cascade (3 m) prevent upstream fish
								migration. Sampling upstream of the falls confirms non
243	64400-28100	11	93E.092	14.1	8	DV	S2/S5	fish bearing status.
	C4400 20400	10	000 000	7 °		NEC.	6.5	Falls (4 m) and a cascade (3 m) in Reach 11 prevent
244	64400-28100	12	93E.092	7.3	8	NFC	S5	upstream fish migration. Cascade (6 m) in Reach 3 prevents upstream fish
245	1419	5	93L.004	0.73	20.3	NFC	S6	Cascade (6 m) in Reach 3 prevents upstream fish migration.
473	171/	J	/JE.004	0.13	20.5		50	

Species				Map	Width	Gradient		Stream	
Cascade (6 m) prevents upstream rish migration. Sampling upstream of the cascade confirms non fish bearing status.	Site	ILP/WSC	Reach	-			Species		Comments
246	200	3227 11 2 2		2 (0.2220 22	(113)	(/*/	эрсска		Cascade (6 m) prevents upstream fish migration.
248									
248								S3/S5	
248	247	1419	4	93L.004	NA	NA	NFC	NA	
Fails (20 m) in lower portion of this reach prevent payers might begin bearing status upstream of falls onlines on the payer of fails of the payers of fails on the payers of fails on the payers of fails on firms not fails of the payers of fails on firms not fails of the payers of fails on firms not fails. 251 39700-0440 2 93L015 1.3 4.5 NFC 54* 4.5 NFC	240	1.422		001 004	2.02	0.5	NEG	9.5	
Upstream fish migration. Sampling upstream of falls of confirms non fish bearing status upstream of falls of confirms non fish bearing status.	248	1422	1	93L.004	3.83	8.5	NFC	S5	
249									
250 64100-2380 4 93L.005 0.82 1.5 RB S4 Poor rearing. No spawning or overwintering habitat.	249	600600-53900	1	931.014	2 45	6.5	NFC	S6	
251 39700-0440 2 93L.005 0.89 5 NFC S4* access No spawning, rearing, or overwintering habitat. No No spawning, rearing, or overwintering habitat. No S6 connectivity to fish bearing water.	247	000000 33700	1	73E.014	2.43	0.5	THE	50	commission rish ocaring status upsticam or rans.
251 39700-0440 2 93L.005 0.89 5 NFC S4* access No spawning, rearing, or overwintering habitat. No No spawning, rearing, or overwintering habitat. No S6 connectivity to fish bearing water.	250	64100-2380	4	93L.005	0.82	1.5	RB	S4	Poor rearing. No spawning or overwintering habitat.
252 1085 2 93L.005 0.41 2 NS S6 Connectivity to fish bearing water.									
252 1085 2 93L.015 1.3 4.5 NFC S4*	251	39700-0440	2	93L.005	0.89	5	NFC	S4*	
253									No spawning, rearing, or overwintering habitat. No
253 1169 2 93L.015 1.3 4.5 NFC S4* access.	252	1085	2	93L.005	0.41	2	NS	S6	
254									
255									
255	254	1169	3	93L.015	1.53	18	NS	S6	
Falls (20 m) prevent upstream fish migration. Sampling upstream of falls confirms non fish bearing status.	255	1.470	2	021 014	0.65	26.5	NIC	\$6	
256 600600-53900 1 93L.014 2.75 7 CT \$3/55 upstream of falls confirms non fish bearing status	233	1470		93L.014	0.03	20.3	NS	30	prevents upstream rish migration.
256 600600-53900 1 93L.014 2.75 7 CT \$3/55 upstream of falls confirms non fish bearing status									Falls (20 m) prevent upstream fish migration. Sampling
257	256	600600-53900	1	93L.014	2.75	7	CT	S3/S5	
258 5020-0640 5 93L.015 1.38 7 NFC S4* identified. Fish bearing based on access.									
259									
259	258	5020-0640	5	93L.015	1.38	7	NFC	S4*	identified. Fish bearing based on access.
260									No visible channel. No evidence of surface scour or
260	259	1439	2	93L.015	NA	17.5	NA	NVC	
261									
261 1180 9 93L.015 1.18 3 NFC S4* identified. Fish stream based on access.	260	1443	3	93L.015	0.71	5	NS	S4*	
264 36400-26300 3 93L.015 1.38 7.5 NFC S6 Cascade (2 m) in Reach 2 prevents upstream fish migration. Cascade (2 m) downstream prevents fish access to this reach.	261	1100	0	021 015	1 10	2	NEC	C 4*	
264 36400-26300 3 93L.015 1.38 7.5 NFC S6 migration.	201	1180	9	93L.015	1.18	3	NFC	54**	
265	264	36400-26300	3	931.015	1 38	7.5	NFC	S6	
265	201	30100 20300		75E.015	1.50	7.5	141.0	50	5
Very Compact Very	265	1146	1	93L.015	0.9	15	NFC	S6	=
Very Compact Very									
266 36400-26300 2 93L.015 3.37 8 DV S3/S6 the cascade confirms non fish bearing status.									
267									
268									
268	267	1147	1	93L.015	1.65	21.8	NFC	S6	
269 41800-41700 2 93L.014 1.87 32 NFC S6 intermittent channel. Lower 50 m of this reach is fish bearing based on access. Gradient prevents fish access to the remainder of the stream. Lower 20 m of this reach is fish bearing based on access. The remainder of this reach is fish bearing. High gradient prevents access. No permanent barriers to upstream fish migration were identified. Fish bearing based on access. No visible channel. No potential fish habitat. Vegetated depression. No spawning, rearing or overwintering habitat. No spawning, rearing or overwintering habitat. No	260	1446	2	021 014	0.67	20.5	NEC	86	
269	208	1440		93L.014	0.67	36.3	NFC	30	
