Climate Change: Skeena and Omineca Regions

Vanessa Foord, M.Sc., P.Ag. Research Climatologist, North Area BC Ministry of Forests, Lands, and Natural Resource Operations March 7, 2017

Outline

- 1. Climate Change Basics
- 2. Skeena Current Trends
- 3. Omineca Current Trends
- 4. Climate Change Projections
- 5. Ministry's climate change response
- 6. Omineca Climate Action Plan
- 7. Discussion?

Climate Basics

Greenhouse Effect

Sources: Okanagan university college in Canada, Department of geography, University of Oxford, school of geography; United States Environmental Protection Agency (EPA), Washington; Climate change 1995, The science of climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge university press, 1996.

Feedbacks

- Self-perpetuating mechanism of change, and the response to that change
 - Negative and Positive feedback loops
- Snow/Ice melt:
 - Positive: Exposes darker surfaces, energy absorption and releases more heat, causing more melt
- Land use changes:
 - Positive (Negative): exposes surfaces with lower (higher) albedo and increases (decreases) heat absorption and radiation
- Increased CO₂:
 - Negative: Temperature ~ Photosynthesis ~ $\downarrow CO_2$
 - **Positive:** Temperature ~ CO_2 release from oceans, rocks, soil

Relative Contributions to Climate Change

• <u>http://www.bloomberg.com/graphics/2015-</u> whats-warming-the-world/

Ocean-Atmosphere Oscillations

- El Niño Southern Oscillation:
 - 3-7 year cycle
 - Northern BC impact only when moderate to strong:
 El Niño = warm/dry; La Niña = cool/wet
 - Strong El Niño 2015/2016 = warm/dry
- Pacific Decadal Oscillation (PDO):
 - Dominate mode of climate variability in northern BC
 - Cool: 1890-1924, 1947-1976, 1998-2015? (NW = dry, interior = wet)
 - Warm: 1925-1946, 1977-1998? (NW = wet, interior = dry)
 - 2015 shift to warm? Too soon to tell.

The Blob: 2013-2016

Upper Ocean Heat Content Anomaly

AUG 2016 Heat Content Anomaly (°C) (GODAS, Climo. 81-10)

Presented by Rick Thoman, Alaska NWS, Sep 23, 2016

Climate Variability vs Climate Change

Annual Mean Temperature Fort St. James 1895-2015

PDO next warm phase will likely be much warmer than previous warm phases.

Skeena Current Climate Trends

Environment Canada daily data: 1886-2008

Skeena Trends

Mean annual precip:+5.2% • Spring and Summer \uparrow Mean annual temp:+0.8 °C • Winter \longrightarrow Fall Extreme max temp:+0.7 °C • Summer, winter, spring, \uparrow , fall \downarrow Extreme min temp:+1.7 °C

• Winter \longrightarrow Fall

Nadina District Trends

Nadina - change in:	Annual	Winter	Spring	Summer	Fall
Precipitation (%)	-0.7	-19.5	-3.8	10.0	6.3
Mean Temperature (^o C)	0.8	2.1	0.5	0.4	0.1
Max Temperature (^o C)	0.0	-0.3	-0.7	-0.2	-1.6
Min Temperature (°C)	2.9	3.0	2.8	1.2	1.5
	1926-2008				
	Bold statis				

- Significant decrease in Winter precipitation
- Significant increase in Summer precipitation
- Warm minimum temperatures
- Fall conflicts, increasing cloud?

Skeena District Trends

Skeena - change in:	Annual	Winter	Spring	Summer	Fall
Precipitation (%)	12.4	16.3	18.6	17.4	19.6
Mean Temperature (°C)	0.2	0.7	0.3	0.5	-0.2
Max Temperature (^o C)	0.5	0.5	0.2	0.7	-1.0
Min Temperature (^o C)	-0.1	0.8	0.8	0.6	0.4
	1912 - 2008	8			
	Bold statis				

- Skeena-Stikine district without Stikine
- Significant increases in precipitation all seasons
- Few significant temperature trends in comparison to other districts

Kalum District Trends

Kalum - change in:	Annual	Winter	Spring	Summer	Fall
Precipitation (%)	2.3	2.0	9.3	6.0	-1.0
Mean Temperature (°C)	0.9	1.9	1.0	0.7	0.3
Max Temperature (^o C)	1.0	0.9	0.8	1.0	-0.1
Min Temperature (°C)	2.1	2.9	1.5	0.9	-0.4
	1886-2008				
	Bold statis				