Lower 50 m of this reach is fish bearing based on access. Gradient prevents fish access to the remainder of the S4*/S6 stream. Lower 20 m of this reach is fish bearing based on access. The remainder of this reach is non fish bearing. High S4*/S6 gradient prevents access. No permanent barriers to upstream fish migration were identified. Fish bearing based on access. No permanent barriers to upstream fish migration were identified. Fish bearing based on access. No visible channel. No potential fish habitat. Vegetated depression. No spawning, rearing or overwintering habitat. No spawning, rearing or overwintering habitat. No spawning, rearing or overwintering habitat. No	269	41800-41700	2	931 014	1.87	32	NEC	\$6	*
270 1150 1 93L.015 0.92 20.3 NFC S4*/S6 stream. Lower 20 m of this reach is fish bearing based on access. The remainder of this reach is non fish bearing. High gradient prevents access. No permanent barriers to upstream fish migration were identified. Fish bearing based on access. No permanent barriers to upstream fish migration were identified. Fish bearing based on access. No visible channel. No potential fish habitat. Vegetated depression. No spawning, rearing or overwintering habitat. No spawning, rearing or overwintering habitat. No No spawning, rearing or overwintering habitat. No	207	71000-41700		750.014	1.07	32	1110	50	
270									
The remainder of this reach is non fish bearing. High 271 1158 2 93L.015 0.65 26.5 NS S4*/S6 gradient prevents access. No permanent barriers to upstream fish migration were 272 1443 1 93L.014 1.23 6.5 NS S4* identified. Fish bearing based on access. 273 1442 1 93L.014 0.72 5.8 NS S4* Fish stream based on access. No visible channel. No potential fish habitat. Vegetated depression. No spawning, rearing or overwintering habitat. No 275 1462 1 93L.014 1.03 8.5 NFC S6 connectivity to fish bearing water. No spawning, rearing or overwintering habitat. No	270	1150	1	93L.015	0.92	20.3	NFC	S4*/S6	_
The remainder of this reach is non fish bearing. High 271 1158 2 93L.015 0.65 26.5 NS S4*/S6 gradient prevents access. No permanent barriers to upstream fish migration were 272 1443 1 93L.014 1.23 6.5 NS S4* identified. Fish bearing based on access. 273 1442 1 93L.014 0.72 5.8 NS S4* Fish stream based on access. No visible channel. No potential fish habitat. Vegetated depression. No spawning, rearing or overwintering habitat. No 275 1462 1 93L.014 1.03 8.5 NFC S6 connectivity to fish bearing water. No spawning, rearing or overwintering habitat. No									Lower 20 m of this reach is fish bearing based on access.
272 1443 1 93L.014 1.23 6.5 NS S4* identified. Fish bearing based on access. 273 1442 1 93L.014 0.72 5.8 NS S4* Fish stream based on access. 274 1441 1 93L.014 NA 2.3 NA NVC depression. 275 1462 1 93L.014 1.03 8.5 NFC S6 connectivity to fish bearing water. No spawning, rearing or overwintering habitat. No spawning, rearing or overwintering habitat. No									
272 1443 1 93L.014 1.23 6.5 NS S4* identified. Fish bearing based on access. 273 1442 1 93L.014 0.72 5.8 NS S4* Fish stream based on access. No visible channel. No potential fish habitat. Vegetated depression. NVC depression. No spawning, rearing or overwintering habitat. No 275 1462 1 93L.014 1.03 8.5 NFC S6 connectivity to fish bearing water. No spawning, rearing or overwintering habitat. No No spawning, rearing or overwintering habitat. No	271	1158	2	93L.015	0.65	26.5	NS	S4*/S6	
273 1442 1 93L.014 0.72 5.8 NS S4* Fish stream based on access. No visible channel. No potential fish habitat. Vegetated depression. No spawning, rearing or overwintering habitat. No 275 1462 1 93L.014 1.03 8.5 NFC S6 connectivity to fish bearing water. No spawning, rearing or overwintering habitat. No 275 No spawning, rearing or overwintering habitat. No 275 No spawning, rearing or overwintering habitat. No 275 No spawning, rearing or overwintering habitat. No					4.55			a	
274 1441 1 93L.014 NA 2.3 NA NVC depression. 275 1462 1 93L.014 1.03 8.5 NFC S6 NFC S6 connectivity to fish bearing water. No visible channel. No potential fish habitat. Vegetated depression. No spawning, rearing or overwintering habitat. No connectivity to fish bearing water. No spawning, rearing or overwintering habitat. No									
274 1441 1 93L.014 NA 2.3 NA NVC depression. 275 1462 1 93L.014 1.03 8.5 NFC S6 connectivity to fish bearing water. No spawning, rearing or overwintering habitat. No No spawning, rearing or overwintering habitat. No	2/3	1442	1	95L.014	0.72	5.8	NS	54*	
No spawning, rearing or overwintering habitat. No connectivity to fish bearing water. No spawning, rearing or overwintering habitat. No spawning, rearing or overwintering habitat. No	274	1441	1	031 014	NI A	2.2	NI A	NVC	
275 1462 1 93L.014 1.03 8.5 NFC S6 connectivity to fish bearing water. No spawning, rearing or overwintering habitat. No	2/4	1441	1	93L.U14	INA	2.3	INA	NVC	
No spawning, rearing or overwintering habitat. No	275	1462	1	93L 014	1.03	8.5	NEC	S6	
		- 102	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.00	2.0			
	276	36400-36600	1	93L.015	0.87	10	NS	S6	

Size ILPWSC Reach Number (m) (%) Species Class Comments				Map	Width	Gradient		Stream	
277	Site	ILP/WSC	Reach	Number	(m)	(%)	Species	Class	
No spawning, rearing or overwintering labitat. No	277	1175	2	021 015	0.46	6.0	NG	G.C	
278	211	11/5	2	93L.015	0.46	0.8	INS	30	
279 50200-0640 1 931.015 1.72 4.3 CT S3 habitat. No spawning or overwintering habitat. No spawning habitat. No spawning rearing or overwintering habitat. No spawning or overwintering habitat. No spawning habitat. No spawning or overwintering habitat. No spawning rearing or overwintering habitat. No spawning habitat. No spawning or overwintering habitat.	278	1176	3	93L.015	0.35	7	NS	S 6	
301									
301	279	50200-0640	1	93L.015	1.72	4.3	CT	S3	
302 64400-22700 2 93L.003 3.77 3 DV S3 DV S4 DV DV DV DV DV DV DV D	201	1401	1	02E 002	1.00	1.0	DV	62	
302 64400-22700 2 931.003 3.77 3 DV S3 Dispersion S0 S0 S0 S0 S0 S0 S0 S	301	1401	1	93E.093	1.98	1.9	DV	33	
No. psawning, rearing or overwintering habitat. No.	302	64400-22700	2	93L.003	3.77	3	DV	S3	
304									No spawning, rearing or overwintering habitat. No
304	303	1406	1	93L.003	0.82	2.5	NS	S6	
305 64400-18300 4 93L.003 3.57 2.8 LSU DV, RB, LSU S3 Coc, CR, DV, RB, LSU S3 Excellent rearing habitat. Poor spawning habitat.	204	1500	2	021 002	650	1.2	DD DV	63	
DV, RB, Excellent rearing habitat. Poor spawning habitat.	304	1500	3	93L.003	0.38	1.3		52	Overwintering nabitat present.
305 64400-18300 4 93L.003 3.57 2.8 LSU S3 Overwintering habitat present.									Excellent rearing habitat. Poor spawning habitat.
306 95959 1 93L.003 NA NA NA NVC and not a stream. No flows at any time. No fish habitat. Falls (1.9 m) prevent upstream fish migration into this reach. The portion of stream below the falls is fish bearing saled on access.	305	64400-18300	4	93L.003	3.57	2.8		S 3	
306 95959 1 93L.003 NA NA NA NVC and not a stream. No flows at any time. No fish habitat. Falls (1.9 m) prevent upstream fish migration into this reach. The portion of stream below the falls is fish bearing saled on access.									
Falls (1.9 m) prevent upstream fish migration into this reach. The portion of stream below the falls is fish bearing based on access. Falls (1.9 m) prevents access to this reach. The portion of stream below the falls is fish bearing based on access.	20.6	05050		001 000	27.4	27.4	27.4	NILC	
The color of the	306	95959	1	93L.003	NA	NA	NA	NVC	
307									
308 18300-0720 2 93L.003 2.36 27.3 NFC S6 Gradient prevents access to this reach.	307	1276	3	93L.003	1.39	21.5	RB	S4/S6	
309	308	18300-0720	2		2.36		NFC	S6	
1227 2 93L.003 NA NA NA NA NA NV NA NA									
310 1227 2 93L.003 NA NA NA NA NVC gully. No connectivity to fish bearing water. Channel fans out at the toe of the slope.	309	1231	2	93L.003	1.2	11.8	NFC	S6	
1	310	1227	2	031 003	NΑ	NA	NΑ	NVC	
311 1220 2 93L.003 0.89 10.5 NFC S6 the toe of the slope.	310	1227		93L.003	INA	IVA	INA	NVC	
1217 3 93L.003 0.48 3.4 NFC S6 No connectivity to Nanika River downstream. Ephemeral stream with a vegetated channel. No potential fish habitat. Vegetated sepage. No connectivity to Nanika River downstream. Ephemeral stream with a vegetated channel. No potential fish habitat. Vegetated sepage. No connectivity to Nanika River downstream. Ephemeral stream with a vegetated channel. No potential fish habitat. Vegetated sepage. No connectivity to Nanika River downstream. Ephemeral stream with a vegetated channel. No potential fish habitat. Vegetated stream with a vegetated channel. No potential fish habitat. Vegetated sepage. No connectivity to Nanika River downstream. Ephemeral stream with a vegetated channel. No potential fish habitat. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Vegetated sepage. No potential fish habitat. No visible channel or evidence of surface scour. Veget	311	1220	2	93L.003	0.89	10.5	NFC	S 6	
313 63200-09800 7 93L.004 NA NA NA NA NA NV NA NA									
313 63200-09800 7 93L.004 NA	312	1217	3	93L.003	0.48	3.4	NFC	S6	
11700-5110 3 93L.004 3.42 6.5 CT S3 S4* Non sport fish captured. Sport fish access is possible.	212	63200 00800	7	021 004	NI A	NI A	NIA	NVC	_
314	313	03200-09800	,	93L.004	INA	INA	INA	NVC	
315	314	11700-5110	3	93L.004	3.42	6.5	CT	S 3	
CT, RB, CAS, MW, Excellent spawning and rearing habitat. Overwintering habitat present. No permanent barriers identified. Fish stream based on access. Satable present provided p									-
CAS, MW, LSU, PL S2 S2 S2 S3 S3 S4 S4 S2 S4 S2 S4 S4 S4	315	1011	1	93L.004	1.45	1		S4*	Non sport fish captured. Sport fish access is possible.
Second									
316 600600-63200 8 93L.004 5.38 1.3 LSU, PL S2 habitat present. No permanent barriers identified. Fish stream based on access. S4* access. Fish stream based on access. Fish stream based on access. Gradient is low enough to allow fish access. Above road crossing the gradient becomes too steep to allow fish passage. 320 4190-1340 1 93L.004 1.15 1.8 NFC S4* Fish may access this reach during high flows. No visible channel or evidence of surface scour. No v									Excellent snawning and rearing habitat Overwintering
No permanent barriers identified. Fish stream based on access. Substituting	316	600600-63200	8	93L.004	5.38	1.3		S2	
318									
318	317	63200-29100	3	93L.004	0.96	4	NFC	S4*	
319 11700-5660 4 93L.004 2.38 21.25 DV S3/S6 allow fish passage. 320 4190-1340 1 93L.004 1.15 1.8 NFC S4* Fish may access this reach during high flows. 321 1007 2 93L.004 NA NA NA NA NOC Vegetated seepage. No potential fish habitat. 322 1006 2 93L.013 NA NA NA NA NOC Vegetated seepage. No potential fish habitat. 323 1002 1 93L.013 NA NA NA NA NOC Vegetated seepage. No potential fish habitat. 324 1013 1 93L.004 NA NA NA NA NOC Vegetated seepage. No potential fish habitat. 325 1485 1 93L.004 NA NA NA NA NOC Vegetated seepage. No potential fish habitat. 338 NOC Vegetated seepage. No potential fish habitat. 340 NOC Vegetated seepage. No potential fish habitat. 350 NOC Vegetated seepage. No potential fish habitat. 351 NOC Vegetated seepage. No potential fish habitat. 352 NOC Vegetated seepage. No potential fish habitat. 353 NOC Vegetated seepage. No potential fish habitat. 353 NOC Vegetated seepage. No potential fish habitat.	210	1420	2	031 004	2.62	12	NEC	C2*	_
319 11700-5660 4 93L.004 2.38 21.25 DV S3/S6 allow fish passage.	318	1420		93L.004	2.02	13	NEC	33	
320 4190-1340 1 93L.004 1.15 1.8 NFC S4* Fish may access this reach during high flows. 321 1007 2 93L.004 NA NA NA NA NOV Vegetated seepage. No potential fish habitat. 322 1006 2 93L.013 NA NA NA NA NOV Vegetated seepage. No potential fish habitat. 323 1002 1 93L.013 NA NA NA NA NOV Vegetated seepage. No potential fish habitat. 324 1013 1 93L.004 NA NA NA NA NOV Vegetated seepage. No potential fish habitat. 325 1485 1 93L.004 NA NA NA NA NOV Vegetated seepage. No potential fish habitat. 328 Fish stream based on access.	319	11700-5660	4	93L.004	2.38	21.25	DV	S3/S6	
321 1007 2 93L.004 NA NA NA NVC Vegetated seepage. No potential fish habitat. No visible channel or evidence of surface scour.			1						Fish may access this reach during high flows.
322 1006 2 93L.013 NA NA NA NA NOV Vegetated seepage. No potential fish habitat. No visible channel or evidence of surface scour.									
322 1006 2 93L.013 NA NA NA NVC Vegetated seepage. No potential fish habitat. No visible channel or evidence of surface scour. Solvential fish habitat. No visible channel or evidence of surface scour.	321	1007	2	93L.004	NA	NA	NA	NVC	
323 1002 1 93L.013 NA NA NA NA NOVC Vegetated seepage. No potential fish habitat. No visible channel or evidence of surface scour.	322	1006	2	931.013	NA	NA	NA	NVC	
323 1002 1 93L.013 NA NA NA NVC Vegetated seepage. No potential fish habitat. No visible channel or evidence of surface scour. NVC Vegetated seepage. No potential fish habitat. NVC Vegetated seepage. No potential fish habitat. 324 1013 1 93L.004 NA NA NA NVC Vegetated seepage. No potential fish habitat. 325 1485 1 93L.004 1.58 3.3 NS S3* Fish stream based on access.	322	1000		751.013	11/1	11/1	11/1	1,70	
324 1013 1 93L.004 NA NA NVC Vegetated seepage. No potential fish habitat. 325 1485 1 93L.004 1.58 3.3 NS S3* Fish stream based on access.	323	1002	1	93L.013	NA	NA	NA	NVC	Vegetated seepage. No potential fish habitat.
325 1485 1 93L.004 1.58 3.3 NS S3* Fish stream based on access.									No visible channel or evidence of surface scour.
The sport is a captured. Opsite an lake may contain	325	1485	I	93L.004	1.58	3.3	NS	83*	
326 62200-2180 3 93L.004 2.4 1.3 RSC S3* sport fish. Fish stream based on access.	326	62200-2180	3	93L 004	2.4	1.3	RSC	S3*	
	327	1193		93L.004	NA	NA	NA	NVC	Stream does not exist. No potential fish habitat.