- Significant increase in Spring precipitation
- Greatest warming in Winter, then Spring

Stikine District Trends

Stikine - change in:	Annual	Winter	Spring	Summer	Fall
Precipitation (%)	14.0	18.2	14.5	19.8	6.5
Mean Temperature (°C)	0.9	2.3	1.1	0.8	-0.1
Max Temperature (°C)	0.7	0.9	0.1	0.9	-0.9
Min Temperature (°C)	1.4	2.2	1.4	0.9	-0.3
	1905 - 2008	3			
	Bold statis				

- Skeena-Stikine district without Skeena
- Large increases in Summer precipitation and temperature trends
- Increasing winter temperatures
- Significant negative fall maximum temperature trend

Yearly Average Temperature Smithers A 1942-2016

Year

Smithers A Winter Total Precipitation 1942-2017

Smithers A Spring Mean Temperature 1942-2017

Omineca Current Climate Trends

Omineca Trends

Mean annual precip:+13.3%

- Spring, Summer, Fall ~20% ↑
- Winter \downarrow

Mean annual temp:+1.3 °C

• Largest: winter \longrightarrow fall

Extreme max temp:+0.8 °C

• Mostly significantly in summer

Extreme min temp:+4.5 °C

• Largest: Spring, Winter, Fall, Summer

Winter Trends

	Fort St.			Prince	Robson	
Change in:	James	Mackenzie	Vanderhoof	George	Valley	Omineca
Precipitation (%)	13.9	-14.8	-9.5	-17.0	13.3	-1.5
Mean Temperature	2.6	3.8	3.2	2.1	0.8	2.2
Max Temperature	2.0	0.3	1.2	0.1	-0.9	0.3
Min Temperature	4.9	3.8	2.3	5.1	1.3	3.5

Large trends in winter mean and minimum temperatures

Lots of variability in winter precipitation trends

Spring Trends

	Fort St.			Prince	Robson	
Change in:	James	Mackenzie	Vanderhoof	George	Valley	Omineca
Precipitation (%)	17.8	10.6	31.2	17.9	22.1	20.0
Mean Temperature	2.4	1.5	1.5	1.1	0.5	1.2
Max Temperature	1.2	-0.3	0.1	0.7	1.9	0.6
Min Temperature	9.3	4.2	3.6	2.7	2.2	3.9

Increasing spring precipitation

Large minimum temperatures, west to east trend

Significant increases in mean spring temperatures

Summer Trends

	Fort St.			Prince	Robson	
Change in:	James	Mackenzie	Vanderhoof	George	Valley	Omineca
Precipitation (%)	29.4	9.2	39.7	13.9	21.9	21.5
Mean Temperature	2.1	1.2	1.1	0.9	0.6	1.1
Max Temperature	-0.2	0.7	1.1	1.7	0.0	0.7
Min Temperature	4.3	1.1	1.1	1.0	1.5	1.7

Large increases in summer precipitation, Fort St. James and Vanderhoof district

Less change in minimum temperature than spring and winter

Fall Trends

	Fort St.			Prince	Robson	
Change in:	James	Mackenzie	Vanderhoof	George	Valley	Omineca
Precipitation (%)	23.6	9.2	23.9	19.4	19.1	19.4
Mean Temperature	1.6	0.7	0.8	0.8	-0.1	0.7
Max Temperature	0.1	0.0	0.8	1.5	-0.2	0.5
Min Temperature	4.6	3.3	2.4	2.3	0.3	2.2

Large increases in fall precipitation

Again, large changes in minimum temperatures

Prince George A Winter Min Temperature 1942-2017

Prince George winter minimum temperatures have increased by almost 10°C.

Creates more favourable conditions for forests pest and diseases, and invasive species.