			Map	Width	Gradient		Stream	
Site	ILP/WSC	Reach	Number	(m)	(%)	Species	Class	Comments
								No visible channel. No potential fish habitat. Vegetated
328	1188	1	93L.004	NA	NA	NA	NVC	gully with no evidence of surface scour.
329	1185	1	93L.004	0.86	11	NS	S4*	Fish stream based on access.
330	1478	2	93L.014	1.49	3.5	NFC	S4*	Fish stream based on access. Excellent spawning and rearing habitat. Overwintering
331	600600-57600	5	93L.014	3.89	2.5	RB	S3	habitat present.
331	000000-37000	3	93L.014	3.09	2.3	KD	33	Fish may access this reach from Collins Lake. Non sport
332	1180	5	93L.014	4.01	2.8	CAS	S3*	fish captured.
		-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					No spawning, rearing, or overwintering habitat. No access
333	57600-18800	3	93L.014	0.99	1.3	NS	S6	or suitable fish habitat.
								No connectivity to fish bearing water. There is no
334	1208	1	93L.014	0.72	3.5	NS	S6	continuous channel in the lower portion of this reach.
335	1209	4	93L.014	1.33	20.3	NS	S6	Gradient prevents fish access. Ephemeral stream.
226	57.600 21000	2	027 014	1 40	,	NIGG	G 4*	Non sport fish were captured within reach. Fish stream
336	57600-31800	3	93L.014	1.48	4	NSC	S4*	based on access. No visible channel or evidence of surface scour. No
337	1211	2	93L.014	NA	NA	NA	NVC	potential fish habitat.
331	1211		93L.014	IVA	IVA	IVA	IVVC	No connectivity to fish bearing water. No spawning,
338	1213	2	93L.014	0.78	1.8	NS	S6	rearing or overwintering habitat.
	1210		, o.z., o. r	0.70	1.0	110		No connectivity to fish bearing water. No spawning,
339	1213	1	93L.014	0.73	1.8	NS	S6	rearing or overwintering habitat.
								Fair spawning and rearing habitat. Poor overwintering
340	66200-1840	4	93L.004	1.33	1.3	CT	S4	habitat.
								Excellent spawning habitat. Moderate rearing habitat.
341	63200-66200	2	93L.004	5.28	1.3	CT, DV	S2	Overwintering habitat present.
							~ .	Poor rearing and spawning habitat. No overwintering
342	66200-3100	2	93L.004	1.01	2.5	CT	S4	habitat.
								Falls (8 m) in Reach 3 prevents upstream fish migration.
343	63200-66200	6	93L.004	0.89	2.5	NS	S6	Adequate sampling above the falls indicates this portion of stream is non fish bearing.
343	03200-00200	0	73L.004	0.07	2.3	145	50	Moderate spawning and rearing habitat. No overwintering
344	63200-75900	1	93L.004	3.61	4	CT	S3	habitat.
								Fish stream based on access. Culvert in Reach 1 may
345	63200-75900	3	93L.004	1.45	5.5	NFC	S4*	block upstream fish migration.
								Falls (8 m) downstream prevent upstream fish migration.
							S6/	The upper 200 m of this reach is a vegetated seepage with
346	66200-5580	1	93L.004	1.6	1.5	NFC	NVC	no definable channel.
2.45	1070	2					9.5	No connectivity to fish bearing water. Habitat not suitable
347	1050	2	93L.004	1.4	2.1	NFC	S6	for fish. Good rearing habitat. Fair spawning habitat. No
348	36400-88900	2	93L.004	1.44	4.8	СТ	S4	overwintering habitat. Fair spawning nabitat. No
346	30400-88900	2	93L.004	1.44	4.0	CI	34	overwintering habitat.
								Fish stream based on access. Beaver activity downstream
349	1054	1	93L.004	1.16	3.3	NFC	S4*	may have temporarily blocked access to this reach.
								Excellent rearing habitat. Moderate spawning habitat. No
350	600600-36400	24	93L.004	2.82	3.5	RB, CT	S3	overwintering habitat.
								Excellent spawning habitat. Moderate rearing habitat. No
351	600600-63200	13	93L.004	2.14	3.5	CT	S3	overwintering habitat.
								400 m upstream of road crossing the gradient becomes too
		_						high (22%) to allow fish passage. Fish captured in lower
392	36400-72600	6	93L.005	1.21	4.4	CT	S4/S6	portion of reach.
								The lower 100 m of this reach has a definable shower
								The lower 100 m of this reach has a definable channel although there is no connectivity to fish bearing water.
							S6/	The remainder of the reach can be classified as no visible
393	1028	2	93L.005	0.84	1.8	NFC	NVC	channel with no potential fish habitat.
								Moderate rearing habitat. Poor spawning habitat. No
394	72600-5970	6	93L.005	1.4	2.8	CT	S4	overwintering habitat.
								No visible channel. No potential fish habitat. No
395	1039	6	93L.005	NA	1.3	NA	NVC	evidence of surface scour or fluvial substrates.