Year

Annual Total Precipitation Fort St. James 1895-2015

Climate/Hydrology:

↓ Snowpack	↑ Minimum	Overall warming	Seasonal shifts
	temperature		
Watershed instability	↑ Fire season length	↑ Fire severity/intensity	Extreme temperatures
Precipitation intensities	↑ Rain	↑ Freeze/thaw switches	Saturated soils
↓ Cold arctic air	↑ Evaporation	Faster snowmelt	↑ Lake temperatures
Summer drought	Isolated rainstorms	↑ Flooding	↑ High-elevation snow
Changing precipitation	Earlier groundwater	\uparrow River erosion and	↑Mid-winter ice jam
levels, seasonal	peak from early	sediment, channel	breakups
difference	snowmelt	change	
↑ Log jams	More "no flows"	Extreme low lake levels	↓ Frost
↑ Rain on snow events	↑ Lake algae blooms	↑ Mild, wet springs	↑ Cloud cover
↑ Extreme weather	↑ Evapotranspiration	Dry soils	↑ Stream temperatures
↑ Return intervals of	Changes to watershed	Mountain permafrost	Early melt of low
precipitation events	storage	changes and landslides	elevation snow
↑ Groundwater	Groundwater tables	Receding glaciers	↑ Conditions favourable
demands from	dropping quickly and	affecting water supply	for avalanches
decreased surface water	early flow into streams	and power generation	
supply			
Abrupt weather	Snow wetter and		
changes	heavier		

Ecosystems:

Shifting ecosystems	↓ Survival of edge range	Natural systems out of	↑ Invasive species
	plants	sync	
Whitebark pine	Alder out-competing	Species shifting up in	Change dynamics for
threatened: phenology,	traditional riparian	elevation and north in	species planting and
MPB, blister rust	vegetation	latitude	suitability
Loss of biodiversity with	Overabundance of	Landscape level	↑ Grasses
few large leave areas	young seral habitat	biodiversity impacts	
↓Snow and water	Changes to soil moisture		
availability for ICH	regimes		

Wildlife/Fish:

•			

Changing dynamics: too warm in traditional areas for ungulates	Changes to snow depths affecting ungulate migration	Changes to fish habitat: stream temperatures too warm	↑ Frequency of disturbance: loss of habitat
\uparrow Elk population	↑ Moose ticks	↓ Bird nesting success	↓ Amphibians
↓ Populations (e.g moose, deer, bear)	Bulltrout threatened, habitats too warm	↑ Total dissolved solids in lakes	↑ Stream temps during spawning seasons
↑ Sediments in streams	Wildlife breaking winter dormancy (e.g. bears)	Changing bird migration patterns and timing	↑ Risks to temperature sensitive streams
\downarrow Old growth habitat	↓ Specialist species	Phenology changes	↓ Salmon habitat

Pest/Diseases:

MPB epidemic	↑ Rusts	↑ Dothistroma	↑ Spruce Beetle
↑ Invasive species	↑ Blowdown	↑ Moose ticks	Willow poplar weevil
↑ Foliar diseases in	Parasites on white-tail	↑ Winter survival of	↑Defoliators
young pine plantations	deer	several pests	
↑ Douglas fir beetle			

Operations/Landuse:

Longer planting season	↑ Growing season	↑ Harvest season	↓ Winter logger season
Earlier breakup	Planting different	↓ Mid-term timber	↑ Cut size
	species	supply	
↑ Harvest from MPB	Changes to land	Changes to timing and	Changes to water
further aggravating	absorption and buffering	amount of spring freshet	availability for power
climate change impacts	capacity from MPB	from dead pine/harvest	generation
↑ Salvage: ↓ stumpage	Changes to patch	Wet soils in summer,	↑ Road access and
and revenue	size/matrix composition	loss of operability	wildlife access
↓ Freezing of soils in	Wildfire management: ↑	↓ Snowmobile	↓ Well water levels in
winter season	demand and costs	season/winter tourism	summer
Seed transfer limits	Planting Douglas Fir and	Changing dynamics of	Changes to stocking
moving north	Western Larch	species plantings	standards
↓ Carbon storage	↑ Soil disturbance		

Climate Change Projections: 2040-2069

ClimateBC

http://cfcg.forestry.ubc.ca/projects/climate-data/climatebcwna/

BC Government Response to Climate Change

FLNRO Climate Change Strategy 2015-20 (updated from 2013)

- *"FLNR is a leader in adaptation and mitigation actions aimed at improving the resilience of B.C.'s natural, cultural and heritage resources and values in response to climate change."*
- Goal 1: Manage climate change as a core part of FLNR business
- Goal 2: FLNR will increase the use of climate relevant science, data, and knowledge to better understand the environmental, social, and economic implications of climate change on core business
- Goal 3: Climate change adaptation and mitigation is integrated into program areas, operations, resource management decisions, and actions