			Map	Width	Gradient		Stream	
Site	ILP/WSC	Reach	Number	(m)	(%)	Species	Class	Comments
								Stream does not flow into fish bearing water. Sampling
396	66200-5930	5	93L.004	1.49	1.8	NFC	S6	above falls (8 m) in mainstem (downstream) confirms non fish bearing status.
370	00200 3730	3	73E.004	1.47	1.0	Tue	50	Falls (8 m) in Reach 3 prevent upstream fish migration.
								Sampling upstream of the falls confirms non fish bearing
397	63200-66200	4	93L.004	2.8	4.9	NFC	S6	status.
200	62200 66200	2	001 004	2.40	4.0	C/F	62/65	Falls (8 m) are a barrier to upstream fish migration. Fish
398	63200-66200	3	93L.004	3.49	4.3	CT	S3/S5	captured below falls. Moderate spawning and rearing habitat. No overwintering
399	1405	1	93E.093	2.14	2	DV, CT	S3	habitat identified.
				·		,		
								Ephemeral stream. No spawning or overwintering habitat.
400	1237	3	93E.093	0.56	4.5	NFC	S6	Sections of subsurface flow. Isolated pools.
								No visible channel. No potential fish habitat. Vegetated
401	1287	1	93E.093	NA	20.5	NA	NVC	seepage. No evidence of ponding or surface scour.
						·		1 2
								A high gradient section (25%/100 m) immediately above
402	64400-27000	2	93E.093	3.03	10.3	NFC	S5	the Nanika River prevents fish access to this reach.
403	64400-27800	2	93E.093	2.81	11.1	NFC	S6	High gradient section (25%/100 m) in Reach 1 prevents fish access to this reach.
403	04400-27800		93E.093	2.01	11.1	NIC	30	A high gradient section (26 %) prevents fish access to this
404	1394	1	93E.093	1.28	11.8	NFC	S6	reach.
								Moderate rearing habitat. Poor spawning habitat. No
								overwintering habitat. Fish caught in lower portion of this
405	1393	1	93E.093	1.68	11.3	DV	S3	reach.
								The lower 20 m of this stream is fish bearing. A cascade
								(4 m) and falls (12 m) prevent upstream fish access.
406	1278	1	93E.093	2.62	16.5	CO	S3/S6	Sampling above the falls confirms non fish bearing status.
								Cascade (2.4 m) prevents upstream fish migration. Fish
407	1027	2	93L.004	1.3	5.3	NFC	S4*/S6	bearing below the cascade based on access.
								Fish stream based on access. Beaver activity in the area has caused temporary barriers to upstream fish migration.
								Fish were observed downstream of this reach in a beaver
408	1500	9	93L.004	1.53	1.3	NFC	S3*	pond.
								No visible channel. No potential fish habitat. Rooted vegetation across depression. No connectivity to fish
409	57600-31800	8	93L.014	NA	1.8	NA	NVC	bearing water. No evidence of surface scour.
						- 1.1.2		No barriers to upstream fish migration were identified.
410	1196	1	93L.004	1.33	2.8	NFC	S4*	Fish stream based on access.
411	c2200 c2200	-	021 014	2.16	2.4	NEC	GO#	No barriers to upstream fish migration were identified.
411	63200-62200	5	93L.014	2.46	2.4	NFC	S3*	Fish stream based on access. No barriers to upstream fish migration were identified.
412	63200-62200	3	93L.004	3.36	2.8	NFC	S3*	Fish stream based on access.
413	63200-62200	4	93L.004	NA	NA	NFC	NA	Fish sampling site
								The lower 150 m of this stream is fish bearing based on
4	1000		000 000	1.00	20.2	NEC	G04:/G =	access. Above that point gradient prevents upstream fish
414	1239	1	93E.093	1.99	20.3	NFC	S3*/S6	migration.
415	1278	2	93E.093	2.62	10.5	NFC	S6	Falls (12 m) in Reach 1 prevent upstream fish migration.
	-3.0		, , , , , , ,					Fish stream based on access. No barriers to upstream fish
416	64400-09200	1	93L.003	1.5	2.5	NFC	S3*	migration were observed.
] , _ [~ -	Habitat not suitable for fish. Ephemeral stream with no
417	1217	1	93L.003	1.27	1.5	NS	S6	spawning habitat. No visible channel. Vegetated seepage. No potential fish
418	1000	1	93L.003	NA	2.5	NA	NVC	habitat.
.10	1300	1	752.003	2,21	2.0	2,12	1,,,	Fish bearing stream based on access. Fish were observed
								rising in downstream lake. No barriers to upstream fish
419	62200-2180	5	93L.014	1.29	4.1	NFC	S4*	migration were identified.