Objectives

- 1. Public Safety and Natural Disaster Management
- 2. Climate Science
- 3. Climate Knowledge
- 4. Collaboration
- 5. Legislation, Policy, and Procedures
- 6. Management
- 7. Decision Making
- 8. Business Opportunities
- 9. Monitoring Performance

Actions

- All Ministry regions and branches developed Climate Action Plans
- Climate Action Plans will be implemented by September 1, 2016
- The delivery of climate action will be integrated into daily activities of staff across the ministry by March 31, 2018.
- An economic analysis on the cost of prevention versus reaction to climate impacts, to be used to help inform Ministry decision making will be completed by March 31, 2017
- Climate change risks and opportunities with regards to First Nations will be assessed by September 30, 2017
- Mechanisms to quantify climate change risk, identify thresholds for action and share cost and risk appropriately will be developed by March 31, 2018
- BC Climate Change Scorecard: Required reporting on progress by region and branch, twice annually

Current Programs – e.g's

- Assisted Migration Climate Based Seed Transfer
- Changes to Stocking Standards
- Mixed species options for Forests for Tomorrow
 Western Larch and Douglas Fir range expansion
- Tree Species Selection Tool
- Wildfire fuel management
- Forest Carbon Offsets
- Climate Models: ClimateBC, WNA, NA
- Future Ecological Classification modelling

 Promotion and demotion of species
- BC Forests Carbon Strategy 2016-2020

GHG Emission Mitigation Commitments

- 2008: BC legislated the reduction of greenhouse gas emissions by 80% in 2050 (from 2007 levels, 67.3 MtCO₂e, = 53.8)
 - 6% reduction by 2012, met, but rose back up
 - 33% of 2007 levels (~21 Mt CO2e) by 2020 ?
 - NEW: Climate Leadership Plan lists actions for reducing 25 MtCO₂e by 2050
- Canada committed to reduce 30% of 2005 emissions by 2030 (~225 MtCO₂e): new targets in review/negotiation
- Paris agreement: keep global temperature increase below 2°C (global emissions = zero by 2100)
 - Not legally bound to reduce emissions, legally required to report
 - Fund \$100B/yr (2020-25) for developing countries impacts
 - Save remaining intact forests and leave fossil fuels in the ground

Climate Leadership Plan 2016

- Forest Carbon Initiative will rehabilitate 300,000 ha of MPB and wildfire impacted sites over first 5 years
- Fibre Action Plan: fibre utilization and reduced slash pile burning
- By 2050: Annual reduction of GHG emissions up to 12 Mt CO₂e, creation of 19,000+ jobs and \$681M in economic activity

Forestry and agriculture are foundational industries in British Columbia's economy. Our forests also offer incredible potential for storing carbon, so we are taking further action to:

- Rehabilitate under-productive forests;
- Recover more wood fibre; and
- Avoid emissions from burning slash.

Additionally, we are expanding a nutrient management program that will help improve the environmental performance of B.C.'s farms. This action area is expected to reduce annual emissions by up to 12 million tonnes by 2050.

BC Forest Carbon Strategy 2016-2020

- Goal 1: Enhance the capacity of BC's public forests as a net carbon sink.
- Goal 2: Increase the contribution of forest products to mitigating climate change
- Goal 3: Increase collaboration with First Nations, communities and stakeholders
- Goal 4: Research to inform policy development Example Actions:
 - Reduce fire risk through Forest Enhancement Society
 - Guide forest carbon offset investment in FCOProtocol
 - Respond to disturbances through Forests For Tomorrow
 - Develop carbon friendly products with FPInnovations

- Improve fibre utilization
- Encourage increased use of wood
- Promote use of value-added products
- Work directly with First Nations
- Collaborate with CFS, PICS, PCIC
- Climate change and forest carbon modelling
- Improve extension and communication

Omineca Climate Action Plan

Background

- Omineca Climate Action Plan developed 2014
 - Goals, Objectives, Actions for each theme
 - Water; Terrestrial Habitat and Wildlife; Aquatic Habitat and Fish; Forests, Range, Ecosystems; Geohazards, Landscape-Level Impacts and Cumulative Effects
- Workshop December 2015:
 - Refine actions identified during 2014 workshop
 - Action status, context, responsibility, prioritize
 - Identify top three for each theme
 - Integrate actions into workplan process, engagement
 - Implementation Plan