			Map	Width	Gradient		Stream	
Site	ILP/WSC	Reach	Number	(m)	(%)	Species	Class	Comments
								Fish stream based on access. No barriers to upstream fish
420	1484	1	93L.014	0.75	2.5	NFC	S4*	migration were observed.
421	1484	2	93L.014	0.59	8	NS	S6	No connectivity to Reach 1. Poorly defined channel and subsurface flows. Habitat not suitable for fish.
422	62200-2180	2	93L.014	NA	NA	CT	NA	Fish sampling site.
722	02200 2100		75E.004	11/11	1421	CI	1421	i isi sumping site.
								Falls (20 m) in Reach 1 prevent upstream fish migration.
423	600600-53900	2	93L.014	2.61	4.8	NFC	S6	Sampling above the falls confirms non fish bearing status.
								Fish stream based on access. Fish captured in downstream
424	36400-00800	7	93L.015	1.53	2.9	NFC	S3*	reach. No barriers to fish passage observed.
425	36400-00800	5	93L.015	1.55	1.8	CT	S3	Moderate rearing and spawning habitat. No overwintering habitat
123	20100 00000	5	752.015	1.55	1.0	CI	53	No visible channel. No evidence of surface scour or
427	1156	3	93L.015	NA	1.8	NA	NVC	potential fish habitat. Vegetated seepage.
								No visible channel. No evidence of surface scour or
428	1152	2	93L.015	NA	2.3	NA	NVC	potential fish habitat. Vegetated seepage.
120	1157	1	021 015	0.51	115	NIC	86	Gradient is too high to allow fish access to this reach.
429	1157	1	93L.015	0.31	44.5	NS	S6	Falls (1.8 m) and high gradient (30%) prevent fish access
436	1235	2	93E.093	1.41	15	NFC	S6	to this reach.
	1200		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Fish stream based on access. Fish may use this stream
437	1275	1	93L.003	1.2	4	NFC	S4*	during higher flows.
							_	The channel fans out in the lower portion of the reach. No
438	1277	1	93L.003	1.38	5	NFC	S6	connectivity to fish bearing water. Poorly defined channel with sections of subsurface flow.
								No connectivity to fish bearing water. Habitat too poor to
439	1228	2	93L.003	0.44	5	NS	S6	sustain fish.
440	1014	1	93L.004	1.18	1.3	NS	S4*	Fish may access this reach from McBride Lake.
								Lower portion of reach below the road crossing can be
441	1012	1	021 004	0.50	1.0	NIC	0.4 \(\) (0.6	classified as fish bearing based on access. Above the road
441	1012	1	93L.004	0.59	1.9	NS	S4*/S6	crossing habitat is too poor to sustain fish. Fish bearing based on access. Upstream lake should be
442	1501	1	93L.004	0.87	3	NFC	S4*	sampled to confirm fish absence.
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-			Upper portion of reach can be classified as no visible
								channel. Lower portion of reach has no connectivity to
							S6/	the Morice River. Ephemeral stream with only 150 m of
455	1475	1	93L.014	1.1	16	NS	NVC	definable channel.
456	1204	1	93L.014	1.81	9.5	NFC	S3*	Fish bearing stream based on access. No barriers to fish migration were identified.
730	1204	1	75L.014	1.01	7.5	MC	55	Fish bearing stream based on access. Possible fish use
457	600600-54900	4	93L.014	1.22	5.5	NFC	S4*	during higher flows.
465	36400-39700	19	93L.016	NA	NA	NFC	NA	Fish sampling site.
						LKC,		
466	36400-39700	17	93L.006	NA	NA	WSU	NA	Fish sampling site. Culvert has blocked fish access. The remainder of this
467	1183	1	93L.014	1.37	1.8	NFC	S4*	reach is fish bearing based on access.
107	1103		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.01	1.0	RB, DV,		
475	36400-39700	1	93L.015	NA	NA	CT, PL	NA	Fish sampling site.
								Fish sampling site. Lake was sampled with 6 minnow
476	1501	2	93L.004	NA	NA	NFC	NA	traps.
								The lower 30 m of this stream is fish bearing based on
								access. Above that point the channel deteriorates and has
667	1046	1	93L.005	0.75	4.5	NS	S4*/S6	no connectivity to the downstream portion.
						RSC,		_
	25400 54405					CAL,	95.	
668	36400-64100	16	93L.005	1.55	1.6	LKC	S3*	Non sport fish captured. Fish bearing based on access.
669	1034	1	93L.005	1.42	0.8	LKC	S4*	Non sport fish captured. Fish bearing based on access.
007	103- T	1	/JL.00J	1.74	0.0	Lixe	ЭŦ	1.01. Sport from captaired. I for bearing based on access.

			Map	Width	Gradient		Stream	
Site	ILP/WSC	Reach	Number	(m)	(%)	Species	Class	Comments
670	1020		001 005	1.0	,	C/F	G.4	Moderate spawning and rearing habitat. Poor
670	1038	1	93L.005	1.2	4	CT	S4	overwintering habitat. No visible channel. No potential fish habitat. No
								evidence of surface scour or connectivity to fish bearing
671	1037	1	93L.005	NA	4.5	NA	NVC	water.
								Low spawning potential. Moderate rearing habitat. High
672	36400-64100	9	93L.005	3.8	1.1	CT, RSC	S3	quality overwintering habitat.
								No visible channel. No potential fish habitat. No evidence of surface scour or connectivity to fish bearing
673	1039	3	93L.005	NA	1.3	NA	NVC	water.
						·		Moderate spawning habitat. High quality rearing habitat.
674	36400-64100	13	93L.005	2.7	3.3	RB	S3	Poor overwintering habitat.
						RSC, CT,		
						CH, LNC,		High quality overwintering and rearing habitat. Spawning
675	64400-18300	6	93L.003	7.31	0.3	CAL	S2	habitat present.
								Fish stream based on access. No permanent barriers
676	64400-18300	10	93L.003	1.1	4	NFC	S4*	observed.
677	1260	2	001 000	6.70	5.0	CE DV	62	Abundant spawning and rearing habitat. Overwintering
677	1269	2	93L.003	6.73	5.3	CT, DV	S2	habitat present. Good rearing and spawning habitat. Moderate
678	64400-18300	9	93L.003	1.37	4	CT	S4	overwintering habitat.
679	1268	1	93L.003	1.97	4.5	CT	S3	Moderate spawning, rearing and overwintering habitat.
680	1272	1	93L.003	0.28	13.5	NS	S6	No fish access to this reach. vegetated channel with no spawning, rearing, or overwintering habitat present.
000	1272	1	75E.005	0.20	13.3	110	50	Moderate spawning habitat. Good rearing potential. No
681	1273	3	93L.003	1.32	4.5	CT	S4	overwintering habitat present.
								Good overwintering and rearing habitat present. Moderate
682	1221	1	93L.003	3.25	10.5	CT	S3	spawning habitat.
								High Gradient (32%) drop into mainstem prevents
								upstream fish migration. No connectivity within stream.
683	1222	1	93L.003	0.35	13.5	NFC	S6	Sections of subsurface flow and isolated pools.
								A small cascade (0.8 m) may prevent upstream fish
694	1221	1	93L.003	2.78	4.5	NFC	S3*	migration. Fish bearing until adequate resampling is conducted above the cascade.
684 685	1500	2	93L.003	NA	NA	DV, CT	NA	Fish sampling site.
	1500) D D 1000	1111	1,112	5,,01	- 1112	Channel is dewatered for 200 m in the downstream portion
								of this reach. No fish access through this section.
								Sampling above the dewatered section indicates fish
687	64400-18300	11	93E.093	7.15	13.5	NFC	S5	cannot access this reach. Cascades (4 m, 2 m and .6 m) along with dewatering at the
								stream mouth prevent fish migration upstream into this
688	1263	1	93E.093	3.01	18	NFC	S5	reach.
689	1264	1	93E.093	1.33	23.5	NFC	S6	Gradient prevents fish access to this reach.
600	1045		025 022	1.50	4.6	DV C	00	Moderate spawning and rearing habitat. No overwintering
690	1246	1	93E.093	1.58	4.9	DV, CT	S3	habitat. High to moderate rearing habitat. Spawning and
691	18300-3800	2	93E.093	8.3	3	DV, CT	S2	overwintering habitat present.
				~-~		., .,		No spawning or overwintering habitat. Poor rearing
692	63200-09800	1	93L.003	1.66	0.6	DV	S3	habitat.
600	c2200 00000	2	027 022	1.7	4	DI.	00	No spawning or overwintering habitat. Moderate rearing
693	63200-09800	3	93L.003	1.7	1	DV	S3	habitat.
								Fish bearing based on access. The channel dissipates to
								nothing within the top 1/3 of this reach. This section is
								non fish bearing based on channel characteristics and no
699	1009	1	93L.003	2	0.9	NFC	S3*/S6	available fish habitat.