Results: Water

- 1. Research/activities to link groundwater and surface water
 - Driven by the Water Sustainability Act changes and capacity of new staff.
- 2. Development and improvement of assessment tools
 - i.e. Omineca Watershed Health assessment completed
- 3. Improved baseline monitoring
 - Installation of wells and hydrometric stations
 - Increasing frequency of sampling

Results: Terrestrial Habitat & Wildlife

- 1. Research & monitoring on how climate change affects ecosystem habitat
- 2. Focus on high priority research:
 - Moose populations (i.e. habitat, population modelling, mortality surveys, ticks)
 - Caribou recovery planning
 - Whitebark pine
- 3. Establish interdisciplinary climate change working group to increase awareness, collaboration
 - Include: FLNRO staff, First Nations, academics

Results: Aquatic Habitat & Fish

- 1. Sub-committee to build climate issues as valueadded components of existing projects:
 - Apply for climate related funding
 - Explore partnerships to generate funds, resources
 - Integrate into regional resource discussions, raise profile of fisheries values in planning, climate change initiatives
- 2. Strategic plan for river/stream-temperature monitoring across the Omineca Region
- 3. Habitat vs. indicator species
 - Predictive tools for habitat coupled with monitoring Species at Risk

Results: Forestry, Range & Ecosystems

- 1. Validate the Drought Risk Assessment Tool and continue to support drought risk modelling
- 2. Adapt Long-Term Research Installations for assessing climate change trends
- 3. Use latest version of ClimateBC and Biogeoclimatic Ecosystem Classification (BEC) modelling at all ecosystem units to create Omineca BEC projections
- 4. Validate models by increasing climate monitoring on areas with no historical information
- 5. Implement stocking standards adapted to climate change
 - Increase target and minimum densities, especially for pine
- 6. Map and maintain natural grasslands

Results: Geohazards

- 1. Increase monitoring efforts on climate and geohazards
 - Initiate landslide and geohazard database (running in parallel with provincial initiative).
 - Enhance spatial analysis
- 2. Proactive natural hazard management through development of automatic and integrated landslide detection tools and consider ability to do geohazard assessments for vulnerable communities
- 3. Increase soil moisture monitoring, use of remote sensing tools and appropriate field validation

Results: Landscape Level Impacts & Cumulative Effects

- 1. Continue with North Area Cumulative Effects project
- Implement phase 2 of the Prince George Timber Supply Area Landscape Objectives Working Group pilot
 - Identify landscape biodiversity areas, 6 merged BEC units (from natural disturbance units)
- 3. Implement North Area Climate and Natural Disturbance Database into consideration for decisionmaking and expand climate monitoring in a variety of landscapes to quantify changes, watch for emerging issues, and incorporate into operational activities or management plans where appropriate

Forest Ecosystem Research Network

- 25 weather stations, 28 research locations
- temperature, relative humidity, pressure, rainfall, solar radiation, wind speed/direction, snow depth, soil moisture
- temperatures at various heights: air, snow, soil, and rock (~350)
- leaf wetness, understory light/radiation
- snow cores: depth, density, snow water equivalent

- Weather stations filling gaps in our provincial monitoring networks: north, mid to high elevations, additional measurements
- Data is online via PCIC BC Station Data Portal
- Real-time data starting to become available

Current Research Projects

- 1. Disease severity of young pine stands related to microclimate and climate change
- 2. Impacts of mountain pine beetle to carbon flux, ecosystem productivity, hydrology, and understory light of non-harvested stands
- 3. Climate of permafrost regions (mountains and isolated patches), impacts of climate change and potential stability risks
- 4. Kiskatinaw River peak flow modeling, climate/snow monitoring5. Assessing drought risk, validation of Drought Risk Analysis Tool6. Indicators of climate change to aid adaptation in resource
- management: tools and model validation

Citation

Foord, V. 2016. Climate patterns, trends, and projections for the Omineca, Skeena, and Northeast Natural Resource Regions, British Columbia. Prov. B.C., Victoria, B.C. Tech. Rep. 097. www.for.gov. bc.ca/hfd/pubs/Docs/Tr/Tr097.htm

https://www.for.gov.bc.ca/hfd/pubs/Docs/Tr/TR097.htm

Data source for slides: 16, 17, 24, 25: based on Environment Canada weather stations.

Questions?

Vanessa.Foord@gov.bc.ca

250.561.3459