Table 7. Upper Morice Stream Classification Summary

			Map	Width	Gradient		Stream	
Site	ILP/WSC	Reach	Number	(m)	(%)	Species	Class	Comments
700	64400-09200	3	93L.003	1.75	6.1	NFC	S6	Cascade (5 m) in reach 2 prevent fish access to this reach.
								Cascade (5 m) prevents fish access to the upper portion of
								this reach. Fish bearing based on access below the
701	64400-09200	2	93L.003	2.17	8.3	NFC	S3*/S6	cascade.
								Fish stream based on access. Potential fish use in
702	4190-1340	3	93L.003	1.02	4.8	NFC	S4*	upstream lake.
								No visible channel. No potential fish habitat. No
703	600600-41800	5	93L.014	NA	1.8	NA	NVC	connectivity to fish bearing water.
								Fish bearing based on possible fish access through
704	1447	2	93L.014	1.92	3.4	NFC	S3*	adjacent wetland during periods of high flow.
								Fish stream based on access. Potential spawning habitat
801	1479	1	93L.014	1.51	2.5	NFC	S3*	during high flows.
								Fish bearing based on access. No permanent barriers to
802	600600-57600	10	93L.014	1.82	5.5	NFC	S3*	upstream fish migration were identified.
								Cascade (4 m) prevents upstream fish migration. Fish
								bearing based on access below the cascade. Non fish
806	600600-57600	10	93L.014	1.51	6.8	NFC	S3*/S6	bearing above the cascade.
						RB, BT,		
900	64400-28100	2	93E.093	NA	NA	MW	NA	Fish sampling site.
901	64400-28100	9	93E.092	NA	NA	DV	NA	Fish sampling site.
								No spawning, rearing, or overwintering habitat.
								Subsurface flows and numerous small cascades throughout
2340	1065	1	93L.005	1	4.5	NS	S6	reach.

7.0 REFERENCES

- Anonymous, 1995. Forest Practices Code Fish Stream Identification Guidebook. Forest Practices Code of British Columbia Act. Co-published by Forest Service British Columbia and British Columbia Environment.
- Anonymous, 1995a. Fisheries Information Summary System: Data Compilation and Mapping Procedures. British Columbia Ministry of Environment, Lands and Parks, and Department of Fisheries and Oceans.
- Anonymous, 1998. Reconnaissance (1:20 000) Fish and Fish Habitat Inventory. British Columbia Ministry of Environment, Lands and Parks.
- Campbell, W.R., N.K. Dawe, I. McTaggart-Cowan, J.M. Cooper, G.W. Kaiser & M.C. McNall, 1990. The birds of British Columbia. Volume One. Nonpasserines. UBC Press, Vancouver, Canada. pp. 514.
- Demarchi, D. 1996. An introduction to the ecoregions of British Columbia. MELP, Wildlife Branch. Victoria, B.C. 46 pp. + appendices.
- Meidinger, D. & J. Pojar, 1991. Ecosystems of British Columbia. British Columbia Ministry of Forests. Victoria, B.C. pp. 330
- Norcan, 1998. Archaeological Impact Assessment (for Cutting Permit 585-2). Norcan Consulting Ltd. Prince George, B.C.
- Scott, W.B. & E.J. Crossman, 1985. Freshwater fishes of Canada. Bryant Press Ltd. Ottawa, Canada. pp. 966

APPENDIX II

Project Overview Map

APPENDIX III

Project Maps

APPENDIX IV

Fisheries Interpretive Maps